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Abstract

Objective: Brain-derived nerve growth factor (BDNF) plays an important role in cochlear development so it is
plausible that it could restore hearing loss if delivered directly into the cochlea. We wished to confirm our previous
report that a single intracochlear injection of brain-derived nerve growth factor (BDNF) was beneficial for hearing in
guinea pigs. We wished to assess the reproducibility of our results and assess possible improved methods with a
view to developing a clinical treatment for sensorineural hearing loss.

Methods: CDDP was used to create partial hearing loss in 25 guinea pigs. After 30 days the animals underwent
ABR testing and unilateral BDNF injection through the round window in one ear and saline injection into the other
ear. After allowing possible effects to stabilize, thirty days later, ABR threshold testing was repeated to assess
change in threshold.

Results: Final ABR thresholds were 60–70 dB and were about 11 dB better in the ears treated with BDNF.

Conclusion: Our original finding that Intracochlear BDNF can improve hearing in guinea pigs was confirmed, but
the improvement demonstrated by the methods in this paper is too small for clinical application.
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Introduction
Brain-derived nerve growth factor (BDNF) is important
for hearing. BDNF is known to play a significant role in
cochlear development [1], but its role in adults is less
certain [2]. Several authors have reported that BDNF
protects against ototoxicity [3] or is important in spiral
ganglion cell maintenance [4, 5] but a larger, real-world
need is to treat chronic sensorineural hearing loss. Some
papers have suggested that BDNF expression restores or
preserves auditory nerve morphology, electrical brain-
stem responses or neurophysiology in guinea pigs after
ototoxic hearing loss [6–13]. Others have suggested that
BDNF application may improve outcomes in cochlear
implantation [14].

Gene therapy is one consideration. Ongoing research
involving promising, molecular biological approaches to
hearing loss may provide treatment someday but know-
ledge of gene control and methods of administration of
genetic modifiers is lacking. Could simple injection of
BDNF to the cochlea achieve positive results? The an-
swer to this question is unclear but it seems important
to address a possible simple solution for hearing loss.
After all, the research findings that relate to BDNF and
hearing are based on the expression of BDNF, not con-
trol of its activity. The possibility that direct injection of
BDNF into the cochlea deserves study as a possible clin-
ical intervention for hearing loss.
There is uncertainty regarding BDNF research. Much

of the BDNF research focuses on hair cell survival or
in vitro findings, not actual hearing. BDNF may result in
morphologic improvements but not hearing in pigeons
[15]. For clinicians, the glaring deficiency in the litera-
ture seems to be the lack of evidence that hearing is
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actually improved. In some previous studies BDNF was ap-
plied to the round window niche, sometimes over several
weeks. To us this seemed unlikely to succeed considering
the blood-labyrinth barrier and the fact that BDNF is a high
molecular weight substance that may not pass through the
round window. In addition, many studies assess the effect
of BDNF or some other agent only a few days after expos-
ure to an ototoxic agent. This may not provide valid infor-
mation if the hearing loss has not stabilized. In previous
publications we reported some data hoping that our
methods would be useful in restoring hearing [16, 17], but
data conflict so we undertook more studies to validate and
possibly improve on our previous results.
We considered some improvements on our initial de-

sign. In our previous study [16] we used intraperitoneal
cisplatin (cisdiaminedichloroplatinum or CDDP) 15 mg/
kg to create hearing loss, then drilled a hole through the
cochlea, possibly violating the stria vascularis, to deliver
0.05 micrograms of BDNF as a single application. Six of
16 guinea pigs had to be euthanized, due to weight loss,
so we were left with 11 animals. We desired a study with
more surviving animals. We have found that CDDP 4
mg/kg on alternate days for 3 doses (total dose 12mg/
kg) resulted in moderate hearing loss, but minimal mor-
tality. In addition, the “soft approach” cochlear implant-
ation [18] led us to suspect that we would find better
results if we delivered the BDNF through the round win-
dow, rather than drilling into the cochlea.
Our lab has previously explored the possibility that

simply injecting the BDNF into the cochlea is associated
with better hearing. If such a simple treatment were suc-
cessful, the application could help millions. The purpose
of this study was to assess the reproducibility and pos-
sibly confirm our previous findings. In our previous
study we reported that a single intracochlear injection of
BDNF resulted in auditory brainstem response (ABR)
thresholds across several frequencies that were from 2 to
27 dB better than saline-injected ears [16]. We found
these results encouraging and hoped that, with modifica-
tion, they could be applicable clinically to humans if the
techniques are effective. In a subsequent study using
more traumatic techniques than herein, we found that
click thresholds were not statistically different in ears
treated with BDNF [17]. We felt that the differences be-
tween pure tone and click thresholds were conflicting
results that must be resolved with this study.
Neurotrophins such as BDNF act by signaling through

tyrosine kinases, reducing the formation of oxygen free
radicals and up-regulation of apoptotic genes and miti-
gation of intracellular calcium (Ca2+) activity. BDNF acts
on the TrkB receptor. Mice that lack either BDNF or the
TrkB receptor have no hearing [19].
Several studies have suggested that BDNF could be

useful in preservation of auditory structure or function

in animals [13, 20–22] and humans [23] but the tech-
nique has not seen clinical application to date [24].
BDNF may be the most important neurotrophin for
maintenance of cochlear neurons [25, 26]. In fact, the
“neurotrophin factor hypothesis” posits that all age-
related degeneration in the central nervous system re-
sults from deficiencies of neurotrophins [4].
In vitro, BDNF has been shown to be important BDNF

seems to be the most important in the cochlea [2, 27]
and for cochlear development and maintenance of coch-
lear histology in adult life [23, 28, 29]. BDNF is up-
regulated in the organ of Corti but not auditory neurons
in gerbils, suggesting that BDNF may mitigate cochlear
hearing losses to a greater extent that those due to audi-
tory nerve degeneration [30].
There is reason to suspect that the activity of BDNF

on cochlear cells is not under strict genetic control and
a single application of BDNF may be effective [31].
If this project is successful it appears that BDNF could

be applied systemically to humans. Clinical trials con-
ducted using daily BDNF to treat amyotrophic lateral
sclerosis [32, 33], Guillian-Bare [34], and diabetic neur-
opathy [35] have suggested favorable outcomes for those
disorders. Nausea and vomiting was the most common
side effect of systemic but not intrathecal administration.
Hearing was not assessed in those trials but the studies
illustrate that BDNF could be safely delivered to
humans. The inner ear is relatively isolated from sys-
temic circulation by the blood-labyrinth barrier so it
seems likely that systemic toxicity should be minimal
with intracochlear administration. BDNF has a molecu-
lar weight of 27.5 kDa which is too large to allow BDNF
to pass through the blood-labyrinth barrier. Systemic ad-
ministration of BDNF would result in low concentra-
tions and likely induce systemic side effects so a local
method of drug administration seems optimal. The sim-
plest method of introducing drugs into the inner ear lo-
cally would seem to be simple injection through the
round window, plugging the needle opening after injec-
tion [36].
An effective neurotrophin should require time to

achieve complete effect. Ruan et al. [37] reported that
BDNF supported cochlear histology 30 days after admin-
istration of kanamycin to induce ototoxicity but not 15
days. BDNF “rescue” may be effective even if adminis-
tered more than 2 weeks after inducing hearing loss [6]
or longer [9].
Our findings mimic those of Radeloff and Smolders

[15] who delivered BDNF over 8 weeks with osmotic
micropumps but found that the insertion trauma out-
weighed the positive effects of the BDNF. As clinicians,
we suspect that chronical implantation of micropumps
would create a perilymph fistula and subsequent hearing
loss and favor intermittent applications.
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For this project we adopted some of the principles of
“soft technique” for cochlear implantation that were
intended to preserve residual hearing. Those relevant to
this project these include slow, gentle, shallow injection,
use of the round window rather than a cochleostomy
with a drill [38], and avoiding the entry of blood into the
cochlea [18, 38].
This study is our attempt to re-produce the results of our

previous study using more animals, a lower, more tolerable
dose of CDDP and less traumatic, round window delivery
of BDNF. The protocol was approved by the University of
Manitoba Animal Ethics Research Committee.

Methods
Our ABR protocol has been described previously [16].
Pure tone ABR threshold testing was performed under
ketamine anesthesia at 3 K, 6 K, 12 K and 24 KHz using
the Intelligent Hearing Systems platform for evoked po-
tentials. After baseline thresholds (day 0) in dB SPL were
obtained, intraperitoneal CDDP (4 mg/kg X 3 doses on
alternate days for a total dose of 12 mg/kg) was adminis-
tered to create a partial sensorineural hearing loss. After
allowing 30 days for the hearing to stabilize (day 30),
ABR testing was performed again, and under the same
anesthetic, the left round window in each animal was
injected with 0.05 micrograms of BDNF (Sigma corp)
and the same volume (0.01 cc) of saline injected into the
right round window. These injections were accom-
plished after removing some of the tympanic membrane
and part of the scutum to visualize the round window
under a microscope. An opening in the round window
was created by puncturing it with a sharp pick. The in-
jections were performed by placing a finely calibrated
gas chromatograph syringe through the opening in the
round window into the cochlea. A small piece of fat was
then used to seal the round window. Healing of the tym-
panic membranes occurred over 10–14 days and was
verified by otoscopy. Thirty days after the injections (day
60) ABR was performed again to assess the final hearing
result. The timeline is shown in Fig. 1.
ABR thresholds were entered into a database and Ana-

lysis of Variance for Repeated Measures was performed
using SPSS v24 software and a significance level of p =

0.05 to assess the differences in threshold across the
treated versus non-treated ears over the days of testing
and across the four frequencies tested. Contrasts were
employed to determine the significance of differences in
threshold according to day number (0, 30 or 60).

Results
Figure 2 illustrates the changes in ABR threshold for the
four frequencies tested at days 0 (baseline), day 30 (after
CDDP), and day 60 (after BDNF/saline) rounding ABR
thresholds and 95% CI results to two significant figures.
Mauchly’s test of sphericity was not violated (p = 0.254)
for ABR thresholds by day. ANOVA results indicates
that differences across frequencies were not statistically
significant (p = 0.088) so all frequencies were included
together in further analysis.
Threshold differences were not significantly different

between the treated and non-treated ears at days 0 or
30, but at day 60 (30 days after BDNF/saline treatment)
the traces diverged significantly. Figure 3 illustrates the
final ABR thresholds for BDNF-treated and saline-
treated ears. Statistically significant differences in ABR
threshold were demonstrated between the BDNF-treated
and saline-treated ears (p = 0.034). Across all frequencies
final, rounded ABR thresholds in BDNF-treated ears on
day 60 were 60+/− 23 dB (mean +/− 95%CI) in BDNF-
treated ears and 71 +/− 20 dB in the saline-treated ears
for a mean difference of 11 dB.
CDDP induced a mean increase in ABR threshold on

both sides of 9 dB across all frequencies. Intracochlear
injection increased the thresholds further by an average
of 16 dB (21 dB on the saline side and 13 dB on the
BDNF side).

Discussion
Several findings deserve discussion.
First, our results indicate that intracochlear BDNF is

associated with lower thresholds of about 11 dB. The re-
sults of this study are consistent with some of our previ-
ous work, indicating a small difference in threshold in
ears treated with BDNF [16]. We were hoping to dem-
onstrate that intracochlear BDNF treatment can restore
hearing. While a gain of 11 dB is desirable this gain is

Fig. 1 Timeline for experiments. After initial auditory brainstem response (ABR) testing the 25 guinea pigs received cisplatin (CDDP, 4 mg/kg X 3
doses on alternate days for a total of 12 mg/kg). After allowing hearing loss to stabilize for a month either BDNF or saline was injected into the
round window. ABR thresholds were obtained another month after that
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not adequate to apply clinically. Thresholds are still far
from normal. It appears that a single treatment of BDNF
delivered as we have done here, will not provide treat-
ment for sensorineural hearing loss as we had hoped.
Perhaps multiple applications, a different dose or other
method would show more response. We plan to pursue
a multiple dose regimen in future work.
Second, the 11 dB improvement in hearing did not

overcome the loss induced by the intracochlear injection,
highlighting the importance of controls in research. The
effect of the injection procedure is evident as the in-
crease in threshold between 30 and 60 days in both the
BDNF- and the saline-treated ears. This finding would
seem to be important for any agent injected into the
cochlea for the purpose of improving hearing.
Third, it is odd that the ABR thresholds did not differ

by frequency as one might expect from the human lit-
erature. In this project as well as our previous work has

also found that, in rodents, CDDP affects all thresholds
across the range of frequencies tested. Differences be-
tween human and rodent hearing should be considered
if this research is to be applied to humans. For example,
rodents have excellent hearing in higher frequency
ranges than humans, perhaps up to 40 kHz. We have
sampled some of both ranges. Anesthetic time limits the
feasibility of testing at very many frequencies.
Fourth, the CDDP did not create as much hearing loss

as it has in past work in our lab [39]. Typically, we ex-
pect to induce a loss of about 25–30 dB with the CDDP-
regimen used here. This illustrated the variability in ani-
mal research models. Perhaps with large hearing losses
our results would be different.
Although it CDDP is commonly thought to affect higher

frequencies more than lower ones this was not reflected in
our data. ABR thresholds at day 30 were similar across fre-
quencies. We have found this in other studies as well [39].

Fig. 2 ABR thresholds by day across the four frequencies (3 K, 6 k, 12 k and 24 K Hz) tested. Day 0 is the initial day. Day 30 represents the
thresholds after CDDP administration but before BDNF/saline administration and day 60 represents the thresholds after BDNF or saline
administration. Although the thresholds are greater at day 60 they do not differ significantly by frequency (p = 0.088). thresholds differ between
day 30 and day 60 in both groups. This difference in the saline group probably represents the hearing loss induced by the intracochlear injection
procedure alone (21 dB) which is of concern if these methods were to be applied to humans
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Conclusion
Intracochlear BDNF injection can benefit hearing in
guinea pigs but does not overcome the hearing loss in-
duced by the injection itself. The methods as used in this
paper are inadequate for clinical application.
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