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Abstract.—Estimating temporal changes in a target population from phylogenetic or count data is an important problem in
ecology and epidemiology. Reliable estimates can provide key insights into the climatic and biological drivers influencing
the diversity or structure of that population and evidence hypotheses concerning its future growth or decline. In infectious
disease applications, the individuals infected across an epidemic form the target population. The renewal model estimates
the effective reproduction number, R, of the epidemic from counts of observed incident cases. The skyline model infers
the effective population size, N, underlying a phylogeny of sequences sampled from that epidemic. Practically, R measures
ongoing epidemic growth while N informs on historical caseload. While both models solve distinct problems, the reliability
of their estimates depends on p-dimensional piecewise-constant functions. If p is misspecified, the model might underfit
significant changes or overfit noise and promote a spurious understanding of the epidemic, which might misguide
intervention policies or misinform forecasts. Surprisingly, no transparent yet principled approach for optimizing p exists.
Usually, p is heuristically set, or obscurely controlled via complex algorithms. We present a computable and interpretable p-
selection method based on the minimum description length (MDL) formalism of information theory. Unlike many standard
model selection techniques, MDL accounts for the additional statistical complexity induced by how parameters interact.
As a result, our method optimizes p so that R and N estimates properly and meaningfully adapt to available data. It
also outperforms comparable Akaike and Bayesian information criteria on several classification problems, given minimal
knowledge of the parameter space, and exposes statistical similarities among renewal, skyline, and other models in biology.
Rigorous and interpretable model selection is necessary if trustworthy and justifiable conclusions are to be drawn from
piecewise models. [Coalescent processes; epidemiology; information theory; model selection; phylodynamics; renewal
models; skyline plots]

Inferring the temporal trends or dynamics of a
target population is an important problem in ecology,
evolution, and systematics. Reliable estimates of
the demographic changes underlying empirical data
sampled from an animal or human population, for
example, can corroborate or refute hypotheses about
the historical and ongoing influence of environmental
or anthropogenic factors, or inform on the major forces
shaping the diversity and structure of that population
(Turchin 2003; Ho and Shapiro 2011). In infectious
disease epidemiology, where the target population is
often the number of infected individuals (infecteds),
demographic fluctuations can provide insight into key
shifts in the fitness and transmissibility of a pathogen
and motivate or validate public health intervention
policy (Rambaut et al. 2008; Churcher et al. 2014).

Sampled phylogenies (or genealogies) and incidence
curves (or epi-curves) are two related but distinct types
of empirical data that inform about the population
dynamics and ecology of infectious disease epidemics.
Phylogenies map the tree of ancestral relationships
among genetic sequences that were sampled from the
infected population (Drummond et al. 2005). They
facilitate a retrospective view of epidemic dynamics by
allowing estimation of the historical effective size or
diversity of that population. Incidence curves chart the
number of new infecteds observed longitudinally across
the epidemic (Wallinga and Teunis 2004). They provide
insight into the ongoing rate of spread of that epidemic,
by enabling the inference of its effective reproduction

number. Minimal examples of each empirical data type
are given in Fig. 1(a)(i) and (b)(ii).

The effective reproduction number at time s, R(s), is
a key diagnostic of whether an outbreak is growing or
under control. It defines how many secondary infections
an infected will, on average, generate (Wallinga and
Teunis 2004). The renewal or branching process model
(Fraser 2007) is a popular approach for inferring R(s)
from incidence curves that generalizes the Lotka–
Euler equation from ecology (Wallinga and Lipsitch
2007). Renewal models describe how fluctuations in
R(s) modulate the tree-like propagation structure of an
epidemic and have been used to predict Ebola virus
disease case counts and assess the transmissibility of
pandemic influenza, for example (Fraser et al. 2011; Cori
et al. 2013; Nouvellet et al. 2018). Here s indicates discrete
time, for example, days.

The effective population size at t, N(t), is a popular
proxy for census (or true) population size that derives
from the genetic diversity of the target demography.
When applied to epidemics, N(t) measures the number
of infecteds contributing offspring (i.e., transmitting
the disease) to the next generation (Ho and Shapiro
2011). The skyline plot model (Pybus et al. 2000) is a
prominent means of estimating N(t) from phylogenies
that extends the Kingman coalescent process from
population genetics (Kingman 1982). Skyline models
explain how variations in N(t) influence the shape and
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FIGURE 1. Skyline and renewal model inference problems. The left panels (a) show how the reconstructed phylogeny of infecteds (i) leads
to (branching) coalescent events, which form the Poisson count record of (ii). The timing of these observable events encodes information about
the piecewise effective population size function to be inferred in (iii). The right panels (b) indicate how infecteds, which naturally conform to
the Poisson count record of (iv) are usually only observed at the resolution of days or weeks, leading to the Poisson histogram record in (v). The
number of infecteds in these histogram bins inform on the piecewise effective reproduction number in (vi). Both models feature data with size
m=4 and involve p=2 parameters to be estimated. See Materials and Methods for notation.

size of the infected genealogy and have informed on the
historical transmission and origin of HIV, influenza and
hepatitis C, among others (Pybus et al. 2001; Lemey et al.
2003; Rambaut et al. 2008). Here, t is continuous and
usually in units of genealogical time.

While renewal and skyline models depict very
different aspects of an infectious disease, they
possess some statistical similarities. Foremost is
their approximation of N(t) and R(s) by p-dimensional,
piecewise-constant functions (see Fig. 1(iii)). Here, p is
the number of parameters to be inferred from the data
and time is regressive for phylogenies but progressive
for incidence curves. The choice of p is critical to the
quality of inference. Models with large p can better
track rapid changes but are susceptible to noise and
uncertainty (overfitting) (Cori et al. 2013). Smaller p
improves estimate precision but reduces flexibility, easily
over-smoothing (underfitting) salient changes (Minin
et al. 2008). Optimally selecting p, in a manner that is

justified by the available data, is integral to deriving
reliable and sensible conclusions from these models.

Surprisingly, no transparent, principled and easily
computable p-selection strategy exists. In renewal
models, p is often set by trial and error, or defined
using heuristic sliding windows (Fraser 2007; Cori et al.
2013). Existing theory on window choice is limited, with
(Cori et al. 2013) positing a bound on the minimum
number of infecteds a window should contain for a
given level of estimate uncertainty and (Nouvellet et al.
2018) initially proposing a “naïve-rational” squared
error based window-sizing approach, which they
subsequently found inferior to other subjective window
choices examined in that study. In skyline models, this
problem has been more actively researched because the
classic skyline plot (Pybus et al. 2000), which forms
the core of most modern skyline methods, overfits by
construction, that is, it infers a parameter per data-
point. Accordingly, various approaches for reducing
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p, by ensuring that each population size parameter is
informed by groups of data points, have been proposed.

The generalized skyline plot (Strimmer and Pybus
2001) uses a small sample correction to the Akaike
information criterion (AIC) to achieve one such grouping
in an interpretable and computable fashion. However,
basing analyses solely on the AIC can still lead
to overfitting (Kass and Raftery 1995). The Bayesian
skyline plot built on the generalized skyline by
additionally incorporating a prior distribution that
assumed an exponentially distributed autocorrelation
between successive parameters (Drummond et al. 2005).
This implicitly influenced group choices but is known
to oversmooth or underfit (Minin et al. 2008). As a
result, later approaches such as the Skyride and Skygrid
reverted to the classic skyline plot and applied Gaussian–
Markov smoothing prior distributions to achieve implicit
grouping (Minin et al. 2008; Gill et al. 2012). However,
these methods also raised concerns about underfitting
and the relationship between model selection and
smoothing prior settings is obscure (Parag et al. 2020a).

Other approaches to effective population size model
selection are considerably more involved. The extended
Bayesian skyline plot and the multiple change-point
method use piecewise-linear functions and apply
Bayesian stochastic search variable selection (Heled and
Drummond 2008) and reversible jump MCMC (Opgen-
Rhein et al. 2005) to optimize p. These algorithms, while
capable, are more computationally demanding, and lack
interpretability (their results are not easily debugged
and linear functions do not possess the biological
meaningfulness of constant ones, which estimate the
harmonic mean of time-varying population sizes, Pybus
et al. 2000). Note that we assume phylogenetic data
is available without error (i.e., we do not consider
extensions of the above or subsequent methods to
genealogical uncertainty) and limit the definition
of skyline models to those with piecewise-constant
functions. In Fig. A4 of the Appendix, we illustrate
estimates from some of these approaches on an empirical
HIV data set.

New p-selection metrics, which can balance between
the interpretability of the generalized skyline and
the power of more sophisticated Bayesian selection
methods, are therefore needed. Here, we attempt to
answer this need by developing and validating a
minimum description length (MDL)-based approach
that unifies renewal and skyline model selection. MDL
is a formalism from information theory that treats
model selection as equivalent to finding the best way of
compressing observed data (i.e., its shortest description)
(Rissanen 1978). MDL is advantageous because it
includes both model dimensionality and parametric
complexity within its definition of model complexity
(Rissanen 1996). Parametric complexity describes how
the functional relationship between parameters matters
(Myung et al. 2006) and is usually ignored by standard
selection criteria. However, MDL is generally difficult to
compute (Grunwald 2007), which may explain why it has

not penetrated the epidemiological or phylodynamics
literature.

We overcome this issue by deriving a tractable
Fisher information approximation (FIA) to MDL. This
is achieved by recognizing that sampled phylogenies
and incidence curves both sit within a Poisson point
process framework and by capitalizing on the piecewise-
constant structure of skyline and renewal models. The
result is a pair of analogous FIA metrics that lead to
adaptive estimates of N(t) and R(s) by selecting the
p most justified by the observed Poisson data. These
expressions decompose model complexity into clearly
interpretable contributions and are as computable as
the standard AIC and the Bayesian information criterion
(BIC). We find, over a range of selection problems,
that the FIA generally outperforms the AIC and BIC,
emphasizing the importance of including parametric
complexity. This improvement requires some knowledge
about the piecewise parameter space domain.

MATERIALS AND METHODS

Phylogenetic Skyline and Epidemic Renewal Models
The phylogenetic skyline and epidemic renewal

models are popular approaches for solving inference
problems in infectious disease epidemiology. The
skyline plot or model (Ho and Shapiro 2011) infers
the hidden, time-varying effective population size, N(t),
from a phylogeny of sequences sampled from that
infected population; while the renewal or branching
process model (Fraser et al. 2011) estimates the hidden,
time-varying effective reproduction number, R(s), from
the observed incidence of an infectious disease. Here, t
indicates continuous time, which is progressive (moving
from past to present) in the renewal model, but reversed
(retrospective) in the skyline, while s is its discrete
equivalent. We use R(t) here initially as we work in
continuous time before deriving the discretized version
R(s).

While both models solve different problems, they
approximate their variable of interest, �(t), with a p-
dimensional piecewise-constant function, and assume a
Poisson point process (PP) relationship between it and
the observed data, Y(t), as in Eq. (1).

�(t)=
p∑

j=1

�j1(t∈�j), Y(t)∼PP
(
��(t)

)
. (1)

Here, �(t) is either N(t) or R(t) and Y(t) is either
phylogenetic or incidence data, depending on the model
of interest. The jth piecewise component of �(t), which
is valid over the interval �j, is �j. The rate function,
��(t) depends on �(t) and allows us to treat the usually
distinct skyline and renewal models within the same
Poisson point process framework. We want to estimate
the parameter vector �=[�1, ...,�p] from the data over
0≤ t≤T, denoted YT

0 . We consider two fundamental
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mechanisms for observing YT
0 and then show how they

apply to skyline and renewal models in turn.
The first, known as a Poisson count record (Snyder and

Miller 1991), involves having access to every event time
of the Poisson process, that is, YT

0 is observed directly.
Eq. (2) gives the likelihood of these data, in which a total
of m events occur.

P(YT
0 |�)=

( m∏
u=1

��(tu)

)
e−∫ T

0 ��(t)dt

=
p∏

j=1

e
−∫�j

��j (t)dt ∏
u∈�j

��j (tu). (2)

The uth event time is tu and tm =T =∑p
j=1�j. The

set �j ={u : tu ∈�j} collects all event indices within the
jth piecewise interval and ��j emphasizes that the
parameter controlling the rate in �j is �j. We denote
the portion of events falling within �j as mj so that∑p

j=1mj =m. The number of elements in �j is therefore
mj. The boundaries of �j are defined by the times of

the
∑j−1

u=1mth
u event (exclusive) and the

∑j
u=1mth

u event
(inclusive). The size of the data is also summarized by m
and �1 starts at 0.

The second is called a Poisson histogram record
(Snyder and Miller 1991) and applies when individual
events are not observed. Instead only counts of the events
occurring within time bins are available and the size
of the data is now defined by the number of bins. We
redefine m for this data type as the number of bins so
that it again controls data size. The sth bin is defined on
interval bs and has count cs. We use Xm

1 to denote the bin
transformed version of YT

0 . The likelihood is then given
by Eq. (3).

P(Xm
1 |�)=

m∏
s=1

1
cs! �̄�(s)cs e−�̄�(s)

=
( m∏

s=1

1
cs!

) p∏
j=1

∏
s∈�j

�̄�j (s)cs e
−�̄�j (s)

. (3)

Here, �̄�(s):=∫bs
��(t)dt is the Poisson rate integrated

across the sth observation bin and �j again defines
the indices (of bins in this case) that are controlled
by �j. The time interval over which �j is valid is �j =∑

s∈�j
bs. Figure 1 illustrates the relationship between

histogram and count records. We now detail how these
two observation schemes apply to phylogenetic and
incidence data and hence skyline and renewal models.

The skyline model is founded on the coalescent
approach to phylogenetics (Kingman 1982). Here,
genetic sequences (lineages) sampled from an infected
population across time elicit a reconstructed phylogeny
or tree, in which these lineages successively merge
into their common ancestor. The observed branching or

coalescent times of this tree form a Poisson point process
that contains information about the piecewise effective
population parameters N:=[N1, ...,Np]. Since the
coalescent event times {tu} are observable, phylogenetic
data correspond to a Poisson count record. The rate
underlying the events for t∈�j is �Nj =

(l(t)
2
)
N−1

j with
l(t) counting the lineages in the phylogeny at time t
(this increases at sample event times and decrements at
coalescent times).

The log-likelihood of the observed, serially sampled
tree data, denoted by count record T T

0 is then derived
from Eq. (2) to obtain Eq. (4), which is equivalent
to standard skyline log-likelihoods (Drummond et al.
2005), but with constant terms removed.

�p(N)= logP(T T
0 |N)=

p∑
j=1

mj log
1

Nj
− ωj

Nj
. (4)

Here, ωj:=
∫
�j

(l(t)
2
)
dt and mj counts the number of

coalescent events falling within �j. The endpoints of �j
coincide with coalescent event times, as in (Pybus et al.,
2000), (Drummond et al., 2005), and (Parag et al., 2020b).
Figure 1a outlines the skyline coalescent inference
problem and summarizes its notation. Since N(t) can
have a large dynamic range (e.g., for exponentially
growing epidemics), we will analyze the skyline model
under the robust log transform (Parag and Pybus 2019),
which ensures good statistical properties.

The maximum likelihood estimate (MLE) and Fisher
information (FI) are important measures for describing
how estimates of N (or logN) depend on T T

0 . We
compute the MLE, logN̂j, and FI, I(logNj), of the skyline
model by solving ∇N�p =0 and E[−∇2

N�p] and then log-
transforming, with ∇N :={∂/∂Nj} as the vector derivative
operator (Lehmann and Casella 1998). The result is
Eq. (5) (Parag and Pybus 2019).

logN̂j = logωj −logmj, I(logNj)=mj. (5)

For a given p, the MLE controls the per-segment bias
because as mj increases logNj −logN̂j decreases. The FI
defines the precision, that is, the inverse of the variance
around the MLEs, and also (directly) improves with
mj. We will find these two quantities to be integral to
formulating our approach to p-model selection. Thus,
the FI and MLE control the per-segment performance,
while p determines how well the overall piecewise
function adapts to the underlying generating process.

The renewal model is based on the classic (Lotka–
Euler) renewal equation or branching process approach
to epidemic transmission (Wallinga and Lipsitch 2007).
This states that the number of new infecteds depends on
past incidence through the generation time distribution,
and the effective reproduction number R(s). As incidence
is usually observed on a coarse temporal scale (e.g., days
or weeks), exact infection times are not available. As a
result, incidence data conform to a Poisson histogram
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record with the number of infecteds observed in the sth
bin denoted I(s). For simplicity, we assume daily (unit)
bins. The generation time distribution is specified by
w(u), the probability that an infected takes between u−1
and u days to transmit that infection (Fraser 2007).

The total infectiousness of the disease is
	(s):=∑s−1

u=1 I(s−u)w(u). We make the common
assumptions that w(u) is known (it is disease specific)
and stationary (does not change with time) (Cori et al.
2013). If an epidemic is observed for m days then the
historical incidence counts, Im

1 , constitute the histogram
record informing on the piecewise parameters to be
estimated, R=[R1, ...,Rp]. The renewal equation asserts
that E[I(s)]=	(s)R(s) (Fraser 2007). Setting this as
the integrated bin rate �̄R(s) allows us to obtain the
log-likelihood of Eq. (6) from Eq. (3).

�p(R)= logP(Im
1 |R)=

p∑
j=1

ij logRj −
jRj. (6)

Here, 
j:=
∑

s∈�j
	(s) and ij:=

∑
s∈�j

I(s) are sums across
the indices �j, which define the mj bins composing �j.
Equation 6 is equivalent to the standard renewal log-
likelihood (Fraser et al. 2011) but with the constant terms
removed.

This derivation emphasizes the statistical similarity
between count and histogram records (and hence skyline
and renewal models) and allows generalization to
variable width histogram records (e.g., irregularly timed
epi-curves). Figure 1b illustrates the renewal inference
problem and its associated notation. We can compute
the relevant MLE and robust FI from Eq. (6) as Eq. (7)
(Fraser et al. 2011; Parag and Pybus 2019).

R̂j = ij

−1
j , I(2

√
Rj)=
j. (7)

As each mj becomes large the per-segment bias Rj −
R̂j decreases. Using results from (Parag and Pybus,
2019), we find the square root transform of R to be
robust for renewal models, that is, it guarantees optimal
estimation properties. We compute the FI under this
parametrization to reveal that the total infectiousness
controls the precision around our MLEs (via 
j). This
will also improve as mj increases, but with the caveat that
the parameters underlying bigger epidemics (specified
by larger historical incidence values and controlled
via 	(s)) are easier to estimate than those of smaller
ones.

In both models, we find a clear piecewise separation
of MLEs and FIs. Per-segment bias and precision depend
on the quantity of data apportioned to each parameter.
This data division is controlled by p, which balances per-
segment performance against the overall fit of the model
to its generating process. Thus, model dimensionality
fundamentally controls inference quality. Large p means
more segments, which can adapt to rapid N(t) or R(s)
changes. However, this also rarefies the per-segment
data (grouped sums like 
j or mj decrease) with

both models becoming unidentifiable if p>m. Small
p improves segment inference, but stiffens the model.
We next explore information theoretic approaches to
p-selection that formally utilize both MLEs and FIs
within their decision making.

Model and Parametric Complexity
Our proposed approach to model selection relies on

the MDL framework of (Rissanen, 1978). This treats
modeling as an attempt to compress the regularities in
the observed data, which is equivalent to learning about
its statistical structure. MDL evaluates a p-parameter
model, Mp, in terms of its code length (in e.g., nats or
bits) as Mp =�(Mp)+�(YT

0 |Mp) (Grunwald 2007). Here,
�(x) computes the length to encode x and YT

0 is the
observed data. Mp is the sum of the information required
to describe Mp and the data given that Mp is chosen.
More complex models have larger �(Mp) (more bits are
needed to depict just the model), and smaller �(YT

0 |Mp)
(as complex models should better fit the data, there is
less remaining information to detail).

If n models are available to describe YT
0 , then the

model with p∗ =argmin1≤p≤nMp best compresses or
most succinctly represents the data. The model with
p∗ is known to possess the desirable properties of
generalizability and consistency (Grunwald 2007). The
first means that Mp∗ provides good predictions on newly
observed data (i.e., it fits the underlying data generating
process instead of a specific instance of data obtained
from that process), while the second indicates that the
selected p∗ will converge to the true model index (if one
exists) as data increase (Barron et al. 1998; Pitt et al. 2002).
If � represents the p-parameter vector of Mp and ZT̃

0
is a potential instance of data derived from the same
generating process as Y then the MDL code lengths can
be reframed as Mp =MDLp =−�p(�̂)+log

∫
P(ZT̃

0 |�̂Z)dZ
(Rissanen 1996).

The first term of MDLp describes the goodness-of-fit
of the model to the observed data, while the second
term balances this against the fit to unobserved data
(�̂Z is the MLE of the parameters of Mp but with ZT̃

0
as data) from the same process. This is done over all
possible data that could be obtained from that process
(hence the integral with respect to dZ) and measures the
generalizability of the model. This generalizability term
is usually intractable. We therefore use a well-known FI
approximation from (Rissanen, 1996), which we denote
FIAp for Mp in Eq. (8), with “det” as the standard matrix
determinant.

FIAp =−�p(�̂)+ p
2

log
m
2�

+log
∫

det
[
m−1I(�)

] 1
2 d�. (8)

The approximation of Eq. (8) is good, provided certain
regularity conditions are met. These mostly relate to
the FI being identifiable and continuous in � and
are not issues for either skyline or renewal models
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(Myung et al. 2006). While we will apply the FIA within
a class of renewal or skyline models, this restriction
is unnecessary. The FIA can be used to select among
any variously parametrized and non-nested models
(Grunwald 2007).

The FIA not only maintains the advantages of
MDL, but also has strong links to Bayesian model
selection (BMS). BMS compares models based on their
posterior evidence, that is, BMSp =−logP(Mp |YT

0 )=
−log

∫
P(YT

0 |�)P(�)d� (Kass and Raftery 1995). BMS
and MDL are considered the two most complete and
rigorous model selection measures (Grunwald 2007).
As with MDL, the BMS integral is often intractable
and it can be difficult to disentangle and interpret
how the formulation of Mp impacts its associated
complexity according to these metrics (Pitt et al.
2002). Interestingly, if a Jeffreys prior distribution is
used for P(�), then it can be shown that BMSp ≈
FIAp (via an asymptotic expansion) (Myung et al.
2006). Consequently, the FIA uniquely trades off the
performance of BMS and MDL for some computational
ease.

However, this tradeoff is not perfect. For many model
classes the integral of the FI in Eq. (8) can be divergent or
difficult to compute (Grunwald 2007). At the other end of
the computability–completeness spectrum are standard
metrics such as the AIC and BIC, which are quick
and simple to construct, calculate, and interpret. These
generally penalize a goodness-of-fit term (e.g., �p(�̂))
with the number of parameters p and may also consider
the total size of the data m. Unfortunately, these methods
often ignore the parametric complexity of a model,
which measures the contribution of the functional
form of a model to its overall complexity. Parametric
complexity explains why two-parameter sinusoidal and
exponential models have non-identical complexities, for
example. This concept is detailed in (Pitt et al., 2002) and
(Grunwald, 2007) and corresponds to the FI integral term
in Eq (8).

This provides the statistical context for our proposing
the FIA as a meaningful metric for skyline and renewal
models. In the Results section, we will show that the
piecewise separable MLEs and FIs (Eqs 5 and 7) of
these models not only ensure that the FI integral is
tractable, but also guarantee that Eq. (8) is no more
difficult to compute than the AIC or BIC. Consequently,
our proposed adaptation of the FIA is able to combine
the simplicity of standard measures such as the AIC
and BIC while still capturing the more sophisticated and
comprehensive descriptions of complexity inherent to
the BMS and MDL by including parametric complexity.
This point is embodied by the relationship between the
FIA and BIC. As data size asymptotically increases, the
parametric complexity becomes less important (it does
not grow with m) and FIAp → BICp. The BIC is hence a
coarser approximation to both the MDL and BMS, than
the FIA (Myung et al. 2006).

While the FIA achieves a favorable compromise
among interpretability, completeness and computability

in its description of complexity, it does depend on
roughly specifying the domain of the FI integral. We will
generally assume some arbitrary but sensible domain.
However, when this is not possible the Qian–Kunsch
approximation to MDL, denoted QKp and given in
Eq. (9), can be used (Qian and Kunsch 1998).

QKp =−�p(�̂)+logdet[I(�̂)] 1
2 +

p∑
j=1

log(|�̂j |+m− 1
4 ). (9)

This approximation trades off some interpretability and
performance for the benefit of not having to demarcate
the multidimensional domain of integration.

Lastly, we provide some intuition about Eq. (8),
which balances fit via the maximum log-likelihood �p(�̂)
against model complexity, which can be thought of as
a geometric volume defining the set of distinguishable
behaviors (i.e., parameter distributions) that can be
generated from the model. This volume is composed
of two terms. The first, p

2 log m
2�

, shows, unsurprisingly,
that higher model dimensionality, p, expands the volume
of possible behaviors. Less obvious is the fact that
increased data size m also enlarges this volume because
distinguishability improves with inference resolution.
The second term, which is parametric complexity, is
invariant to transformations of �, independent of m
and is an explicit volume integral measuring how
different functional relationships among the parameters,
defined via the FI, influence the possible, distinguishable
behaviors the model can describe (Grunwald 2007).

RESULTS

The Insufficiency of Log-Likelihoods
The inference performance of both the renewal and

skyline models, for a given data set, strongly depends
on the chosen model dimensionality, p. As observed
previously, current approaches to p-selection utilize ad
hoc rules or elaborate algorithms that are difficult to
interrogate. Here, we emphasize why finding an optimal
p, denoted p∗, is important and illustrate the pitfalls of
inadequately balancing bias and precision. We start by
proving that overfitting is a guaranteed consequence of
depending solely on the log-likelihood for p-selection.
While this may seem obvious, early formulations of
piecewise models did over-parametrize by setting p=m
(Strimmer and Pybus 2001) and our proof can be applied
more generally, for example, when selecting among
models with p<m. Substituting the MLEs of Eq. (5) and
Eq. (7) into Eq. (4) and Eq. (6), we get Eq. (10).

�p(N̂)=
p∑

j=1

mj log
mj

ωj
, �p(R̂)=

p∑
j=1

ij log
ij

j

. (10)

Both the renewal and skyline log-likelihoods take
the form �p(�̂)=∑p

j=1j log
j
�j

, due to their inherent
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a) b)

FIGURE 2. Skyline and renewal model under and overfitting. Small p leads to smooth but biased estimates characteristic of underfitting ((i)
and (iii) in (a) and (b)). Large p results in noisy estimates that respond well to changes. This is symptomatic of overfitting ((ii) and (iv) in (a) and
(b)). The MLEs (logN̂ or R̂) are in blue and the true logN(t) or R(s) in black. Panel (a) shows cyclic and bottleneck skyline models at m=800 and
(b) focuses on sinusoidal and sigmoidal renewal models at m=400.

and dominant piecewise-Poisson structure. Here, j
and �j are grouped variables that are directly
computed from the observed data (T T

0 or Im
1 ). The

most complex model supportable by the data is at
p=m, with �m(�̂)=∑m

i=1i log i
�i

. As the data size
(m) is fixed, we can clump the i indices falling
within the duration of the jth group �j as j =∑

i∈�j
i and �j =

∑
i∈�j

�i. The log-sum inequality from
(Cover and Thomas, 2006) states that

∑
i∈�j

i log i
�i

≥(∑
i∈�j

i

)
log

(∑
i∈�j

i

)
/
(∑

i∈�j
�i

)
. Repeating this across

all possible p groupings results in Eq. (11).

p∗ =arg min
1≤p≤m

−�p(�̂)=m, for �̂=N̂ or R̂. (11)

Thus, log-likelihood based model selection always
chooses the highest dimensional renewal or skyline
model. This result also holds when solving Eq. (11) over
a subset of all possible p, provided smaller p models are
non-overlapping groupings of larger p ones (Hanson and
Fu 2004). Thus, it is necessary to penalize �p(�̂) with some
term that increases with p.

The highest p-model is most sensitive to changes
in �(t), but extremely noisy and likely to overfit
the data. This noise is reflected in a poor FI. From
Eq. (5) and Eq. (7) it is clear that grouping linearly
increases the FI, hence smoothing noise. However, this
improved precision comes with lower flexibility. At the
extreme of p=1, for example, �(t) is approximated by
a single, perennial parameter, and the log-likelihood
�1(�̂)=(∑m

i=1i
)
log

(∑m
i=1i

)
/
(∑m

i=1�i
)

is unchanged for all

combinations of data that produce the same grouped
sums. This oversmooths and underfits. We will always
select p∗ =1 if our log-likelihood penalty is too sensitive
to dimensionality.

We now present some concrete examples of bad model
selection. We use adjacent groupings of size k to control
p, that is, every �j clumps k successive indices (the last
index is m). In Fig. 2(a), we examine skyline models with
periodic exponential fluctuations ((i)–(ii)) and bottleneck
variations ((iii)–(iv)). The periodic case describes
seasonal epidemic oscillations in infecteds, while the
bottleneck simulates the severe decline that results
from a catastrophic event. In Fig. 2(b), we investigate
renewal models featuring cyclical ((i)–(ii)) and sigmoidal
((iii)–(iv)) R(s) dynamics. The cyclical model depicts
the pattern of spread for a seasonal epidemic (e.g.,
influenza), while the sigmoidal one might portray
a vaccination policy that quickly leads to outbreak
control.

In both Fig. 2(a) and (b), we observe underfitting at
low p ((i) and (iii)) and overfitting at high p ((ii) and
(iv)). The detrimental effects of choosing the wrong
model are not only dramatic, but also realistic. For
example, in the skyline examples the underfitted case
corresponds to the fundamental Kingman coalescent
model (Kingman 1982), which is often used as a
null model in phylogenetics. Alternatively, the classic
skyline (Pybus et al. 2000), which is at the core
of many coalescent inference algorithms, is exactly
as noisy as the overfitted case. Correctly, penalizing
the log-likelihood is therefore essential for good
estimation, and forms the subject of the subsequent
section.
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Minimum Description Length Selection
Having clarified the impact of non-adaptive

estimation, we develop and appraise various, easily
computed, model selection metrics, in terms of how
they penalize renewal and skyline log-likelihoods. The
most common and popular metrics are the AIC and BIC
(Kass and Raftery 1995), which we reformulate in Eqs
12 and 13, with (j,�j)= (mj,ωj) or (ij,
j) for skyline and
renewal models, respectively.

AICp =
p∑

j=1

−j log
j

�j
+1 (12)

BICp =
p∑

j=1

−j log
j

�j
+ 1

2
logm. (13)

By decomposing the AIC and BIC on a per-segment
basis (for a model with p segments or dimensions), as
in Eqs 12 and 13, we gain insight into exactly how they
penalize the log-likelihood. Specifically, the AIC simply
treats model dimensionality as a proxy for complexity,
while the BIC also factors in the total dimension of the
available data. A small-sample correction to the AIC,
which adds a further p+1/m−p−1 to the penalty in Eq. (12),
was used in (Strimmer and Pybus, 2001) for skyline
models. We found this correction inconsequential to our
later simulations and so used the standard AIC only.

As discussed in the Materials and Methods section,
these metrics are insufficient descriptions because
they ignore parametric complexity. Consequently, we
suggested the MDL approximations of Eqs 8 and 9.
We now derive and specialize these expressions to
skyline and renewal models. Adapting the FIA metric
of Eq. (8) forms a main result of this work. Its
integral term, �= log

∫
det[m−1I(�)] 1

2 , can, in general,
be intractable (Rissanen 1996). However, the piecewise
structure of both the skyline and renewal models, which
leads to orthogonal (diagonal) FI matrices, allows us

to decompose det[m−1I(�)] 1
2 as

∏p
j=1

√
m−1Ij(�j) with

Ij(�j) as the jth diagonal element of I(�), which only
depends on �j. Note that �=N or R for the skyline and
renewal model, respectively.

Using this decomposition, we partition � across each
piecewise segment as − p

2 logm+log
∏p

j=1
∫

Ij(�j)
1
2 d�j.

The
∫

Ij(�j)
1
2 d�j is known to be invariant to parameter

transformations (Grunwald 2007). This is easily verified
by using the FI change of variable formula (Lehmann

and Casella 1998). This asserts that Ij(�j)=
(d�j

d�j

)2
Ij(�j),

with �j as some function of �j. The orthogonality of our
piecewise-constant FI matrices allows this component-
by-component transformation. Hence

∫
Ij(�j)

1
2 d�j =∫ d�j

d�j
Ij(�j)

1
2 d�j, which equals

∫
Ij(�j)

1
2 d�j. We let �j

denote the robust transform of log�j or 2
√

�j for

the skyline or renewal model, respectively. Robust
transforms make the integral more transparent by
removing the dependence of Ij(�j) on �j (Parag and
Pybus 2019).

Hence, we use Eq. (5) (Ij(�j)=mj) and Eq. (7) (Ij(�j)=

j) to further obtain

∫
Ij(�j)

1
2 d�j =Ij(�j)

1
2
∫

1d�j and �=
−p

2 logm+∑p
j=1

1
2 logIj(�j)+log

∫
1d�j. The domain of

integration for each parameter is all that remains to be
solved. We make the reasonable assumption that each
piecewise parameter, �j, has an identical domain. This is
Nj ∈[1,v] and Rj ∈[0,v], with v as an unknown model-
dependent maximum. The minima of 1 and 0 are sensible
for these models. This gives

∫
1d�j = logv or 2

√
v for the

skyline or renewal model. Substituting into � and Eq. (8)
yields Eq. (14) and Eq. (15).

FIAp =
p∑

j=1

−mj log
mj

ωj
+ 1

2
logmj + 1

2
log

(logv)2

2�
(14)

FIAp =
p∑

j=1

−ij log
ij

j

+ 1
2

log
j + 1
2

log
2v
�

(15)

Equations 14 and 15 present an interesting and
more complete view of piecewise model complexity.
Comparing to Eq. (13) reveals that the FIA further
accounts for how the data are divided among segments,
making explicit use of the robust FI of each model. This
is an improvement over simply using the (clumped) data
dimension m. Intriguingly, the maximum value of each
parameter to be inferred, v, is also central to computing
model complexity. This makes sense as models with
larger parameter spaces can describe more types of
dynamical behaviors (Grunwald 2007). By comparing,
these terms we can disentangle the relative contribution
of the data and parameter spaces to complexity.

One limitation of the FIA is its dependence on the
unknown v, which is assumed finite. This is reasonable
as similar assumptions would be implicitly made to
compute the BMS or MDL (in cases where they are
tractable). The QK metric (Qian and Kunsch 1998), which
also approximates the MDL, partially resolves this issue.
We compute QKp by substituting FIs and MLEs into
Eq. (9). Expressions identical to Eqs 14 and 15 result,
except for the v-based terms, which are replaced as in
Eqs 16 and 17.

QKp : 1
2

log
(logv)2

2�
� log

(
log

ωj

mj
+m− 1

4

)
(16)

QKp : 1
2

log
2v
�

� log

(
ij

j

+m− 1
4

)
+ 1

2
log


j

ij
. (17)

These replacements require no knowledge of the
parameter domain, but still approximate the parametric
complexity of the model (Qian and Kunsch 1998).
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a) b)

FIGURE 3. Adaptive cyclical and sigmoidal estimation with FIA. In (a) and (b), graphs (i)–(ii) present optimal log-likelihood based R(s) MLEs
for 1 ((i)) and 6 ((ii)) observed incidence data streams, simulated under renewal models with time-varying effective reproduction numbers.
Graphs (iii)–(iv) give the FIA adaptive estimates at the same settings with v=100. Panels (a) and (b) examine cyclical and sigmoidal (also called
logistic) reproduction number profiles, respectively.

However, in gaining this domain independence we lose
some performance (see later sections), and transparency.
Importantly, both the FIA and QK are as easy to compute
as the AIC or BIC. The similarity in the skyline and
renewal model expressions reflects the significance of
their piecewise-Poisson structure. We next investigate
the practical performance of these metrics.

Adaptive Estimation: Epidemic Renewal Models
We validate our FIA approach on several renewal

inference problems. We simulate incidence curves,
Im
1 , via the renewal or branching process relation

I(s)∼Poiss(	(s)R(s)) with R(s) as the true effective
reproduction number that we wish to estimate and
Poiss indicating the Poisson distribution. We construct
	(s) using a gamma generation time distribution that
approximates the one used in (Nouvellet et al., 2018) for
Ebola virus outbreaks. We initialize each epidemic with
10 infecteds as in (Cori et al., 2013). We condition on the
epidemic not dying out, and remove initial sequences
of zero incidence to ensure model identifiability. We
consider an observation period of m=400 days, and
select among models with 10≤k ≤m such that m is
divisible by k. Here k counts how many days are grouped
to form a piecewise segment (i.e., the size of every�j), and
model dimensionality, p, is bijective in k that is, pk =m.

We apply the criteria developed above to select among
possible p-parameter (or k-grouped) renewal models.
For the FIA, we set v=100 as a conservative upper
bound on the reproduction number domain. We start
by highlighting how the FIA (1) regulates between the
over and underfitting extremes from Fig. 2(b), and (2)
updates its selected p∗ as the data increase. These points
are illustrated in Fig. 3(a) and Fig. 3(b). Graphs (i) and

(iii) exemplify (1) as the FIA ((iii)) reduces p from the
maximum chosen by the log-likelihood ((i)), leading
to estimates that balance noise against dimensionality.
Interestingly, the FIA chooses a minimum of segments
for the sigmoidal fall in Fig. 3, and so pinpoints its key
dynamics. As the observed data are increased (graphs
(ii) and (iv) of Fig. 3(a) and 3(b)) the FIA adapts p to
reflect the improved resolution that is now justified,
hence demonstrating (2). The increased data use 5 more,
conditionally independent (on R(s)) Im

1 curves and have
size 6m. The ij and 
j used now sum over all 6 Im

1 curves.
While the above examples provide practical insight

into the merits of the FIA, they cannot rigorously assess
its performance, since continuous R(s) functions have no
true p=p∗ or k∗ =m/p∗. We therefore study two problems
in which a true p∗ exists: a simple binary classification,
and a more complex piecewise model search. In both,
we benchmark the FIA against the AIC, BIC, and QK
metric over the same set of simulated Im

1 curves. We
note that, when R(s) is piecewise-constant, increasing the
number of conditionally independent curves improves
the probability of recovering p∗. We discuss the results
of the first problem in the Appendix (see Fig. A1),
where we show that the FIA most accurately identifies
between a null model of an uncontrolled epidemic and
an alternative model featuring rapid outbreak control.
The FIA uniformly outperforms all other metrics at every
p∗ in this problem, with the QK a close second.

For the second and more complicated problem,
we consider models involving piecewise-constant R(s)
changes after every k∗ days, with k∗ looping over
20≤k ≤m and p∗k∗ =m=400 days. For every k∗ we
generate 105 independent epidemics, allowing R(s) to
vary in each run, with magnitudes uniformly drawn
from [Rmin,Rmax]. Fig. 4(a) illustrates typical random
telegraph R(s) models at each k∗ (these change in
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a) b)

FIGURE 4. Renewal model selection. We simulate 105 epidemics from renewal models with 20≤k ≤m=400 and p=m/k. We test the ability
of several model selection criteria to recover the true p=p∗ from among this set. Each epidemic has an independent, piecewise-constant R(s),
examples of which are shown in (a). These models change in amplitude but not k for every simulation. Panel b) shows the probability of detecting
the true model as a function of p∗ and (i) considers R(s)∈[0.5,5] with v=100 while (ii) uses R(s)∈[0.5,1.5] and v=1.5. The FIA performs best at
every p∗ in (i) and overall in (ii).

magnitude for each run). Key selection results are shown
in Fig. 4(b) with Rmin =0.5, (Rmax,v)=[5,100] in (i) and
[1.5,1.5] in (ii). In both cases, the FIA attains the best
overall accuracy, that is, the largest sum of P(p=p∗)
across p∗, followed by the QK (which overlaps the FIA
curve in (i)), BIC and AIC. The dominance of both MDL-
based criteria suggests that parametric complexity is
important. However, the FIA can do worse than the BIC
and QK when v is large compared to Rmax (or if Rmin is
notably above 0). We discuss these cases in the Appendix
(see Fig. A3), explaining why the reduced v=1.5 is used
in (ii).

Adaptive Estimation: Phylogenetic Skyline Models
We verify the FIA performance on several skyline

problems. We simulate serially sampled phylogenies
with sampled tips spread evenly over some interval
using the phylodyn R package of (Karcher et al., 2017).
Increasing the sampling density within that interval
increases overall data size m (each pair of sampled
tips can produce a coalescent event). We define our p
segments as groups of k coalescent events. Skyline model
selection is more involved because the end-points of the
p segments coincide with coalescent events. While this
ensures statistical identifiability, it means that grouping
is sensitive to phylogenetic noise (Strimmer and Pybus
2001), and that p changes for a given k if m varies (m=pk).
This can result in MLEs, even at optimal groupings,
appearing delayed or biased relative to N(t), when N(t) is
not a grouped piecewise function. Methods are currently
under being developed to resolve these biases (Parag
et al. 2020b).

Nevertheless, we start by examining how our FIA
approach mediates the extremes of Fig. 2(a). We
restrict our grouping parameter to 4≤k ≤80, set v=103

(maxN(t)=300) and apply the FIA of Eq. (14) to obtain
Fig. 5(a) and (b). Two points are immediately visible:
(1) the FIA ((iii)–(iv)) regulates the noise from the log-
likelihood ((i)–(ii)), and (2) the FIA supports higher p∗
when the data are increased ((iv)). Specifically, the FIA
characterizes the bottleneck of Fig. 5(b) using a minimum
of segments but with a delay. As data accumulate,
more groups can be justified and so the FIA is able
to compensate for the delay. Note that the last 1–2
coalescent events are often truncated, as they can span
half the time-scale, and bias all model selection criteria
(Nordborg 2001). In the Appendix (see Fig. A4), we show
how the sensitivity of the FIA to event density compares
to other methods on empirical data (see the Materials
and Methods section).

We consider two model selection problems involving
a piecewise-constant N(t), to formally evaluate the FIA
against the QK, BIC, and AIC. We slightly abuse notation
by redefining m as the number of coalescent events per
piecewise segment. The first is a binary hypothesis test
between a Kingman coalescent null model (Kingman
1982) and an alternative with a single shift to N(t). We
investigate this problem in the Appendix and show
in Fig. A2 (i) that the FIA is, on average, better at
selecting the true model than other criteria, with the QK
a close second. Further, these metrics generally improve
in accuracy with increased data. Closer examination
also reveals that the FIA and QK have the best
overall true positive and lowest false positive rates
(Fig. A2(ii)).

phylodyn
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a) b)

FIGURE 5. Adaptive periodic and bottleneck estimation with FIA. For (a) and (b), graphs (i)–(ii) present inferred N(t) under optimal log-
likelihood groupings, while (iii)–(iv) show corresponding estimates under the FIA at v=103. Graphs (i) and (iii) feature m=400 while (ii) and
(iv) have m=1000 (data size increases). Panels (a) and (b) respectively consider periodically exponential and bottleneck population size changes,
with phylogenies sampled approximately uniformly over [0,50] and [0,60] time units.

a) b)

FIGURE 6. Skyline model selection. We simulate 200 sampled phylogenies from each of the 5 square wave models of (a), with m coalescent
events per segment. Each square wave varies between Nmax and 1/2Nmax (ratios shown on y axes), and occurs with varying half-periods over 16
segments (x axes) of duration �. Each phylogeny contains sampled tips at 0 and every multiple of � time units after. Panel (b) gives the probability
that several model selection criteria select the true (p∗) model from among these waves at v=103 for Nmax =300 ((i)) and Nmax =600 ((ii)). The
FIA is the most accurate criterion on average and improves with m and as v gets closer to the true Nmax.

The second classification problem is more complex,
requiring selection from among 5 possible square waves,
with half-periods that are powers of 2. We define 15
change-point times at multiples of �=50 time units (i.e.,
there are 16 components) and allow N(t) to fluctuate
between maximum Nmax and 1/2Nmax. At each change-
point and 0, equal numbers of samples are introduced, to
allow approximately m coalescent events per component

(the phylogeny has 16m total events). The possible
models are in Fig. 6(a). A similar problem, but for
Gaussian MDL selection, was investigated in (Hanson
and Fu, 2004). We simulate 200 phylogenies from each
wave and compute the probability that each metric
selects the correct model (i.e., P(p=p∗)) at Nmax =300
((i)) and 600 ((ii)) with v=103 in Fig. 6(b). The group size
(k) search space is m times the half-period of every wave.
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We find that the FIA has the best overall accuracy
at both Nmax settings (i.e., the largest sum of P(p=p∗)
across m), though the BIC is not far behind. The QK
displays slightly worse performance than the BIC and
the AIC is the worst (except at low m). At Nmax =300
((i)), there is a greater mismatch with v and so the FIA
is not as dominant. As Nmax =600 ((ii)) gets closer to
v this issue dissipates. We discuss this dependence of
FIA on v in the Appendix (see Fig. A3). Observe that
the P(p=p∗) improves for most metrics as the sample
phylogeny data size (m) increases (consistency). The
strong performance of the FIA confirms the impact
of parametric complexity, while the suboptimal QK
curves suggest that these advantages are sometimes only
realizable when this complexity component is properly
specified.

DISCUSSION

Identifying salient fluctuations in effective population
size, N(t), and effective reproduction number, R(s),
is essential to understanding the retrospective and
continuing behavior of an epidemic, at the population
level. A significant swing in R(s) could inform on
whether an outbreak is exponentially growing (e.g., if
R(s)>1 for a sustained period) or if enacted control
measures are working (e.g., if R(s) falls rapidly below
1) (Fraser et al. 2011; Cori et al. 2013). Similarly, sharp
changes in N(t) could evidence the historical impact
of a public health policy (e.g., if N(t) has a bottleneck
or logistic growth) or corroborate hypotheses about
past transmissions (e.g., if N(t) correlates with seasonal
changes) (Rambaut et al. 2008; Pybus et al. 2001).
Together, N(t) and R(s) can provide a holistic view of the
temporal dynamics of an epidemic, with their change-
points signifying the impact of climatic, ecological, and
anthropogenic factors (Ho and Shapiro 2011.

Piecewise-constant approaches, such as skyline
plots and renewal models, are tractable and popular
ways of separating insignificant fluctuations (the
constant segments) from meaningful ones (the
change points). However, the efficacy of these models
requires principled and data-justified selection of their
dimension, p. Failure to do so, as in Fig. 2, could result in
salient changes being misidentified (i.e., underfitting) or
random noise being over-interpreted (i.e., overfitting).
Existing approaches to p-selection for renewal models
usually involve heuristics or trial and error (Cori et al.
2013). Skyline models feature a more developed set
of p-selection methods but many of these, though
widely used, are either computationally complex (e.g.,
involving sophisticated MCMC algorithms) (Heled
and Drummond 2008) or difficult to interpret (e.g.,
when p is implicitly controlled with smoothing prior
distributions) (Ho and Shapiro 2011; Parag et al. 2020a).

We therefore focused on finding a p-selection
metric that favorably compromises among simplicity,
transparency, and performance. We started by proving

that ascribing p solely on the evidence of the log-
likelihood (i.e., the model fit) guarantees overfitting (see
Eq. (11)). Consequently, it is absolutely necessary to
penalize the log-likelihood with a measure of model
complexity. However, getting this measure wrong can
just as easily lead to underfitting. This is a known
issue in common skyline methods that apply smoothing
prior distributions for example, where the prior-induced
penalty is unclear (Minin et al. 2008). Standard metrics,
such as the AIC and BIC, are easy to compute and
offer transparent penalties; treating model complexity
as either equivalent to p or p mediated by the observed
data size (see Eqs 12 and 13). However, this description,
while useful, is incomplete, and neglects parametric
complexity (Rissanen 1996).

Parametric complexity describes how the functional
relationship among parameters matters. MDL and BMS,
which are the most powerful model selection methods,
both account for parametric complexity but are often
intractable (Grunwald 2007). The general FIA of Eq. (8)
approximates both the MDL and BMS and defines
this complexity as an integral across parameter space
(Myung et al. 2006). Unfortunately, this integral is often
difficult to evaluate, also rendering the FIA impractical.
However, we found that the piecewise-constant nature of
renewal and skyline models, together with their Poisson
data structures, allowed us to analytically solve this
integral and obtain Eqs 14 and 15. These expressions
form our main results, are of similar computability to
the AIC and BIC, and disaggregate model complexity
into interpretable elements as follows for Eq. (15).

∑p

j=1︸ ︷︷ ︸
model dimension

−ij log
ij

j︸ ︷︷ ︸

model fit

+ 1
2

log
j︸ ︷︷ ︸
data resolution

+ 1
2

log
2v
�︸ ︷︷ ︸

parametric complexity︸ ︷︷ ︸
model fit versus complexity

A similar breakdown exists for Eq. (14). Intriguingly,
the parametric complexity now only depends on the
unknown parameter domain maximum, v.

Knowledge of v is the main cost of our metric. This
parameter limit requirement is not unusual and can
often improve estimates. In (Parag and Pybus, 2017)
and (Parag and Pybus, 2018), this knowledge facilitated
exact inference from sampled phylogenies, for example.
Similar domain choices are also implicitly made when
setting prior distributions on R(s) and N(t) or practically
performing MCMC sampling. In Fig. A3, we explored
the effect of misspecifying v. While drastic mismatches
between the true and assumed v can be detrimental, we
found that in some cases poor knowledge of v can be
inconsequential. We adapted the QK metric (Qian and
Kunsch 1998) to obtain Eqs 16 and 17 which, though
less interpretable than the FIA, also somewhat account
for parametric complexity and offer good performance
should reasonable knowledge of v be unavailable.

The FIA balances performance with simplicity.
The MDL method it approximates has the desirable
theoretical properties of generalizability (it mediates
overfitting and underfitting) and consistency (it selects
the true model with increasing probability as data
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accumulate) (Grunwald 2007). We therefore investigated
whether the FIA maintained these properties. In
Figs 3 and 5, we demonstrated that the FIA not
only inherits the generalizability property, but also
regulates its selections based on the available data.
Higher data resolution supports larger p as both
bias and variance can be simultaneously reduced
under these conditions (van Erven and Grunwald
2012). Figures 4, 6, A1, and A2 confirmed the
consistency of the FIA, in addition to benchmarking
its performance against the comparable AIC and BIC.
We found that the FIA consistently outperformed all
other metrics, provided that v was not drastically
misspecified.

We recommend the FIA as a principled, transparent
and computationally simple means of adaptively
estimating informative changes in N(t) and R(s), and
for diagnosing the relative contributions of different
components of model complexity. We provide software
for computing the FIA in the Supplementary Material.
The FIA can be easily interfaced with the EpiEstim and
projectionspackages (Cori et al. 2013; Nouvellet et al.
2018), which are common renewal model toolboxes for
analyzing real epidemic data, to formalize the window
size choices used in R(s) inference. Until now, these
choices have been subjective. For skyline analyses, we
propose the FIA as a useful diagnostic for verifying the
N(t) estimates generated by phylogenetic software such
asBEASTorphylodyn (Karcher et al. 2017; Suchard et al.
2018). This can help validate or interrogate the outputs
of common but complex MCMC methods. Comparing
MCMC grouping choices to the FIA-optimized p∗ for
example might help flag when known issues such
as oversmoothing (underfitting) are biasing estimates
(Minin et al. 2008; Parag et al. 2020a).

Sampled phylogenies and incidence curves, and hence
skyline and renewal models, have often been treated
separately in the epidemiological and phylodynamics
literature. While they do solve different problems, we
showed how refocusing on their shared piecewise-
Poisson framework exposed their common complexity
properties. Our information theoretic approach could
also generate broad insight into other distinct models
in genetics, molecular evolution, and ecology (Parag
and Pybus 2019). The structured coalescent model is
often used to estimate migration rate and population
size changes from phylogeographic data (Beerli and
Felsenstein 2001) while sequential Markovian coalescent
methods are widely applied to infer demographic
changes from metazoan genomes (Li and Durbin
2011). These models all involve Poisson count and
histogram records and piecewise parameter sets and
are promising candidates for future application of our
metrics.

SUPPLEMENTARY MATERIAL

Data (and code in Matlab) available from the
Dryad Digital Repository: https://doi.org/10.5061/
dryad.mpg4f4qv6.
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APPENDIX

Binary Model Selection
We examine the binary classification performance of

the FIA, QK, BIC, and AIC for both renewal and skyline
models. For the first, we set m=200 days and use a
constant null model with R(s)=1.5, to exemplify an
uncontrolled epidemic. The alternative model changes
to R(s≥m/2)=0.5, simulating rapid control at m/2 (inset
of Fig. A1). We randomly generate 103 epidemics with
some null model probability (P(p∗ =1)) and compute
the frequentist probability that each criterion selects
the correct model (P(p=p∗)) in Fig. A1. We find that
the FIA uniformly outperforms all other criteria, with
the QK as its closest competitor. The AIC performs
poorly, as does −�p(R̂) (not shown), because they are
biased towards the more complex model. Relative metric
performance is unchanged if we instead set R(s≥m/2)=
2.5 (an accelerating epidemic).

FIGURE A1. Binary renewal model selection. The consistency of
several selection criteria is tested on a binary classification problem in
which the null model 1 has no change in R(s) (solid, inset), while the
alternative model 2 has a rapid decline (dashed, inset). We generate
103 independent incidence curves randomly according to model 1
with probability P(p∗ =1), and compute the ability of each criterion
to decipher the correct model, P(p=p∗). The FIA outperforms other
metrics at every p∗ with QK a close second.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa035#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa035#supplementary-data
EpiEstim
projections
BEAST
phylodyn
https://doi.org/10.5061/dryad.mpg4f4qv6
https://doi.org/10.5061/dryad.mpg4f4qv6
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FIGURE A2. Binary skyline model selection. We simulate 500
conditionally independent phylogenies from skyline models and test
the classification ability of model selection criteria. The null model
is a Kingman coalescent with N1 =1000, and the alternative features
a sharp fall to N2 =500 at �=250 time units. The sampled tips of the
phylogeny are introduced at 0 and � only. Graph (i) gives the probability
of correct classification P(p=p∗) as a function of data size m. The FIA
performs best, on average, but the BIC is better at small m. Graph (ii)
gives the true (TPR) and false positive rates (FPR) of the metrics. The
FIA and QK have the best overall rates.

For the skyline problem, we test between a Kingman
coalescent null model (Kingman 1982) with N1 =1000,
and an alternative with a single shift to N2 =500
that simulates rapid change potentially due to some
environmental driver at �=250 units. We set v=105 and
generate 500 replicate phylogenies, with m controlling
the quantity of data available per piecewise component
(so the total number of coalescent events is 2m). This is
a slight abuse of previous definitions of m but is more
useful here as we want p∗ =1 for the null model and
p∗ =2 for the alternative. We introduce sampled tips at
0 and � time units only. The grouping parameter search
space is 4≤k ≤2m with p=2m/k. Figure A2 presents our
main results, showing that the FIA is, overall, more
accurate (achieving a higher sum of P(p=p∗)) with the
QK second. We find relative performance to be largely
unchanged with v and to hold when � is doubled.
Observe that all metrics except the AIC (which is known
to be inconsistent) improve with data size, m.

Weaknesses of Piecewise Model Selection
In Results section, we found the FIA to be a viable

and top performing model selection strategy, when
compared to standard metrics of similar computability
such as the AIC and BIC. However, the FIA can do
worse if the parameter maximum v is large relative
to the actual domain or space from which R(s) or
N(t) is drawn. In such cases, the incorrect parameter
bounds can cause the FIA to overestimate the complexity
of the generating renewal or skyline models. While
the QK criterion offers a more stable and reasonably

performing MDL alternative, it is less interpretable.
Here, we examine the nature of this v dependence, and
discuss some general issues limiting piecewise model
selection.

In Fig. 4(b)(ii), we showed the FIA outperforming
other metrics for a model selection problem over
piecewise R(s) functions drawn within the artificial range
[0.5,1.5] (the AIC was better at higher p due to its
tendency to overfit). We achieved this by setting v to
the true Rmax =1.5. However, when there is a significant
mismatch between v and Rmax we find that the FIA
is notably inferior to the QK and BIC. Figure A3(a)
illustrates, at v=100 and 6, how the magnitude of this
mismatch influences relative performance. However,
this effect is not always important, as seen in Fig. 4(b)(i),
where Rmax =6 and v=100. The skyline model also has
this FIA v-dependence. We re-examine the square wave
model selection problem of Fig. 6(b), but for v ranging
between 102 and 105. Figure A3(b) plots the resulting
changes in the FIA detection probability at Nmax =300
((i)) and 600 ((ii)). There we observe, that while the FIA
is sensitive to v, it still performs well over the entire
range. Thus, the FIA can sometimes be a choice selection
metric, even in the absence of reasonable parameter
space knowledge.

Lastly, we comment on some general issues limiting
p-selection performance of any metric on renewal and
skyline models. The MLEs and FIs of the renewal model
depend on the 
j and ij groups. As a result, epidemics
with low observed incidence (i.e., likely to have ij =0) and
diseases possessing sharp (low variance) generation time
distributions (i.e., likely to feature 
j =0 ) will be difficult
to adaptively estimate. This is why we conditioned on
the epidemic not dying out. Similarly, the MLEs and
FIs of the skyline are sensitive to mj, meaning that it is
necessary to ensure each group has coalescent events
falling within its duration. Forcing segment end-points
to coincide with coalescent events, as in (Drummond
et al., 2005), guards against this identifiability problem
(Parag and Pybus 2019). However, skyline model
selection remains difficult even after averting this
issue.

This follows from the random timing of coalescent
events, which means that regular k groupings can miss
change-points, and that long branches can bias analysis
(Parag et al. 2020b). These are known skyline plot issues
and evidence why we truncated the last few events
in the N(t) simulations. Further, there will always be
limits to the maximum temporal precision attainable
by R(s) and N(t) estimates under renewal and skyline
models. It is impossible to infer changes in R(s) on a
finer time scale than that of the observed incidence
curve or estimate more N(t) segments than the number
of available coalescent events (Parag and Pybus 2019).
This cautions against naively applying the criteria we
have developed here. It is necessary to first understand
and then prepare for these preconditions before sensible
model selection results can be obtained. Practical model
selection is rarely straightforward and the performance
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a) b)

FIGURE A3. FIA parameter space sensitivity. In (a), we repeat the simulations from Fig. 4(b)(ii) but at different v. The accuracy of the FIA
clearly depends on the discrepancy between v and Rmax =1.5, and becomes inferior when v is dramatically above this maximum ((i)). In (b), we
revisit the simulations of Fig. 6(a), but vary v between 102 and 105. The AIC, BIC, and QK from Fig. 6(a) are in cyan, while the best and worst
case FIA values are in grey. While the FIA does depend on v, interestingly, its performance is still superior on average, for both Nmax =300 ((i))
and 600 ((ii)).

FIGURE A4. HIV demographic estimates. We estimate the effective population size history underlying an empirical HIV phylogeny with
m=192 coalescent events. All tips of this tree are sampled in 1997 from the Democratic Republic of Congo. We plot the generalized skyline, the
multiple change-point method and the FIA-optimized skyline estimates in (i), (ii), and (iv) in black against the classic skyline in grey. In (iii), we
show the optimization over p of the FIA (black) against its associated BIC (grey).
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of most metrics is often only strictly guaranteed under
asymptotic conditions (Grunwald 2007).

Empirical Case Study: HIV-1
We consider an empirical, ultrametric phylogeny

composed of HIV-1 sequences sampled in 1997 from
the Democratic Republic of Congo. This data set was
previously examined in (Strimmer and Pybus, 2001). In
Fig. A4, we illustrate several estimates of the effective
population size underling this phylogeny. As a baseline,
we plot the classic skyline plot (Pybus et al. 2000) for this
phylogeny in grey on (i), (ii), and (iv). This represents the
maximally parametrized skyline model and is known
to overfit. Because the classic skyline converts every
coalescent interval into a population size estimate, it
also portrays where the events in the HIV tree are
located. The clustering of estimates between 1940 and
1980 indicates that this period is considerably more
informative (i.e., has a higher count record event density)
than the time-regions around it.

We investigate two extremes of skyline model selection
methodology. In Fig. A4(i), we consider the generalized
skyline plot, which uses a small sample AIC. This
method is simple, computable and improves on the
noisy classic skyline by using p∗ =13. However, it does
require more extensive optimization than our metrics
(it chooses groups based on their durations) and can
be susceptible to overfitting (Kass and Raftery 1995). In
(ii), we plot estimates from the multiple change-point
method of (Opgen-Rhein et al., 2005). This approach is
computationally intensive and lacks transparency but
uses powerful reversible jump MCMC algorithms. Its
output smooths over all demographic fluctuations.

In (iv), we compute the FIA solution with v=2000,
which mediates between (i) and (ii). The FIA responds
to the varying data-density across the tree by using
notably more parameters than (i) in the 1940–1980
period, where it can be confident of a smooth trend,
and fewer otherwise. This approach to group choice
was theoretically supported in (Parag and Pybus 2019).
In (iii), we compare the FIA (p∗ =16) and BIC (p∗ =8)
curves, where we find that they agree at small p due to the
large sample size in that region (the BIC is an asymptotic
approximation to the FIA). However, at larger p, where
the space of parameter interactions is more notable, the
parametric complexity terms matter.
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