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In this study, we aimed to use voxel-level degree centrality (DC) features

in combination with machine learning methods to distinguish obstructive

sleep apnea (OSA) patients with and without mild cognitive impairment (MCI).

Ninety-nine OSA patients were recruited for rs-MRI scanning, including 51

MCI patients and 48 participants with no mild cognitive impairment. Based on

the Automated Anatomical Labeling (AAL) brain atlas, the DC features of all

participants were calculated and extracted. Ten DC features were screened

out by deleting variables with high pin-correlation and minimum absolute

contraction and performing selective operator lasso regression. Finally, three

machine learning methods were used to establish classification models.

The support vector machine method had the best classification e�ciency

(AUC = 0.78), followed by random forest (AUC = 0.71) and logistic regression

(AUC = 0.77). These findings demonstrate an e�ective machine learning

approach for di�erentiating OSA patients with and without MCI and provide

potential neuroimaging evidence for cognitive impairment caused by OSA.

KEYWORDS

obstructive sleep apnea, resting-state functionalmagnetic resonance imaging, degree

centrality, machine learning, mild cognitive impairment

Introduction

Obstructive sleep apnea (OSA) is a common sleep disorder characterized by

repeated airflow stoppages caused by partial obstruction of the upper airway during

sleep, affecting approximately 14% of adult men and 5% of adult women (1, 2).

Recurrent upper airway obstruction in OSA patients results in intermittent hypoxia,

fragmented sleep, and excessive day-time sleepiness (3). Furthermore, OSA has been

shown to be associated with mild cognitive impairment (MCI), especially in older

adults (4). Currently, the research on OSA and MCI is still in its infancy; however,

there is some evidence suggesting that oxidative stress and endothelial function

damage caused by intermittent hypoxia are related to cognitive impairment (5).
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However, the neuroimaging mechanisms involved in the

association between OSA andMCI are not fully understood, and

the assessment of OSA cognitive impairment is challenging to

some extent.

With the continuous development of imaging technology,

researchers have been involved in the study of MCI, brain

function, and brain structure progressively. Reportedly, OSA

patients have multiple brain abnormalities related to cognitive

dysfunction apparent in regions such the cerebellum, insula,

temporal area, and hippocampus (6–9). Resting state functional

magnetic resonance (fMRI) reflects brain function under in

vivo physiological and pathological conditions through resting

oxygen-dependent changes. In the resting state, neurons in

the brain exhibit spontaneous activity that is transmitted

to other neurons, forming a complex network of functions.

DC can explore the characteristics of the whole brain

functional connection at the voxel level (10), complete the

construction of the whole brain functional network, explore

the functional community within the functional connection

group (11), and avoid the influence of subjective seed

point selection. Simultaneously, DC does not require prior

prediction, making it more suitable for exploring neural

correlations of dimensional and classified phenotypic data

(12). Our previous study showed that the DC changes in

the bilateral posterior cerebellar, frontal, temporal, and insula

lobes before and after CPAP therapy confirmed the high

overlap between the reversed brain region and the initial

injury brain region, objectively reflecting the effectiveness of

CPAP therapy (13). In another Alzheimer’s study, patients

who recovered from MCI had lower DC in the right

lower cerebellum and higher DC in the left superior medial

frontal gyrus and left inferior temporal gyrus compared

with healthy participants, suggesting that loss of function in

local brain structures could be compensated for by enhanced

function in surrounding areas (14). Enabled by the high

sensitivity and repeatability of DC technology (15), the

application of DC to cognitive disability-related diseases to

explore the reversible potential physiological mechanism of

neural network injury and brain injury has become more

frequent (16, 17).

Machine learning is widely used in binary classification

because of its parallelism, self-organization, adaptive learning

ability, and robustness (18). Common classification methods

in data mining and machine learning include artificial neural

network, logistic regression (LR), random forest (RF), and

support vector machine (SVM)(19–22). Khatri et al. performed

diagnostic classification of MCI patients and healthy people

based on multimodal MRI (ReHo, fALFF, ALFF, DC) and

hippocampal and amygdala volumes, and compared the

classification efficiency of various machine learning methods.

Eventually, they achieved good classification performance,

with SVM as the best classifier (AUC 94.03%, accuracy

92.45%) (23). Bigham et al. used diffusion tensor imaging

for diagnostic classification of MCI patients and healthy

people in combination with a fast correlation filter for feature

screening of high-dimensional data and obtained a good SVM

classification feature model with 83.3% accuracy and 80.7%

sensitivity (24).

Based on those findings, in this study, we assume that a

variety of machine learning methods can be used to construct

classification models (including SVM, RF and LR) through DC

features, and can effectively identify patients with cognitive

impairment fromOSA patients. The objectives of this study were

as follows: 1. DC was used to detect OSA patients with MCI

and OSA patients without MCI, while the LASSO regression

method was used to screen out the most characteristic brain

regions, 2. A variety of machine learning methods (SVM, LR

and LR) were compared simultaneously to build the optimal

performance model.

Material and methods

All OSA patients were diagnosed with obstructive

sleep apnea in the sleep monitoring room of the First

Affiliated Hospital of Nanchang University’s Department

of Respiratory Medicine, between August 2017 and June

2022. The diagnosis of all patients was jointly determined

by experienced respiratory physicians in accordance

with the guidelines of the American Academy of Sleep

Medicine (AASM) 2017 Clinical Practice Guidelines for

adult obstructive sleep apnea (25). Inclusion criteria were

as follows: apnea hypopnea index (AHI) > 15/h; All

participants were right-handed, native Chinese speakers

and aged 20 to 60. Exclusion criteria were as follows: (1)

Sleep disorders other than OSA (e.g., insomnia, drowsiness);

(2) Respiratory diseases, cardiovascular diseases, diabetes

mellitus, hypothyroidism, central nervous system diseases,

trauma, and other conditions that would explain an AHI >

15/h independent of OSA; (4) Alcohol or illicit drug abuse or

current use of psychotropic substances; (4) Contraindications

to MRI, such as claustrophobia; (5) Image artifact. A final

99 OSA patients were included in the analysis. We abide

by the principles of the Declaration of Helsinki. This study

was approved by the Medical Ethics Committee of the

First Affiliated Hospital of Nanchang University [2020(94)].

Participants signed written informed consent documentation for

this study.

Research framework

Our research framework is shown in Figure 1 and the

specific steps are as follows:
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FIGURE 1

(A) The original rs-MRI was preprocessed and regions of interest were extracted by AAL template as features. (B–C) All the features extracted

from DC were screened for feature correlation, and the minimum absolute contraction and Selection operator logic method was used for

10-fold cross verification to retain the features with non-zero coe�cients. (D) The extracted features are trained by SVM, RF and LR to obtain

the best model. (E) Visual mapping of brain regions according to the characteristics of the best model.

Polysomnography and
neuropsychological assessment

Prior to polysomnography (PSG) monitoring, all

participants were asked not to consume alcohol or coffee. All

participants received an overnight PSG (from 10 p.m. to 6 a.m.),

using the Respironics LE physiological monitoring system of

(Alice 5 LE, Respironics, Orlando, FL, USA). PSG monitoring

includes standard electrocardiogram, electro-ophthalmogram,

electromyogram, electrocardiogram, body position, nasal and

oral airflow, chest and abdominal respiratory movement,

snoring, etc. Saturation of pulse oxygen (SpO2), sleep latency,

total sleep time, sleep efficiency, sleep stage, awakening, and

respiratory events were recorded (26). Obstructive apnea is

described as a continuous 90% reduction in airflow, lasting >

10 seconds, with significant dyspnea. The apnea index (AHI)

is the sum of apnea and hypopnea events occurring per hour

during sleep.

All participants completed the MoCA cognitive scale

assessment in a quiet state under the guidance of a

professional neuropsychologist. Cognitive function was

assessed using 11 MoCA items, which were examined in eight

cognitive domains, including executive function, language,

attention, computation, abstraction, naming, memory,

and orientation. A MoCA score < 26 indicates cognitive

impairment (27).

MRI data acquistion

MRI images were collected for all participants in a 3.0

Tesla MRI scanner in our hospital’s 8-channel phased array

head coil (Siemens, Munich, Germany). Foam pads were used

to reduce the patient’s head movement, and earplugs were

used to reduce scanner noise. Before the scan, all participants

were required to close their eyes, stay awake and not engage

in specific thinking activities. First, conventional MRI scan

was performed, and conventional T1-weighted imaging was

performed: Repetition time (TR) = 250ms, echo time (TE)

= 2.46ms, Thickness = 5mm, clearance = 1.5mm, FOV =

220 x 220mm, TR= 4,000ms, TE = 113ms, thickness =

5mm, Clearance = 1.5mm, FOV = 220 × 220mm, slice

= 19). Then, high-resolution T1-weighted MRI images of

brain structures were obtained from each subject using brain

volume sequences on the sagittal plane (TR = 1,900ms, TE

= 2.26ms, thickness = 1.0mm, gap = 0.5mm, FOV = 250

× 250mm, Matrix = 256 × 256, turn Angle = 9, slice

= 176). Finally, in the axial plane (TR = 2,000ms, TE =

30ms, turn Angle = 90, thickness = 4.0mm, clearance =

1.2mm, rs-fMRI data), field of view = 230 × 230mm 2,

matrix size = 64 × 64, slice = 30), a total of 240 rs-fMRI

images were recorded. Two experienced radiologists read the

images to exclude lesions and motion artifacts visible to the

naked eye.
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Data pre-process

Imaging data were examined with MRIcro software

(www.MRIcro.com) to discard suboptimal data. Data were

obtained from resting state using the Data Processing &

Analysis for Brain Imaging toolkit (DPABI, Chinese Academy

of Sciences, Beijing, China, http://rfmri.org/dpabi), based on

statistical parameter mapping (SPM12, http://www.fil.ion.ucl.ac.

uk/spm/software/spm12/) and MATLAB2018b (Math Works,

Natick, MA, USA). First, the file format was converted from

DICOM to NIFTI. Then, time layer correction and 3D head

motion correction were carried out for the remaining time

series. Participants with frame displacement > 2.5 standard

deviations were excluded (28). Linear transformation was used

to co-register structural images with functional images of each

subject. Therefore, the new segmentation in SPM12 was used to

segment structural images of all participants into white matter

and cerebrospinal fluid. Then, the image space was normalized

to the Montreal Neurological Institute (MNI) template and

resampled to 3 × 3 × 3 mm3 voxels. Finally, linear regression

was used with regression Friston 24 parameters, white matter

signals, and cerebrospinal fluid signals from all voxel time series,

after filtering using a time filter (0.01–0.08Hz). Please refer to

our previous study for more details (29).

Voxel-level degree centrality

The default whole-brain gray matter template (61 × 73

× 61, 3mm × 3mm × 3mm, 67,541 voxels) was extracted

using DPABI software. Pearson correlation coefficients between

arbitrary voxels of each subject are calculated in the default gray

matter template. DC between voxels was calculated according to

the following formula (10):

Dc(i) =

N∑

j=1

rij(rij > r0)

The correlation coefficient between voxel i and voxel j is

expressed as rij, and the correlation threshold used to eliminate

weak correlation is called r0 (30). Then Fisher transform was

used to transform the correlation coefficient into z-score graph

to improve the normality. Finally, gauss was used to check the

z-score graph with the maximum half-width and height of 6mm

for smoothing.

Feature extraction and feature selection

After rs-fMRI data pretreatment, zDC of each brain region

of the zDC map obtained by us were extracted based on

automatic anatomical labeling (AAL) map (31), and 116 brain

regions were selected as features.

Firstly, Pearson’s correlation coefficient between each group

of features was calculated, and 0.75 was set as the absolute

correlation threshold. For feature pairs whose correlation was

greater than the threshold value, the variables with higher

average absolute correlation were deleted after comparing their

average absolute correlation, weakening multicollinearity at a

small cost. Then, we used the least absolute shrinkage and

selection operator (LASSO) logic method for 10-fold cross

validation (32), Alpha was searched in the range of 10−6 to

103, with a step size of 100.2, and the optimal Alpha value was

selected as a cost function using the mean square error (MSE).

Finally, non-zero coefficient features were selected to train the

classification model. Feature selection is performed in Python

3.8.8 using the software package “scikit-learn” (33).

SVM

SVM is a supervised learning technique for partitioning

and classification by searching for the optimal hyperplane.

The algorithm was originally designed to solve the problem of

binary classification. It has good generalization ability, can avoid

dimensional disaster, and is widely used in neuroimaging and

disease classification (34, 35).

RF

RF is a comprehensive learning algorithm that uses multiple

decision trees for prediction. It is a vote on the predicted results

of all decision trees (36). The variance of the model can be

effectively reduced by constructing the training set with random

sampling so that each feature is a part of the whole feature vector.

LR

The LR is a supervised machine learning classifier

that predicts the likelihood of a target variable (37). This

multivariable technique seeks to establish a functional

relationship between many predictive variables and a single

output. LR is a powerful maximum likelihood algorithm

that can use discrete and continuous data sets to generate

probabilities and classify new data.

Classification

We construct three representative machine learning

classification models, namely SVM, RF, and LR models,

respectively. GridSearchCV is used for hyperparameter

optimization, and a Leave-one-out cross-validation method and

permutation test (5000 times) are used for model performance

verification. We calculated the accuracy, sensitivity, and
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TABLE 1 General clinical scale.

MCI (n = 51) nMCI (n = 48) P value

Sex (M/F) 48/3 47/1 0.654

Age (year)a 38.47± 7.93 35.45± 8.76 0.076

Education (year)b 12.98± 2.33 13.78± 3.21 0.163

BMI (Kg/m2)a 27.26± 3.06 26.78± 4.20 0.514

Neck circumference (cm)b 41.17± 3.24 39.95± 2.77 0.048

Waistline (cm)b 99.19± 6.92 97.04± 15.18 0.361

AHIa 53.19± 23.12 49.58± 19.23 0.402

Nadir SpO2 (%)b 71.25± 12.52 68.31± 12.52 0.244

MSpO2 (%)b 92.38± 3.57 91.82± 5.13 0.530

Total sleep time (min)b 366.05± 112.36 379.20± 77.78 0.503

Sleep efficiency (%)b 80.01± 22.20 85.74± 12.14 0.118

N1(%)b 28.94± 17.26 25.16± 16.58 0.270

N2(%)b 39.32± 12.68 43.16± 15.09 0.174

N3(%)b 19.58± 14.68 21.39± 15.68 0.555

REM(%)b 15.45± 9.90 12.63± 8.71 0.137

SpO2 < 90%b 24.34± 20.02 23.23± 16.36 0.764

MoCAb 22.23± 2.61 27.27± 1.16 <0.001

MCI, mild cognitive impairment; nMCI, no mild cognitive impairment; AHI, apnea

hypopnea index; Nadir SpO2 , minimum saturation of pulse oxygen; MSpO2 , average

saturation of pulse oxygen; REM, rapid eye movement; SpO2 < 90%, percentage of total

sleep time with oxygen saturation < 90; a , Student, t-test; b , Mann-Whitney U-test.

specificity of different models, and used the receiver operating

characteristic (ROC) curve and area under the curve (AUC) to

evaluate the performance of the models. The optimal model

was selected, and Cohen’s Kappa was used to evaluate the

heterogeneity of test results. All selected DC features are

weighted to quantify their contribution to the model.

Statistics

For the demographic and clinical evaluation data, SPSS

23.0 software was first used for processing, and kolmogorov-

Smirnov was used to test the normality of the data. Then,

two-sample t-test was performed on the data conforming to

normal distribution, and Mann-Whitney U test was performed

on the non-normal distribution data. P < 0.05 was considered

statistically significant. Chi-square test was adopted for the

data of dichotomous variables, and P < 0.05 was considered

statistically significant.

Results

Demographic and clinical characteristics

Summary of demographic and clinical characteristics of

OSA patients in MCI group and nMCI group (Table 1).

FIGURE 2

Red represents the default mode network; Blue represents the

basal node network; Green represents the cerebellum network.

We found that there were significant differences in neck

circumference and MoCA scale between MCI group and nMCI

group, P < 0.05. There were no significant differences in age,

education, BMI, waist circumference, AHI, Nadir SpO2, mean

SpO2, Total sleep time, N1, N2, N3, SpO2 < 90%, sleep efficiency

and REM between the two groups (P > 0.05).

Feature selection

Between MCI and nMCI groups, we finally obtained 10

DC features through feature selection procedures, as shown in

Figure 2, Table 2.

Classification e�ciency

After the above feature screening method, 10 brain region

DC features were selected, and the performance comparison

of the three machine learning models was obtained after

hyperparameter optimization and retention cross-validation, as

shown in Table 3, Figure 3. The accuracy of SVMmodel was 0.71

and AUC was 0.78(sensitivity= 82.35%, specificity= 60.42%, p-

value 0.0026 after 5,000 permutation tests), which showed better

performance than the other two models.

Discussion

In this study, we extracted DC from the whole brain as a

selection feature and combined it with a variety of machine

learning methods (SVM, LR, RF) to train a classifier. We found

that SVM had the best classification performance to distinguish

OSA patients with cognitive impairment. Simultaneously, we

also used LASSO to select the most discriminating brain regions
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TABLE 2 The selected DC features set for discriminating the MCI from nMCI group.

ID Feature Brain Network MCI nMCI Weight

Mean SD Mean SD SVM LR RF

1 Olfactory R DMN −0.095 0.292 −0.187 0.245 0.45695206 0.61365026 0.07962183

2 Cingulum Ant L DMN 0.174 0.336 0.293 0.385 −0.45212804 −0.41221711 0.08364737

3 Pallidum L Basal node network −0.11 0.383 0.088 0.477 0.03777478 −0.02233599 0.07402411

4 Transverse temporal L DMN 0.26 0.412 0.489 0.351 −0.28568111 −0.3511914 0.10909707

5 Cerebelum Crus1 R Cerebellum network 0.059 0.280 −0.088 0.289 0.57115715 0.49502768 0.10136584

6 Cerebelum 4 5 L Cerebellum network −0.027 0.221 0.151 0.239 −0.3993657 −0.3675441 0.17269695

7 Vemis 1 Cerebellum network −0.386 0.348 −0.258 0.272 −0.14545911 −0.44863276 0.09362268

8 Vemis 6 Cerebellum network −0.123 0.280 0.001 0.335 −0.47500579 −0.24829838 0.07821442

9 Vemis 8 Cerebellum network −0.419 0.310 −0.286 0.295 −0.37868619 −0.58716901 0.11912403

10 Vemis 10 Cerebellum network −0.399 0.304 −0.503 0.284 0.56859686 0.84123316 0.08858571

DMN, default mode network; MCI, mild cognitive impairment; nMCI, no mild cognitive impairment; SVM, support vector machine; LR, logistic regression; RF, random forest.

TABLE 3 Classification performance of machine methods.

AUC Accuracy Sensitivity Sepecificity Kappa

SVM 0.78 0.71 0.82 0.60 0.47

RF 0.71 0.70 0.62 0.79 0.42

LR 0.77 0.71 0.84 0.58 0.43

SVM, support vector machine; RF, random forest; LR, logistic regression.

used to distinguish MCI from nMCI, including the olfactory

cortex, cingulate gyrus, globus pallidus, transverse temporal

gyrus, cerebellum and other regions, providingmore evidence to

explain the heterogeneity and complexity of OSA patients with

cognitive impairment.

Machine learning

Due to the overall scarcity and financial burden of PSG,

methods combining multidimensional clinical parameters and

machine learning have been widely used to distinguish OSA,

OSA severity, and OSA prognosis (2, 38, 39). However, studies

using DC to distinguish OSA are relatively rare. Yujun Gao

et al. (40) showed that compared with healthy people, changes

in DC values of right superior frontal gyrus, hippocampus,

superior temporal gyrus and caudate nucleus in epileptic

patients can be distinguished with high precision between

epileptic patients and healthy controls by combining SVM

model, and the unique DC model can be used as an imaging

marker for the diagnosis of epilepsy. Chang Xi et al. used

whole-brain voxel level DC combined with machine learning

to distinguish major depression and bipolar disorder. The

DC reduction of default mode network and sensorimotor

network can be used as an effective feature to distinguish

depression, and the DC-based classification model has a high

accuracy (91%) (41). These studies suggest that changes in

DC can be used as neuroimaging markers to distinguish

cognitive dysfunction.

LASSO is efficient for feature selection, avoiding data

redundancy while preserving themost discriminating important

features (42). Features were reduced according to LASSO, and

the addition of reduction can improve model performance in

partitioned OSA patients with and without MCI by avoiding

overfitting and miscalibration. Altogether, among all the

classifiers, the performance of SVM classifier is significantly

better than other classifiers. Yu Zhou et al.(43) showed that

the extraction of the white matter connection network in the

hippocampus was used as an effective feature to classify the MCI

group of AD patients and the healthy control group, SVM rbf

classification efficiency (ACC= 89.4%, AUC= 0.954) was better

thanKNN (ACC= 86.9%, AUC= 0.920) and RF (ACC= 84.8%,

AUC = 0.935). Based on DC features, this study uses three

machine learning techniques to generate classification models,

namely SVM, LR and RF. Since this study relied on a small data

set, to obtain more sufficient data training, we adopted the keep-

onemethod to test themodel performance. Finally, SVMhad the

best classification performance (accuracy = 71%, AUC = 0.78),

RF (accuracy = 70%, AUC = 0.71), LR (accuracy = 71%, AUC

= 0.77). At the same time, linear kernel SVM can extract the

weight of each feature and reflect the importance of each feature

in the model.

DC feature

The characteristics of screening between MCI and nMCI

groups mainly involve the default network, basal ganglia area

network, and cerebellar network. The DMN consists of discrete

and bilaterally symmetric cortical regions, mainly involving the
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FIGURE 3

(A) The ROC curves of SVM models. (B) The ROC curves of RF models. (C) The ROC curves of LR models.

anteromedial frontal, temporal, and parietal cortex regions, and

is characterized by high activity when the brain is not involved

in tasks (44). Abnormal activity of the DMN is associated with

cognitive function and symptoms of neuropsychiatric diseases

(45, 46), and its functional changes have also been confirmed

in relevant studies on OSA (47). Our previous study showed

(48) that, based on the graph theory approach, DMN topological

abnormalities in OSA patients were associated with cognitive

dysfunction, especially memory delay and memory retrieval.

Prilipko et al. showed that functional inactivation of the DMN

region in OSA patients was significantly related to behavioral

performance and episodic memory compared with the healthy

group (49). These studies suggest that abnormal functional

changes in the DMN may be one of the most effective markers

to distinguish OSA patients with concomitant MCI.

The globus pallidus is one of the components of the basal

ganglia and is involved in the final output of direct and indirect

pathways of the basal ganglia network, and its impairment

can cause a variety of cognitive and motor problems (50).

Previous studies have confirmed that globus pallidus neurons

have higher energy requirements and are more susceptible to

oxygen deprivation than other neurons in the basal ganglia

region (51). Oxidative stress is also one of the important factors

of neuron degeneration in the basal ganglia (52). A study on

the structure of the basal ganglia region found morphological

changes in the left globus pallidus and thalamus in children with

OSA (53), which is helpful for understanding the autonomic

activity and respiratory muscle activity abnormalities caused by

OSA-related dysfunction of the globus pallidus. Our findings

suggest that DC differences in the globus pallidus contribute to
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our understanding of the neuroimaging mechanisms by which

OSA leads to cognitive dysfunction, which may help distinguish

OSA fromMCI.

The cerebellum and extra-cerebellar structures have

extensive connections in motor and non-motor aspects. The

cerebellum is not only involved in motor control, but also

in cognitive and affective processing (54), which is based on

the anatomical basis that there are multiple parallel circuits

in the cerebellum and the cerebral cortex that are widely

interconnected (55). Previous studies have shown that OSA

can lead to significant changes in the structure and function

of cerebellum (56), and lack of sleep is also a risk factor for

damaging cerebellum function (57). Our previous studies have

shown increased intrinsic connectivity in the right posterior

cerebellar lobe in OSA patients prior to treatment, which may

be a functional compensation for chronic intermittent hypoxia

(6). It has been proposed that changes in the internal function

of the cerebellum can be used as a model to predict motor and

cognitive tasks (58). Therefore, we believe that neuroimaging

changes in the cerebellar network may be one of the effective

markers for identifying OSA with cognitive impairment.

Limitation

The current study has some limitations. First, the sample

size was relatively small and there was no external data set

to verify to improve the generalization ability of the model.

Secondly, most of our participants were male OSA patients with

severe OSA, which may not be applicable to OSA patients with

mild OSA or female OSA patients. Finally, we discuss only one

fMRI functional feature, which will be combined with other

fMRI features (functional connectivity, gray matter volume)

and highly relevant clinical features (such as hyperlipidemia) to

improve the classification efficiency of the model in the future.

Conclusion

Our results demonstrate an effective machine learning

approach that uses DC as a feature to effectively identify OSA

patients with concomitant cognitive impairment. This study

helps us better understand the neuroimaging mechanisms of

OSA causing cognitive impairment.
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