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Much research has been devoted to study evolution of local adaptations by

natural selection, and to explore the roles of neutral processes and develop-

mental plasticity for patterns of diversity among individuals, populations

and species. Some aspects, such as evolution of adaptive variation in

phenotypic traits in stable environments, and the role of plasticity in predict-

able changing environments, are well understood. Other aspects, such as

the role of sex differences for evolution in spatially heterogeneous and

temporally changing environments and dynamic fitness landscapes,

remain elusive. An increased understanding of evolution requires that sex

differences in development, physiology, morphology, life-history and beha-

viours are more broadly considered. Studies of selection should take into

consideration that the relationships linking phenotypes to fitness may vary

not only according to environmental conditions but also differ between

males and females. Such opposing selection, sex-by-environment interaction

effects of selection and sex-specific developmental plasticity can have

consequences for population differentiation, local adaptations and for

the dynamics of polymorphisms. Integrating sex differences in analytical

frameworks and population comparisons can therefore illuminate neglected

evolutionary drivers and reconcile unexpected patterns. Here, I illustrate

these issues using empirical examples from over 20 years of research on

colour polymorphic Tetrix subulata and Tetrix undulata pygmy grasshoppers,

and summarize findings from observational field studies, manipulation

experiments, common garden breeding experiments and population

genetics studies.

This article is part of the theme issue ‘Linking local adaptation with the

evolution of sex differences’.
1. Introduction
(a) Coping with a changing world: responses to spatial and temporal

heterogeneity
To understand and predict the different ways by which individuals, popu-

lations and species respond when confronted with environmental change

remain key aims in ecology and evolution [1–3]. In environments that are

relatively stable and homogeneous, natural selection favours those genotypes

and phenotypes that are beneficial under the most prevalent conditions, result-

ing in evolution of specialist strategies and local adaptations [4,5]. It is also

universally accepted that spatially divergent selection in combination with

gene flow generally provides broad conditions for the maintenance of genetic

polymorphisms [5–7].
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The role of temporal environmental variation is less clear.

This is partly because temporal changes may be slow and gra-

dual, periodical and predictable, or irregular and rare. In

principle, three responses are possible. Individuals may move

to areas where conditions are more favourable [8]; the pheno-

type of individuals may show plasticity in response to

environmental cues that reliably predict future selective

regimes [9,10]; and the genetic architecture of populations

may undergo micro-evolutionary responses to natural selection

[11]. Responses and optimal solutions to temporal change may

differ depending on whether the generation time of the organ-

ism is long, intermediate or short relative to the scale of the

temporal changes, whether generations are discrete or overlap-

ping and whether reproduction is semel- or iteroparous [1,6].

Variable selection in unpredictable environments may contrib-

ute to the maintenance of a diversity of specialists, promote the

evolution of generalist strategies, favour diversified bet hed-

ging strategies [12–14] or select for reversible intra-individual

behavioural or physiological modifications [9,10,15].

Complexity is increased even more when environments

vary in both time and space, forming dynamic mosaic land-

scapes. In such systems, genetic drift and rearrangements

owing to abundance fluctuations and founder events driven

by dispersing phenotypes may constitute important drivers

of evolutionary change and contribute to population diver-

gence, besides divergent selection and local adaptations.

Dispersal may also translate into genetic admixture, the con-

sequences of which are context-dependent and difficult to

predict [16–23].

Evolution in heterogeneous environments is potentially

complicated yet further by sex-specific differences. Males

and females have different roles, resolve life-history trade-

offs differently and are often subjected to opposing selection,

leading to sex-specific genetic variation and architecture of

phenotypic traits [24–31]. It remains an open question whether

sex-specific differences generally constrain the evolution of

local adaptations or instead preserve genetic diversity, thereby

promoting the capacity to cope with challenges.

Here, I illustrate these issues building on examples from

over 20 years of research on pygmy grasshoppers.
2. Methods
Grasshoppers in the family Tetrigidae (Orthoptera: Tetrigoidea)

comprise an old, cosmopolitan group of about 1500 species of

small, ground dwelling, hemimetabolous insects variously

referred to as ground hoppers, grouse locusts or pygmy grass-

hoppers, henceforth PGH [32–34]. They are characterized by

the extraordinary extension of the pronotum over the entire

dorsal surface of the abdomen (figure 1). They inhabit biomes

ranging from tropical rainforests to arctic regions, occupy diverse

habitats, are sometimes found in disturbed environments and

along the shorelines of lakes, ponds and streams where they

live close to the surface of the soil, feeding on algae, diatoms,

detritus and mosses.

The present contribution builds on a review of previous

work on Tetrix subulata and Tetrix undulata carried out by myself

and collaborators, as reported in 40 original contributions in

scientific journals (electronic supplementary material, table S1)

and in seven compilation Doctorate theses. The findings syn-

thesized below represent the outcomes of joint efforts and

diverse approaches, including comparative field studies, cap-

ture–mark–recapture studies, phenotype and environment

manipulation experiments, staged predator–prey experiments,
detection experiments with humans searching for grasshopper

images on computer-screens, split-brood breeding designs,

stable isotope analyses, and quantitative and molecular genetics

analyses. Brief outlines of the approaches used in the different

investigations, together with summaries of the main findings,

are included in the electronic supplementary material, table S1.

More detailed accounts of the methods can be found in the original

publications, included in the electronic supplementary material,

table S1. At the start of this review, I conducted two topic searches,

for Tetrix subulata and for Tetrix undulata, on 28 December 2017,

using Web of Science. These searches generated some hits in

addition to my own work that concern ecology and evolution of

PGHs of relevance for issues discussed in the present review,

also included in the electronic supplementary material, table S1.
3. Review findings
Studies of PGHs have explored behaviours (movement and

dispersal, microhabitat use, foraging and diet, mating,

basking, and escape and predator avoidance), physiology

(thermal capacity, temperature preference, jumping perform-

ance, reaction distance, fat content and immune defence

quantified as encapsulation), morphology (body size, wing

size, colour pattern and developmental instability quantified

as fluctuating asymmetry) and life-history traits (clutch size,

inter-clutch interval, egg size, trade-off egg size versus

clutch size, time to maturity, hatching success, survival of off-

spring, survival of adults, susceptibility to predation,

prevalence of endo-parasitic fly larvae and mating success).

Many of the studies have set out to determine whether phe-

notypic dimensions and responses differ between males

and females or according to colour morph or wing morph,

and whether they vary between populations and/or change

over time within populations depending on environmental

conditions (electronic supplementary material, table S1). Pre-

vious work also includes investigations into population

performance, genetic structure and diversity (electronic

supplementary material, table S1).

(a) Tetrix subulata versus T. undulata: different
species but similar patterns, processes and
responses

Tetrix undulata and T. subulata represent sister taxa [35], but

the genetic distance is rather high ( p-distance: 7.8% in the

mitochondrial ND1 gene [36] and 7.6% in the mitochondrial

cytochrome oxidase I (COI) gene (electronic supplementary

material, figure S1)), suggesting that successful hybridization

is unlikely.

In my study areas in south-central Sweden, adult and

late instar nymphs hibernate during winter and emerge in

April–May when reproduction ensues. Females are larger

than males, survive at most one reproductive season, produce

multiple pods of egg (less than 35 eggs/clutch) and nymphs

develop through five (males) or six (females) instars before

eclosing (figure 1). Intraspecific variability is huge in both

species, even among individuals within populations, in

morphology, colour and pattern, physiology, behaviour and

life-history (electronic supplementary material, table S1).

There are some species-specific idiosyncrasies, for instance,

in how wing morph frequencies, body size, and genetic struc-

ture and diversity respond to similar environments [17].

Moreover, T. subulata is widely distributed in Europe, Asia
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Figure 1. Pygmy grasshoppers. (a) Adult individual in frontal view, (b) adult male (left) and female (right) from above, (c) egg pod, (d ) newly emerged hatchlings,
(e) hatchling approximately 2 h after emerging, ( f ) hatchling approximately 24 h after emerging, (g) different colour morphs in adults. Photos by A.F.
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and much of North America south to Mexico [32,37] and

usually occupies damper microhabitats in relatively open

areas (e.g. clear cuttings, shore meadows, pastures). By com-

parison, T. undulata has a more restricted distribution in

Europe, usually occupies drier microhabitats, and it is more

often short-winged albeit with some variation among popu-

lations [17,32,38]. These differences aside, an overall conclusion

that emerges when analysing and comparing results from

the large number of ecological and evolutionary investigations

is that the general patterns and responses seem similar in the

two species (see electronic supplementary material, table S1).

This opens for replication at the interspecific level and for

paired comparisons, approaches aimed at generalizations

and identifying key drivers of variation and change.

(b) Colour polymorphism and its relation to sex
One of the most distinctive features of PGHs is that they

display an enormous variability in colours and patterns.

Intra-specific variation in these animals has been documented

and analysed for almost a century [37,39–41]. Ground col-

ours range from black, via various shades of brown and

olive green, to light grey. Some morphs are monochrome,

while others have patterning consisting of longitudinal

stripes, vertical bars, or specks or spots of variable colours

and widths (figure 1). Morphs also vary with regard to tex-

ture of the integument on the pronotum and the femur of

the jumping legs, the surface being either smooth, or granular

and rough, or consisting of longitudinal ridges and grooves

(veining). Variation is extensive even within morphs. The

colour polymorphism is expressed in both males and

females, but selection and spatio-temporal shifts in morph

frequencies are sex-dependent (outlined in §4).

(i) Similarity among and flexibility within species
The exuberant diversity in colours and patterns is shared by

most, if not all, Tetrigidae grasshoppers, pointing to the
conclusion that the polymorphism is beneficial and of phylo-

genetic antiquity [5]. There is also considerable flexibility of

the polymorphism within species. The relative frequencies

of colour morphs vary among populations and change over

time within populations according to spatio-temporal vari-

ation in environmental conditions [38,41–43] (Y. Yildirim,

J. Tinnert, A. Forsman 2018, unpublished manuscript). This

includes ‘fire melanism’ manifest as rapid evolutionary

shifts in the incidence of the black form driven by oscillating

selection in post-fire environments [41,43,44] (figure 2). Popu-

lations in stable environments are also less colour morph

diverse than in disturbed environments [38] (Y. Yildirim,

J. Tinnert, A. Forsman 2018, unpublished manuscript),

possibly owing to purifying or stabilizing selection.
(ii) Colour patterns are inherited and not influenced by plasticity
It is common among Acridoidae grasshoppers that colour

patterns are plastic and respond to conditions experienced

during embryonic development and growth [45,46]. The

superfamily Tetrigoidea is different in this regard, in that it

contains a number of species in which the polymorphism

appears to be under strong genetic control and little influ-

enced by plasticity [39,40,47] (electronic supplementary

material, table S1). For instance, the distribution of alternative

colour morphs among offspring within a clutch depends on

the colour pattern of the mother [43,48–50]. Families of

half-sibling offspring sired by many fathers are more colour

morph diverse compared with families sired by a single or

a few males [50,51]. Split-brood experiments have shown

that neither the patterning nor the overall darkness of pattern

elements is influenced by substrate, temperature or crowding

[48,49,52,53]. Colour morph frequencies in samples of wild-

caught individuals from different populations are highly

correlated with those in captive reared individuals, indicative

of population-level heritability [41]. Hochkirch et al. [54] state

that colour patterns in T. subulata are plastic. However,
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Figure 2. PGH often occupy environments influenced by small- or large-scale disturbances, such as (a) shore habitats and pastures influenced by trampling cattle,
and (b) forest and clear-cut fields influenced by natural or managed fires. Macropterous (c) phenotypes with long functional wings are able to colonize, and occur in
high frequency in, recently disturbed habitats. (d ) Individuals belonging to the black morph are well camouflaged in post-fire environments and vary in frequency in
time and space. Photos by A.F.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170429

4

because the experimental protocol used was not designed to

eliminate other sources of variation, there are alternative

explanations to what the authors [54] interpret as plasticity,

and there exists as yet no firm evidence that the colour poly-

morphism in PGHs is affected by developmental plasticity

(for a detailed discussion, see [48]). A possible explanation

as to why the colour morphs are not influenced by plasticity

is that PGHs often use unstable habitats characterized by

unpredictable environmental change.

(iii) Functional importance and selective drivers
There are many ways by which colour pattern can contribute

to variation in performance and fitness among individuals,

and thereby impact the spatio-temporal dynamics of colour

polymorphisms [55]. There is no evidence that colour

morph is used as a cue during mate choice, either by male

or female PGHs [56]. Between-species interactions probably

are more important. Colour patterns can offer protection

against enemies by influencing the probabilities that prey

individuals are detected, recognized, attacked and captured

[57,58]. Their small size and locally high population densities

render grasshoppers susceptible to visual vertebrate preda-

tors such as birds [59–61] and lizards [62]. Studies using

different approaches indicate that colour morph shifts are

driven at least in part by differential predation and selection

for camouflage that varies according to sex [42,44,61–64], as

outlined in §4, also in other Tetrix species [65,66].

Invertebrates such as spiders [67] and endoparasitic flies

[62,68] may also contribute to grasshopper mortality, but

probably do not select their prey on the basis of colour pat-

tern. It has been suggested that melanistic individuals

benefit from an improved physical barrier against infection,

wound healing, cellular innate immunity and parasite resist-

ance [69,70], but apparently not in PGHs [68]. Studies into

how differential predation may impact the dynamics of
colour polymorphism have focused on adults, and very

little is known about predation on immature nymphs. This

is unsatisfactory both because an important evolutionary

driver may have gone undetected and because the number

of instars differs between sexes.

Colour patterns of PGHs affect temperature regulation.

During sun basking, darker morphs warm up faster and

attain higher equilibrium body temperatures compared

with paler morphs [71,72]. Such differences in thermal

capacity can potentially influence lifetime reproductive suc-

cess, because body temperature affects all aspects of

organismal performance, ranging from physiology and loco-

motion to behaviour and life-history [49,61,73–75]. The

evolutionary consequences of this are, however, complicated

by the fact that preferred temperatures differ between males

and females [76,77], as outlined in §4.

Selection imposed by predators and thermal conditions

likely play key roles as drivers of clines, mosaics and

dynamics of colour polymorphism in PGHs [41,63,64,72,76].

However, evolution of spatial differences and temporal

shifts in morph frequencies can also be influenced by indirect

responses to selection on traits that are developmentally,

genetically and phenotypically associated with colour pattern

[55,78,79], and by sex-specific differences in behaviour, physi-

ology, body size and morphology (electronic supplementary

material, table S1; figure 3).
(c) Phenotypic integration
Colour morphs of PGHs represent integrated phenotypes

[49,63,72,76,77,80] (electronic supplementary material, table

S1 and figure 3). For example, heating rates, preferred body

temperatures, thermal performance curves of bodily func-

tions and microhabitat utilization are correlated, differ

among colour morphs and vary according to maternal
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Figure 3. Hypothetical fitness landscapes in colour polymorphic PGH. Certain
combinations of trait 1 and trait 2 (for example, body size and body temp-
erature) can be either favourable or detrimental depending on colour pattern
(or some other phenotypic dimension), resulting in evolution of alternative
complex phenotypes (eco-morphs). Relative fitness (height of the peaks) of
alternative trait value combinations may be different in males and females
within the same environment, differ between environments and change
over time within environments.
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colour morph [72,76,77,80]. The inferior thermal capacity of

paler morphs has been accompanied by coevolutionary

modifications in thermal physiology and behaviours. Conver-

sely, the superior heating rate of darker morphs may come at

a cost. Owing to high absorbance of solar radiation, surface

temperatures in areas covered with burnt-off material can

be very high [76] and these ground-dwelling insects shuttle

between microhabitats to avoid overheating [72,76,81]. Inter-

estingly, the degree of habitat selectivity is highest in the

black morph [76]. Despite this, black T. undulata individuals

have higher fluctuating asymmetry compared to paler

morphs [82], possibly because their development is perturbed

by temperature stress.

PGH colour morphs vary in body size [17,49,63,83] and

life-history traits such as inter-clutch intervals, the trade-off

between number and size of eggs and time to maturity

[49,74,83]. Morphs differ also in behaviours related to micro-

habitat utilization [63,72,76,84], diet [85,86] and predator

avoidance [76,80].

The genetic underpinnings of this phenotypic integration

remain unclear, but viable possibilities include supergenes,

genetic correlations via pleiotropic effects and regulatory

switch mechanisms. That morph frequencies vary between

males and females (electronic supplementary material, table

S1) supports this conclusion. Different colour morphs do

not seem to be fully genetically compatible. Dark individuals

born to dark mothers survive better than dark individuals

born to paler mothers, and pale individuals born to dark

mother survive worse than pale individuals born to pale

mothers—indicative of co-evolved morph-specific genetic

combinations [52]. Caesar & Forsman [87] also found that

parental colour morph resemblance increased viability of off-

spring, pointing to compatibility effects. Despite this, there is

no evidence for mate choice or assortative mating with regard

to colour morph. Instead, PGHs are promiscuous [56,87], and

females mated to several males produce offspring that are

half-siblings and therefore phenotypically and genetically

more diverse [39,50,51].

As we have seen, the colour polymorphism in PGHs

and other animals can inform about phenotypic integration

and local adaptation. In addition, it can have important

population-level consequences [3,55,88–90], for example, by
lessening the negative effects of intra-specific competition

[91], reducing predation [92,93] and improving establishment

success in novel areas [94]. But the polymorphic condition in

PGHs goes beyond colour patterns, it applies also to dispersal.
(d) Dispersal polymorphism and associations of wing
morph with sex, body size, colour morph and
genetic diversity

PGHs are sedentary animals that normally move only a few

metres per day [56,63,95]. However, like many other insects

[96,97], T. subulata and T. undulata are wing dimorphic. The

wings generally correspond in length with that of the prono-

tum, and macropterous individuals with a long pronotum

have fully developed functional wings [17,39,95,98]

(figure 1), which may be beneficial in the search for mates

or food [86], aid predator avoidance [61], and promote

dispersal, colonization and gene flow [17,18,34,37,38,95].

The macropterous morph is more common in T. subulata
than in T. undulata, as shown, for example, by pairwise

comparisons in sympatry [17]. Spatial and temporal variation

in the incidence of the long-winged morph is highly cor-

related in males and females (result based on data for

T. subulata from [95], r ¼ 0.84, n ¼ 20, p , 0.0001) and the

long-winged morph is equally common in both sexes

(paired t-test, n ¼ 20, t ¼ 20.27, p ¼ 0.79). The long-winged

morph is equally common in males and females also in

T. subulata populations in Germany (results based on analysis

of data in table 1 in Steenman et al. [98], paired t-test, n ¼ 13

samples, t ¼ 21.27, p ¼ 0.23).

With regard to phenotypic integration, Berggren et al. [95]

show that there is no difference in body size (measured as

length of posterior femur) between long- and short-winged

individuals. Re-analysis of data collected more recently from

another population [16] confirms that wing morphs do not

differ in body size in our study areas (ANOVA, effect of sex:

F1,194 ¼ 852.70, p , 0.0001; effect of wing morph: F1,194 ¼

0.27, p ¼ 0.60), but see Steenman et al. [98]. There is also no

correlation between maternal body size and the incidence of

long-winged phenotypes among captive-reared offspring

[95], arguing against a genetic correlation between wing

morph and body size. Available evidence based on analyses

of individuals collected in the field indicate that wing morph

is also independent of colour morph [41]. Re-analysis of

data from Berggren et al. [91] shows that the proportion

of long-winged T. subulata phenotypes in families reared in

captivity under controlled conditions differs depending on

maternal wing morph but is independent of maternal colour

morph (generalized linear mixed model, maternal wing

morph: F1,212 ¼ 205.76, p , 0.0001; effect of maternal colour

morph: F5,212 ¼ 0.70, p ¼ 0.62, electronic supplementary

material, figure S2), arguing against a genetic correlation

between colour morph and wing morph.

Females with functional wings have similar clutch sizes

and inter-clutch intervals on average as short-winged females

[95], indicating that dispersal capacity does not come at the

cost of reduced reproductive output, at least not in these

populations (but see [99]).

Associations of long-winged phenotypes with estimates

of population genetic divergence, and with within-

population genetic diversity, confirm that gene flow influences

the evolution of PGH populations [17,18,38] (Y. Yildirim,
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J. Tinnert, A. Forsman 2018, unpublished manuscript). The

combination of colour polymorphism with dispersal poly-

morphism means that PGHs can cope with deteriorating

conditions either by rapid evolutionary modifications or by

dispersing to more favourable areas.
 cietypublishing.org
Phil.Trans.R.Soc.B

373:20170429
4. Consequences of sex-specific differences for
evolution in heterogeneous and dynamic
fitness landscapes

Some species of PGHs share characteristics akin to ‘ruderal

species’ of plants, in that they thrive in habitats disturbed

by fires, cultivation, trampling by cattle or wave action, and

seem to use a tracking strategy suitable for temporally

unstable environments. Accordingly, the frequency of the

long-winged morph is higher in recently disturbed than in

stable environments in both T. subulata [38,95] and T. undulata
[38] (Y. Yildirim, J. Tinnert, A. Forsman 2018, unpublished

manuscript), indicative of immigration and establishment

events. Their ecological characteristics and transient (meta-

population) population dynamics make PGHs an interesting

model system for studies of local adaptation and population

genetic structure.

New populations can be established by small groups of

only six individuals, and founder groups that are more

colour morph diverse are more successful [94,100]. Their pro-

miscuous mating behaviour [56,87] may increase effective

population size of small founder groups and mitigate nega-

tive effects of inbreeding. A few founder females that have

mated with multiple males may give rise to new populations

that harbour much of the genetic variation in the source

population [51,101]. Additionally, conversion of non-additive

(epistatic and dominance) to additive genetic variance and

the physical inhibition of recombination associated with chro-

mosomal rearrangements in small populations may result in

increased (not decreased) genetic variance in quantitative

traits [102–107]. This can create novel phenotypes and

increase evolvability [43]. Immigration may also translate

into inter-population hybridization (admixture), with conse-

quences for genetic structure and population fitness that are

context-dependent and therefore difficult to predict [16–23].

Evolutionary responses to environmental changes are com-

plicated further still by sex-specific differences in ecology,

physiology, behaviour, selection and genetic background.

In the case of PGHs, sexual size dimorphism is distinct;

females are larger than males (electronic supplementary

material, table S1) and pass through one additional nymphal

instar [32]. Females prefer higher body temperatures and

seem to be more ‘picky’ with regard to temperature prefer-

ences compared with males [76,77]. The utilization of

different microhabitats and substrate types differs between

sexes [63,76], and females are more active and move longer

distances than males [63]. Because males and females have

different ecological roles, they are exposed to different selec-

tion pressures (figure 3). That this can impact on evolution is

evidenced both by molecular and phenotypic data.

Ongoing work (Y. Yildirim, J. Tinnert, A. Forsman 2018,

unpublished manuscript) based on analyses of DNA (ampli-

fied fragment length polymorphism, AFLP) data for

T. undulata from 20 sampling locations indicate that genetic

structure based on outlier loci influenced by direct or indirect
selection differs according to population and between sexes

(electronic supplementary material, table S2). On a more gen-

eral level, sex-specific local adaptations can manifest as

geographical variation in the degree of sexual size dimorph-

ism [108,109], a pattern that is also evident among

populations in PGHs [16].

The colour polymorphism and ‘fire melanism’ in PGHs

provide another striking example of phenotypic integration,

rapid evolutionary change and local adaptation in a dynamic,

spatially heterogeneous and temporally changing fitness

landscape that is complicated further by sex-specific differ-

ences. This can be visualized by hypothetical fitness

landscapes (figure 3). In PGHs, certain trait value combi-

nations (for example, body size and body temperature) can

be either favourable or detrimental depending on colour pat-

tern. Correlational selection has resulted in phenotypic

integration and evolution of alternative complex phenotypes

(eco-morphs). Relative fitness (height of the peaks in figure 3)

of alternative trait value combinations may be different in

males and females within the same environment, differ

between environments (environment A or B in figure 3),

and change over time within environments. Because of sex-

related differences in morphology, physiology, behaviour

and reproductive roles, spatio-temporal dynamics in the fit-

ness landscape are not necessarily correlated in males and

females. This impacts evolution of local adaptations and

patterns of variation among and within populations.

Spatial variation and temporal shifts in the incidence of the

black colour morph are correlated in males and females (results

based on re-analyses of data for T. subulata [41], r ¼ 0.78, n ¼ 31

samples, p , 0.0001). This suggests that at an overall level,

shared selective environments induce parallel micro-

evolutionary responses in the two sexes. However, the black

morph is 95% more common overall in males (paired t-test,

t ¼ 3.47, n ¼ 31, p ¼ 0.0016), perhaps in part because the pro-

tection against predation offered by different colour patterns

depend on body size. Thus, detection experiments show that

the relative crypsis of different PGH colour morphs varies

depending on the visual background [44,64], and that the rela-

tive protective value of black coloration is greater for small than

for intermediate and large individuals [42]. Given that male

PGHs are smaller than females and that size can modify detect-

ability (and hence presumably relative fitness) of alternative

colour morphs [42], evolution might have resulted in sex-

linked expression of colour pattern, as in other species

[66,110]. An additional explanation as to why the black

morph is more common in males might be that black males

seem to have a higher mating success compared with other

morphs [56]. Such a mating advantage [56] might contribute

to the long-term persistence, albeit at low frequencies, of the

black morph in populations in non-burnt environments

where dark coloration offers no superior protection against

predation [44,64].

When colour morph frequencies in PGHs are analysed at

finer resolution, it becomes evident that differences among

populations and temporal changes within populations are

sex-specific [42]. Assuming that colour morph frequencies

are driven at least partly by selection, this implies that pheno-

types corresponding to local adaptations differ depending on

sex. The moulding effect of sex-specific differences also mani-

fests in body size. Body size of PGHs varies depending on

both colour morph and sex, but size differences among

morphs are discordant in males and females [49], indicating
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that the optimal solution to phenotypic integration differs

between sexes within populations (figure 3).

The black and hot surfaces that characterize fire-ravaged

areas before vegetation has recovered may differently influ-

ence body temperatures, water balance and camouflage

depending on colour pattern, body size and sex of individ-

uals [44,45,58,63,76,111,112]. For example, an association of

thermal preference with colour pattern is evident in female

but not in male PGHs [77], and the degree of small-scale

microhabitat selectivity varies among colour morphs [76].

As discussed above, colour pattern is known to also influence

probability of detection and predation. Work on PGHs shows

that the protective value of alternative colour patterns differ

between males and females according to behaviours and

movement patterns [61,63], body size [42] and visual charac-

teristics of the habitat [44,64]. That predation may impose

opposing selection on colour pattern in males and females

has also been reported in Tetrix japonica [65,66], and in lizards

[110] and snakes [28,113].

In ectothermic organisms in general, spatio-temporal

differences in ambient temperature and the potential for ther-

moregulation associated with latitude, altitude, seasonality,

variable weather conditions and climate change have poten-

tial to influence behaviour, performance and fitness of

individuals as well as evolution of populations and range dis-

tributions of species—but responses often depend on sex

and/or colour pattern [75,84,110,114–120].

Differential selection in males and females can potentially

thwart evolution of local adaptations [30]. Depending on

genetic architecture, the evolutionary response to environ-

mental change may be a compromised outcome of selection

in males and females (figure 3). On the other hand, opposing

selection can maintain genetic and phenotypic diversity

within populations [28,121,122]. Experimental and compara-

tive evidence agree that genetic and phenotypic diversity

increases evolutionary potential and promotes ecological suc-

cess of populations and species [88–90]. By preventing the

erosion of genetic diversity, opposing selection in the two

sexes may thus allow for faster evolutionary responses and

persistence in the face of natural and human-induced

environmental changes. Similarly, their promiscuous mating

behaviour resulting in more diversified offspring [39,50,51]

may permit, and be a consequence of, using unpredictable

dynamic fitness landscapes.
5. Future directions
Integrating sex differences in analytical frameworks and

population comparisons can help reconcile unexpected

patterns and illuminate neglected evolutionary drivers.
In the case of PGHs, there is opportunity for future investi-

gations at different hierarchical levels to generate novel

insights. For instance, previous studies concur that the colour

and dispersal polymorphisms are genetically encoded and

heritable, but the details remain to be discovered and may

deepen our understanding of their evolutionary dynamics.

Analyses of outlier loci (electronic supplementary

material, table S2) can potentially generate insights into sex-

by-environment interactions for selection, and can also be

applied to colour morphs to identify genes under selection.

Recent developments in genomic tools (e.g. RAD-sequencing

[123]) together with information for closely related species

[124] may help elucidate the underpinnings of phenotypic

integration, and clarify the contributions of stochastic pro-

cesses, gene flow, selection and plasticity in shaping genetic

structure and phenotypic evolution in PGHs.

Comparisons of colour morph distributions in males

and females from populations in stable, disturbed and chan-

ging environments [38] (Y. Yildirim, J. Tinnert, A. Forsman

2018, unpublished manuscript) where the two species are

sympatric [17] have the potential to inform about: whether

spatial differences and temporal shifts in colour morph fre-

quencies are parallel or independent in males and females,

as might be expected if opposing selection and sex-specific

responses prevent evolution of local adaptation; and whether

evolutionary responses to environmental challenges are

species-specific or shared. New insights might also be

obtained by studying evolutionary transitions of polymorph-

isms and of sexual dimorphisms within a phylogeny-based

comparative framework.
Ethics. This contribution is based on a review of previously published
articles.

Data accessibility. The data supporting this review are included in the
original articles listed in electronic supplementary material, table S1.

Competing interests. I declare I have no competing interests.

Funding. Funding was provided by The Swedish Research Council,
Swedish Natural Science Research Council, The Swedish Research
Council Formas, Magnus Bergvalls Stiftelse, Uppsala University,
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Phenotypic plasticity in insects: the effects of

http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110132
http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110132
http://dx.doi.org/10.1111/j.1469-185X.1945.tb00315.x
http://dx.doi.org/10.1111/j.1558-5646.2008.00459.x
http://dx.doi.org/10.1111/j.1558-5646.2008.00459.x
http://dx.doi.org/10.1038/hdy.2014.92
http://dx.doi.org/10.1038/hdy.2014.92
http://dx.doi.org/10.1038/250704b0
http://dx.doi.org/10.1007/s12080-015-0272-x
http://dx.doi.org/10.1038/s41598-017-18413-8
http://dx.doi.org/10.1038/s41598-017-18413-8
http://dx.doi.org/10.1111/1365-2656.12439
http://dx.doi.org/10.1111/1365-2656.12439
http://dx.doi.org/10.5735/086.053.0205
http://dx.doi.org/10.1093/biolinnean/blx055
http://dx.doi.org/10.1093/biolinnean/blx055
http://dx.doi.org/10.1002/ece3.2520
http://dx.doi.org/10.1002/ece3.2520
http://dx.doi.org/10.1186/2047-2382-2-13
http://dx.doi.org/10.1186/2047-2382-2-13
http://dx.doi.org/10.1111/j.1558-5646.1991.tb04333.x
http://dx.doi.org/10.1111/j.1558-5646.1991.tb04333.x
http://dx.doi.org/10.1016/j.tree.2014.02.003
http://dx.doi.org/10.1098/rstb.2017.0420
http://dx.doi.org/10.1098/rstb.2017.0420
http://dx.doi.org/10.1098/rstb.2017.0419
http://dx.doi.org/10.1098/rstb.2017.0419
http://dx.doi.org/10.1111/evo.12862
http://dx.doi.org/10.1111/j.1558-5646.1980.tb04817.x
http://dx.doi.org/10.1111/j.1558-5646.1980.tb04817.x
http://dx.doi.org/10.1111/j.1558-5646.1984.tb00346.x
http://dx.doi.org/10.1046/j.1420-9101.1995.8010053.x
http://dx.doi.org/10.1046/j.1420-9101.1995.8010053.x
http://dx.doi.org/10.1098/rstb.2017.0415
http://dx.doi.org/10.1098/rstb.2017.0415
http://dx.doi.org/10.1098/rstb.2017.0425
http://dx.doi.org/10.1111/1755-0998.12638
http://dx.doi.org/10.1017/S0007485308005907
http://dx.doi.org/10.1017/S0007485308005907
http://dx.doi.org/10.1111/j.1469-1809.1939.tb02201.x
http://dx.doi.org/10.1111/j.1558-5646.2011.01324.x
http://dx.doi.org/10.1111/j.1558-5646.2011.01324.x
http://dx.doi.org/10.1111/bij.12291
http://dx.doi.org/10.1007/s00442-007-0876-y
http://dx.doi.org/10.1002/ece3.338
http://dx.doi.org/10.1016/S0065-2806(08)60197-6
http://dx.doi.org/10.1139/Z09-097
http://dx.doi.org/10.1139/Z09-097
http://dx.doi.org/10.1046/j.1420-9101.2003.00610.x
http://dx.doi.org/10.1665/034.022.0204
http://dx.doi.org/10.1007/s10682-011-9477-7
http://dx.doi.org/10.1007/s10682-010-9399-9


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170429

9
substrate colour on the colouration of two ground-
hopper species. Evol. Dev. 10, 350 – 359. (doi:10.
1111/j.1525-142X.2008.00243.x)
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