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Abstract: Background: bladder cancer is one of the most common urinary tract malignancies.
Establishment of robust predictors of disease progression and outcome is important for personalizing
treatment of non-muscular invasive bladder carcinoma (NMIBC). In this study we evaluated
association of PD-L1 expression with other prognostic biomarkers, such as expression of miRNA-145
and miRNA-200a, FGFR3 gene expression, and mutation status in tissue specimens of the luminal
subtype of newly diagnosed high and low grade NMIBC. Methods: twenty patients with primary
luminal NMIBC were enrolled in the study. Tumor grade and risk level were determined in accordance
with European Organization for Research and Treatment of Cancer (EORTC) guidelines and World
Health Organization (WHO) classification. Neoplasm molecular subtype and PD-L1 expression
level were assessed by immunohistochemistry. We used real-time PCR to evaluate the expression of
microRNAs and FGFR3. We detected FGFR3 hotspot mutations in codons 248 and 249 by Sanger
sequencing. Results: high grade primary luminal NMIBC showed comparatively higher expression of
PD-L1 and microRNA-145 than a low grade tumor, whereas the latter had a higher FGFR3 expression
and hotspot mutation rate. The tumor grade (HR = 571.72 [11.03–2.96] p = 0.002), PD-L1 expression
(HR = 2.33 [0.92–1.92] p = 0.012), and FGFR3 expression (HR = 0.08 [0.17–0.42] p = 0.003) were
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associated with relapse-free survival. Conclusions: tumor grade in association with PD-L1 and FGFR3
expression can be considered as a complex predictor for primary luminal NMIBC progression.

Keywords: non-muscular invasive bladder carcinoma; fibroblast growth factor receptor 3; mutation;
prognosis; cancer progression; PD-L1; microRNA; expression; tumor relapse

1. Introduction

Bladder cancer remains to be one of the most common human genitourinary tumors worldwide
with high cost per patient and high mortality rate [1,2]. Primary morphological features along with
involvement of the muscular layer altogether determine two essential divergent pathways of bladder
carcinoma development as non-muscular invasive bladder cancer (NMIBC) and muscular invasive
bladder carcinoma (MIBC). The first one at the time of diagnosis was proven to be less aggressive than
the latter [3,4], but treatment of both requires stringent interventional and surveillance protocols [5].
At the same time, biological and genetic heterogeneity of NMIBC serves as a basis for the disease
molecular classification. According to the tumor molecular profiling made by Dadhania and colleagues,
CR5/6 and GATA3 expression levels are currently used to designate NMIBC into basal, luminal,
and double-negative subtypes [6].

Identification of the pivotal role of immune checkpoint molecules has drastically changed
diagnostic, prognostic, and treatment approaches to many malignancies including bladder cancer [7–9].
Besides, different laboratories showed that expression levels of the programmed death (PD-1)
receptor and its ligand 1 (PD-L1) may broadly vary depending on NMIBC grade and molecular
subtype [10]. Moreover, check-point inhibitors’ clinical success closely relates to the tumor immune
microenvironment [11], while differences in relapse-free survival (RFS) of patients with luminal, basal,
and double-negative NMIBC of high- and low-malignant grade are strictly associated with previously
utilized treatment [12].

MicroRNAs are small non-coding molecules involved in different regulatory functions and
intracellular signaling [13,14]. Numerous studies have demonstrated prognostic role of microRNAs
for NMIBC outcomes not only in tumor tissue-associated form, but also as stable cell-free molecules
circulating in different biological fluids [15–17]. Yun et al. previously demonstrated an association
between NMIBC diagnosis and progression and concentrations of microRNA-145 and microRNA-200a
molecules [17]. These and other microRNAs influence tumor progression via the regulation of
gene activities, including expression of fibroblast growth factor receptor 3 gene (FGFR3) [18,19].
FGFR3 expression level and mutation status were shown to be determinants of bladder carcinoma
progression [20].

In our previous study, we found that PD-L1 expression status was associated with RFS for luminal
NMIBCs in the group without previous frontline intervention, and with RFS in the group of patients
with luminal relapsed bladder cancer who previously used Bacillus Calmette-Guerin (BCG) [12].
We investigated here the prognostic roles of microRNA-200a, microRNA-145, FGFR3 expression,
and mutation status in association with PD-L1 expression in patients with primary luminal NMIBC.

2. Results

2.1. PD-L1 Expression in Primary Luminal NMIBC

We immunohistochemically assessed PD-L1 expression status of the luminal subtype of
non-muscular invasive urothelial carcinomas with different tumor grades (Figures 1 and 2).
The proportion of cancer cells positively stained for the PD-L1 membrane expression was statistically
higher in GATA3-positive high grade primary NMIBCs (n = 8) than in low grade bladder carcinomas
(n = 12), with average values of 26.8% vs. 16.3%, respectively (p = 0.017).
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L1 IHC-staining, ×500. 
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molecular subtype express PD-L1 differently. Boxplots show medians of % of tumor cellular 
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associated with relatively lower cellular expression of FGFR3 compared to low grade non-invasive 
urothelial cancer (Figure 3, p = 0.001). Detecting FGFR3 hotspot mutations by Sanger sequencing for 
both grades of primary luminal non-invasive bladder cancer also demonstrated the prevalence of the 
gene mutation rate in codons 248 and 249 in low grade tumor cells (66.6% of samples had FGFR3 
mutations), whereas this proportion was only 25% in high grade luminal NMIBCs (Figure B1). 
Interestingly, FGFR3 mutation status was not correlated with this gene expression level. 

Figure 1. Morphological characteristic of tumors: (1) high grade primary luminal non-muscular
invasive bladder cancer (NMIBC); (2) low grade primary luminal NMIBC. (A) Hematoxylin and eosin
staining,×500. (B) Anti-GATA3 IHC-staining,×500. (C) Anti-CR5/6 IHC-staining,×500. (D) Anti-PD-L1
IHC-staining, ×500.

p=0.017

Figure 2. High-grade (HG) and low grade (LG) non-muscular invasive bladder cancers of luminal
molecular subtype express PD-L1 differently. Boxplots show medians of % of tumor cellular membranes
positively stained by anti-PD-L1 antibody (Ventana PD-L1 Assay (SP263)); significance of expression
differences were estimated by independent t test.

2.2. FGFR3 Expression and Hotspot Mutations in Primary Luminal NMIBC

We then assessed the FGFR3 gene transcript expression as the percentage of the ACTB housekeeping
gene mRNA concentration. In our experiments, high grade luminal NMIBC was associated with
relatively lower cellular expression of FGFR3 compared to low grade non-invasive urothelial cancer
(Figure 3, p = 0.001). Detecting FGFR3 hotspot mutations by Sanger sequencing for both grades of
primary luminal non-invasive bladder cancer also demonstrated the prevalence of the gene mutation
rate in codons 248 and 249 in low grade tumor cells (66.6% of samples had FGFR3 mutations),
whereas this proportion was only 25% in high grade luminal NMIBCs (Figure A1). Interestingly,
FGFR3 mutation status was not correlated with this gene expression level.
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Figure 3. FGFR3 expression level in primary diagnosed high (HG) and low grade (LG) luminal
NMIBC. Boxplots display medians of % of beta-actin gene (ACTB) expression; significance of expression
differences were estimated by independent t test.

2.3. MicroRNA-145 and MicroRNA-200a Expression in Primary Luminal NMIBC

We then assessed expressions of microRNAs-200a and -145 in the tumor samples under
investigation by quantitative real-time reverse transcription polymerase chain reaction (PCR).
The principle of the microRNA detection method used is described by Chen and co-authors (2005) [21].
This method is based on the individual reverse transcription of mature microRNA using a unique long
stem-loop primer. The resulting product was detected by quantitative PCR with a specific fluorescent
probe. MicroRNA levels were measured as the percentage of housekeeping U6 small nucleolar RNA
expression. We found no statistically significant differences (p = 0.78) between more and less aggressive
primary luminal subtypes of bladder cancer for cellular microRNA-200a expression levels; in contrast,
the high grade luminal NMIBC tumor tissues had a ~5.9 times higher expression of microRNA-145
than low grade primary tumors (p = 0.002) (Figure 4).

p=0.002

p=0.78

Figure 4. Expression of microRNA-200a (miR-200a) and microRNA-145 (miR-145) in primary high
(HG) and low grade (LG) non-muscular invasive urothelial carcinoma of luminal molecular subtype.
Boxplots display medians of percentage of U6 snRNA expression; significance of expression differences
were estimated by independent t test.
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2.4. PD-L1, FGFR3 and MicroRNAs Expression, and Relapse-Free Survival in Luminal NMIBC

Using the Kaplan–Meier actuarial analysis, we demonstrated that the time to first tumor relapse
was lower for the patients with a high PD-L1 status of luminal primary cancer in comparison with less
aggressive low PD-L1 expressing luminal NMIBC (Figure 5).
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Figure 5. Cumulative survival (Cum Survival) of patients with high and low PD-L1 expressing the
status of primary luminal NMIBC. According to long rank test, there is significant evidence of a
difference in relapse times for low and high PD-L1+ status groups (p < 0.05).

Using univariable analysis, we then found that the tumor grade (HR = 571.72 [11.03–2.96]
p = 0.002), PD-L1 expression (HR = 2.33 [0.92–1.92] p = 0.012), and FGFR3 expression (HR = 0.08
[0.17–0.42] p = 0.003) were significantly associated with relapse-free survival (Table 1). At the same
time, there were no significant link between RFS and miR-145, mir-200a, and FGFR3 gene mutation rate.

Table 1. Univariable Cox regression models for prediction of recurrence in primary luminal NMIBC.

Variables HR 95% CI p-Value

Tumor grade 571.72 11.03–2.96 0.002
PD-L1 expression 2.33 0.92–1.92 0.012

miR-200a expression 0.98 0.95–1.01 0.40
miR-145 expression 0.99 0.93–1.06 0.96
FGFR3 expression 0.08 0.17–0.42 0.003

FGFR3 gene mutations 1.46 0.35–6.00 0.593

3. Discussion

Temporary cancer molecular biology delivers a broad range of novel molecules and markers that
frequently play pivotal roles at some definite stages of tumor development and progression. From a
clinician’s point of view, though, it is of great importance to base effective and safe treatment strategies
on strong, proven, and, simultaneously and desirably, a limited panel of predictors, which reflects
involvement of key pathways in the malignant process. Such internal ambiguity between galloping
molecular science and quite conservative clinical medicine requires nontrivial approaches to the issue
of the prediction of cancer progression. There is a wide panel of markers with different predictive
values for the prognosis of bladder cancer behavior [22–24]. During recent decades, we observed
how high expert boards tried to combine different clinical hallmarks of the disease and implement
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molecular novels for guidelines, consensuses, and classifications. As a result, sophisticated actual
molecular and clinical classification of non-muscular-invasive bladder cancer illuminated an urgent
need for stringent and reliable prognosticators for at least the main molecular subtypes of the tumor,
luminal, basal, and double-negative NMIBC.

Based on the recent studies, we narrowed our current research focus on three molecular
pathways—immune checkpoint axis PD1/PD-L1, fibroblast growth factor receptor 3 expression
status, and tumor-dependent miRs. The prognostic role of PD-L1 for bladder cancer progression
and the treatment success of immune checkpoint inhibitors have been rigorously evaluated in many
studies [7–12]. In our previous study, we demonstrated that PD-L1 expression level correlated with
RFS in relapsed aggressive non-muscular invasive bladder carcinoma of the luminal molecular subtype
(GATA3-expressing NMIBC) [12,25]. Kang et al. showed that the FGFR3 expression level and its gene
mutation status associated it with survival in primary pT1 bladder cancer [19]. At the same time,
a research team led by Neuzillet demonstrated a link between FGFR3 mutations, but not expression,
and better survival in NMIBC [20]. Meaning of cell-free urine miR-145 and -200a level as marks of
emerging bladder cancer was highlighted by Yun [16], whereas many tumor-associated miRs also had
predictive value. Having considered the aforementioned, we wondered how relapse-free survival of
patients with luminal primary NMIBC might depend on PD-L1 expression, FGFR3 expression, FGFR3
gene hotspot mutation status, and tumor-associated miRs-145 and -200a assessed in complex.

We found out that the more aggressive primary luminal tumor also expressed PD-L1 higher than
the less aggressive form. Obtained data corresponded with our previous results [12,25]. Contrast
data were received during assessment of FGFR3 expression. High grade primary luminal bladder
cancer was associated with low FGFR3 expression, and vice versa. It should be underlined that we
found no correlation between the FGFR3 gene mutation rate and the receptor expression, despite
the mutations intergroup significant differences between high and less aggressive primary tumors.
The fact was disputable with previous observations [20]. At the same time, prior results reflected all
of the NMIBC population without taking into consideration its molecular heterogeneity. Probably,
an increase in the number of observations would allow to get more definite results. We found out that
tumor-related miR-200a expression did not vary in high and low grade primary luminal bladder cancer;
hence, the molecule had no further prognostic value. In contrast, we detected reciprocal PD-L1-like
tumor-related miR-145 expression in study groups. Therefore, not only cell-free but the intracellular
level of miR-145 might be considered as a potential predictive biomolecule. We also found out the
inverse relationship between miR-145 expression and FGFR3 regulation in study subgroups. To date,
there are no clear proofs of miR-145 to target FGFR3 expression [26], but the revealed correlation needs
further investigation. It might be of great importance taking into consideration Zhu and co-authors
recent findings of a positive feedback loop for promoting PD-L1 expression in human bladder cancer
cells via the ATG7/autophagy/FOXO3A/miR-145 axis [27]. Beside intergroup differences, it was of
great importance to evaluate the markers prognostic value for patients’ survival. It turned out that low
FGFR3 expression in combination with high PD-L1+ status predicted bad survival of patients with
primary luminal non-invasive bladder cancer. Obtained data may be used for developing promising
prognosticators in oncology. Further observations should be done to clear the predictive value of
well-known and novel molecules in basal and double-negative NMIBC with and without p53 mutations,
which will be a focus of our subsequent research.

4. Materials and Methods

4.1. Ethic Procedures

We designed the study in accordance with all requirements to protection of patients’ rights and
confidentiality. Study Protocol was reviewed and approved by Ethic Committee of Sechenov University
at the Committee Board meeting on 16 September 2019 (Approval No. 9; Rev. No 16/09-1-2019) and
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Scientific Board of Bio-Ethic Commission of National Research Medical Center of Radiology (Approval
No. 12, 2 October 2019; Rev. No. 02/10-2019-E).

4.2. Study Population and Follow-Up Protocol

Twenty patients with confirmed luminal molecular subtype type of non-muscular invasive bladder
carcinoma who underwent bladder intervention (endoscopic biopsy or transurethral resection) at
Oncology Clinic of Sechenov University or Urology Clinical Hospital of National Research Medical
Center of Radiology between January 2014 and May 2015 were enrolled in the study. Informed
voluntarily consent was given by all the study participants that met the eligibility criteria as follows:
(1) age of 18 years or more at the time of the diagnosis; (2) luminal molecular subtype of primary
diagnosed non-muscular invasive urothelial carcinoma; (3) available both no longer than 3 year-frozen
neoplasm specimens for real-time PCR and formalin-fixed tumor tissue samples for IHC testing.
Patients with primary invasive bladder carcinoma, basal, and double-negative NMIBCs were excluded
from the study. Before intervention and tissue samples collection, urine of each patient was examined
for possible infection. All patients with urinary infection were excluded from the study.

Table A1 summarizes essential participants’ gender data and also contains clinical and
morphological features of diagnosed tumors. Eleven males with average age 56.72 ± 3.1 and nine
females whose age averaged at 57.55 ± 2.6 formed the study population. For each case, histologic
diagnosis was determined along with assessment of individual risk for the tumor recurrence and
progression in accordance with European Organization for Research and Treatment of Cancer (EORTC)
risk tables [28] and World Health Organization (WHO) classification [29]. Bladder tumors histologically
presented by 18 urothelial papillary carcinomas and 2 micropapillary cancers were designated into low
grade (12) and high-grade (8) malignancies.

Intervention implemented and surveillance programs were designed for patients in dependence
on the lesion stage, grade, and risk. Participants with low grade NMIBC were treated by intravesical
Mitomycin 40 mg weekly for six weeks with following cystoscopy and urine cytology at three months
after intervention and subsequent observation nine months later if negative. In this subgroup of
patients, diagnostic cystoscopy was carried out once a year in years 4–5 of surveillance. Intervention in
high grade NMIBC included immunotherapy of Bacillus Calmette-Guerin (BCG) intravesically, with
100 mg per instillation in the same regimen as mentioned above for Mitomycin. Invasive bladder
observations in this subgroup were carried quarterly for years 1 and 2 after primary diagnosis, and
thereafter twice a year up to five years if throughout the period relapses did not occur. Relapse-free
survival (RFS) was defined as the time from first diagnosis of urothelial carcinoma as the primary
tumor date to the date of the first documented tumor relapse, or death due to any cause, whichever
occurs first.

4.3. Tissue Sample Preparation and Processing

All extracted tumor specimens no longer than 5–7 min after intervention were divided into three
equal parts. The first one underwent histologic tissue processing resulting in formalin-fixed and
paraffin-embedded blocks for further histologic examination. The other parts were immediately frozen
at −86 ◦C. Tissue freezing conditions met basic requirements for biological samples preserving, which
would ensure equal diagnostic quality of all samples [30]. One of two frozen samples was designated
to miRNAs, detecting FGFR3 mutations and gene expression determination. The other frozen fragment
of tumor tissue sample underwent immunohistochemical testing for GATA3, KRT5/6, and PD-L1
expression. The molecular panel was chosen for the purpose of multifactorial analysis in accordance
with the high prognostic value of the biomarkers as survival predictors.

4.4. DNA and RNA Isolation

Having been thawed, fragments of freshly frozen tumor tissues were homogenized in 600 µL
of RLT Plus buffer solution (Qiagen, Hilden, Germany) with 1% beta-mercaptoethanol with the



Life 2020, 10, 305 8 of 14

TissueLyser LT homogenizer (Qiagen, Hilden, Germany) using Lysing Matrix A tubes (MP Biomedicals,
Irvine, CA, USA). Nucleic acids were isolated using the AllPrep DNA/RNA/miRNA Universal Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s recommendations. DNA and RNA
concentrations were measured with a Qubit 4 fluorimeter (“Thermo Fisher Scientific”, Waltham, MA,
USA) using, respectively, the Qubit dsDNA HS Assay and Qubit RNA BR Assay kits (“Thermo Fisher
Scientific”, Waltham, MA, USA).

4.5. Reverse Transcription

For every sample, 100 ng of total RNA was mixed with 20 pm of a reverse transcription
primer oligonucleotide (random decamers were used for FGFR3 and ACTB expression, and specific
oligonucleotide primers were used for microRNAs, listed below) in 9 µL and incubated at 70 ◦C for
2 min, and then they were chilled on ice. Reverse transcription was performed at 42 ◦C for 30 min
using the MMLV RT kit (Evrogen, Moscow, Russia) according to the manufacturer’s recommendations.
Reverse transcription was then stopped by inactivating reverse transcriptase by incubating the reaction
mixture at 70 ◦C for 10 min. Obtained cDNA was 10-fold diluted and used for RNA expression analyses
using real-time PCR experiments.

4.6. Real-Time Polymerase Chain Reaction (PCR)

Real-time PCR experiments were performed using a DTPrime amplifier (DNA technology, Russia).
For FGFR3 and ACTB expression, we used qPCRmix-HS SYBR (Evrogen, Moscow, Russia) according
to the manufacturer’s recommendations. A measure of 1.5 µL of cDNA solution and 4 pm of each PCR
primer were amplified in 25 µL using the following protocol: (1) DNA denaturation at 95 ◦C for 2 min;
(2) 45 cycles of the following: DNA denaturation at 95 ◦C for 10 s, primer annealing at 67 ◦C for 3 s,
and elongation at 72 ◦C for 18 s; (3) melting curve analysis.

The following oligonucleotide primers were used for FGFR3: FGFR3RT-F, 5′-CCCAAATGG
GAGCTGTCTCG-3′; FGFR3RT-R, 5′-CATCTCAGACACCAGGTCCG-3; for ACTB: b-act-for,
5′-GAGCGGGAAATCGTGCGTGACATT-3′; b-act-rev; 5′-GATGGAGTTGAAGGTAGTTTCGTG-3′.

For microRNAs and for RNU6-1, we used qPCRmix-HS (Evrogen, Moscow, Russia) according
to the manufacturer’s recommendations. A measure of 1.5 µL of cDNA solution, 4 pm of each PCR
primer, and 3 pm of dual fluorescently labelled detection probe were amplified in 25 µL using the
following protocol: (1) DNA denaturation at 94 ◦C for 2 min; (2) 50 cycles of the following: DNA
denaturation at 94 ◦C for 10 s, and primer annealing and elongation at 53 ◦C for 20 s; (3) storage at 4 ◦C.

The following oligonucleotide primers were used: for microRNA-200a: reverse transcription
primer 200a-RT, 5′-GTCGTGTCTGAGGCTCACTGAGACCTATTCGCACCTCGACACGACACATCGTT-3′;
forward primer 200a-Fw, 5′-CCAGCTAACACTGTCTGGT-3′; reverse primer UR-3, 5′-CTGAGGCTCA
CTGAGACCT-3′; for microRNA-145: reverse transcription primer 145-RT, 5′-GTCGTGTC
TGAGGCTCACTGAGACCTATTCGCACCTGACACGACAGGGATTC-3′; forward primer 145-FW,
5′-CCACAGTCCAGTTTTCCCAG-3′; reverse primer UR-3 (see above); for U6 snRNA: reverse
transcription primer U6-RT, 5′-GTCGTGTCTGAGGCTGACTGAGACCTATTCGCACCTGACACGACG
GCCATGC-3′; forward primer U6-Fw, 5′-GGCCGCATACAGAGAAGATTA-3′; reverse primer U6-Rv,
5′-CTGAGGCTGACTGAGACCT-3′.

The following fluorescently labelled probes were used for transcript detection:
for microRNA-200a: 200a-Pb, 5′-(R6G)-ATTCGCACC(T-BHQ1)CGACACGACACATCGTT-p-3′;
for microRNA-145: Pb-145, 5′-(R6G)-ATTCGCACC(T-BHQ1)GACACGACAGGGATTC-p-3′; for U6
snRNA: U6-Pb, 5′-(R6G)-ATTCGCACC(T-BHQ1)GACACGACGGCCATGC-p-3′.

4.7. Detection of FGFR3 Gene Hotspot Mutations

We detected mutations in codons 248 and 249. For this, we PCR-amplified the 7th exon of
FGFR3 using 100 ng of genomic DNA, qPCRmix-HS (Evrogen, Moscow, Russia), and 10 pm of
the specific primer oligonucleotides (FGFR3-7F, 5′-AGTGGCGGTGGTGGTGAGGGAG-3′; FGFR3-7R,
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5′-ACCTTGAGCACGGTAACGTAGGGTGT-3′) by the following protocol: (1) DNA denaturation
at 95 ◦C for 3 min; (2) 32 cycles of the following: DNA denaturation at 95 ◦C for 20 s, primer
annealing at 70 ◦C for 20 s, and elongation at 72 ◦C for 20 s; (3) storage at 4 ◦C. PCR products were
purified by agarose electrophoresis and the column purification kit Cleanup Standard (Evrogen,
Moscow, Russia). Purified PCR products were Sanger-sequenced at Evrogen (Moscow, Russia)
using (separately) both FGFR3-7F and FGFR3-7R primers. Sequencing results were analyzed using
Chromas 2.6.6 software (“Technelysium”, Australia). We used non-modified oligonucleotide primers
purchased at Evrogen (Moscow, Russia) and fluorescently labeled oligonucleotide probes purchased at
DNA-Synthesis (Russia).

4.8. Immunohistochemistry (IHC)

We used an immunohistochemical method for two main purposes. First of all, we determined
GATA3 and KRT5/6 expression in tumor slices for triage and the identification of a luminal subtype
of primary NMIBC, while the valuation of PD-L1 expression level was the other goal of IHC testing
(Figure 1). For this, 4-µm-thick sections of tumor tissue were used. Tissue slices were fixed in 10%
formalin, and then were dehydrated and embedded in paraffin using an automated regimen of
histological processing on the Spin vacuum tissue processor STP250-V (“Histo-Line Laboratories Srl”,
Milan, Italy).

To analyze cell expression of the transcription factor encoded by GATA3, we used a monoclonal
antibody against human GATA3 (HG3-31 clone, dilution, 1:100; Santa Cruz Biotechnology Inc.,
Santa Cruz, CA, USA). The expression level of cytokeratin 5 and 6 (CR5/6) was assessed in tumor
sections stained by a monoclonal antibody against human CR5/6 (D5/16B4 clone, 1:50 dilution, Dako,
Denmark). Luminal molecular subtype of urothelial carcinoma was determined in accordance with
Wang et al. [31] and Lerner et al. [32] as a >80% cut-off for GATA3 positive nuclear staining along with
low or undetectable CR 5/6 cellular cytoplasm staining.

We used the Ventana PD-L1 Assay (SP263) and the OptiView DAB IHC Detection Kit (Cat. No.
760-700/06396500001) with signal amplification (Ventana Medical Systems, Inc., Tucson, AZ, USA) to
evaluate the PD-L1 expression level in urothelial carcinoma sections. Negative control was stained
by primary Ventana Rabbit Monoclonal Negative Control antibody (Cat. No. 790-4795/06683380001).
In each reaction cycle, tonsils tissue specimens served as a positive control. To set up a reaction with the
SP263 assay, after the dewaxing and unmasking antigens, rabbit monoclonal antibody PD-L1 (SP263)
in working dilution was applied to prepared tumor sections. We used the Ventana BenchMark ULTRA
ICH stainer (Ventana Medical Systems Inc., Tucson, AZ, USA) in accordance with the manufacturer’s
guidelines for the reaction automated processing [33]. We scored the percentage of PD-L1-reacted cells
in five randomly PC-selected high-power fields under light microscope with 500-folds magnification.
High PD-L1 status was classified if ≥25% of tumor cells (TC) and/or ≥25% of immune cells (if they
represented more than 1% of total cell population) displayed membrane PD-L1 positivity. Cellular
membrane staining positivity scored between 0 and 25% for aforementioned cell populations was
classified as Low PD-L1+ status. Absence of membrane positive staining appropriated a negative
PD-L1 status.

4.9. Statistical Analysis

Data were processed and handled using the SPSS statistical software program, version 22.0 (SPSS,
Inc., Chicago, IL, USA). Independent t test and analysis of variance (ANOVA) were used to compare
the expression of PD-L1, miR-200a, miR-145, and FGFR3 between groups. The Mann–Whitney U test
was used to compare the FGFR3 gene mutations between groups. The Kaplan–Meier method was
used to estimate the time to first relapse and relapse-free survival, and differences were assessed using
log-rank statistics. The prognostic values of the tumor grade, PD-L1, miR-200a, miR-145, and FGFR3
expressions were analyzed by univariable Cox proportional hazard regression models.
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5. Conclusions

Tumor grade in association with PD-L1 and FGFR3 expression can be considered a complex
predictor for primary luminal NMIBC progression.

Author Contributions: Conceptualization, D.B., D.R., A.B., P.B. and E.B.; methodology, T.D., V.G., S.S., E.S.
(Elena Samyshina), A.B., O.T., P.Z. and E.S. (Evgenia Shich); software, H.B., A.K. and O.D.; validation, T.D., D.P.,
O.T., V.G., A.D. and D.R.; formal analysis, H.B., D.M., O.D., O.T. and E.S. (Elena Samyshina); investigation, D.B.,
D.M., A.B., D.P., N.P., M.S., A.D., A.K., P.Z. and D.E.; resources, E.S. (Elena Samyshina), T.D., V.G. and S.S.; data
curation, E.B., E.S. (Evgenia Shich), N.P., P.B., V.G. and D.E.; writing—D.R., A.K., O.D., N.P., O.T., T.D., H.B., M.S.,
A.D., P.Z. and E.B.; writing—review and editing, D.B., A.B., P.B. and D.E.; visualization, T.D., V.G., M.S. and D.M.;
supervision, E.B.; project administration, D.B. and E.S. (Evgenia Shich); funding acquisition, E.B., A.B. and D.E.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Russian academic excellence project “5–100” for Sechenov First
Moscow State Medical University.

Acknowledgments: We are extremely grateful to all colleagues, hospital officers, laboratory staff for useful advices,
assistance and cooperation. We thank our patients for sincere desire to make medicine better.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BCG Bacillus Calmette-Guerin
EORTC European Organization for Research and Treatment of Cancer
FGFR3 Fibroblast growth factor receptor 3
GATA3 Transcription factor encoded by GATA3 gene
IHC Immunohistochemistry
CR5/6 Cytokeratin 5 and 6
MIBC Muscular-invasive bladder cancer
miR microRNA
NMIBC Non-muscular invasive bladder cancer
PCR Polymerase chain reaction
PD1 Programmed death receptor 1
PD-L1 Programmed death receptor ligand 1
RFS Relapse-free survival
TUR Transurethral resection

Appendix A

Table A1. Tumor-related characteristics of the study participants.

Patient Tumor Grade and Stage Gender Age, Years Tumor Histology

1 T1, High grade Male 54 UPC
2 T1, Low grade Male 57 UPC
3 T1, High grade Female 61 MC
4 T1, Low grade Male 60 UPC
5 T1, Low grade Female 51 UPC
6 T1, Low grade Female 64 UPC
7 T1, High grade Female 67 UPC
8 T1, High grade Male 59 UPC
9 T1, Low grade Female 53 UPC
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Table A1. Cont.

Patient Tumor Grade and Stage Gender Age, Years Tumor Histology

10 T1, High grade Male 49 MP
11 T1, Low grade Male 58 UPC
12 T1, Low grade Female 50 UPC
13 T1, Low grade Male 55 UPC
14 T1, Low grade Male 48 UPC
15 T1, Low grade Male 63 UPC
16 T1, High grade Female 70 UPC
17 T1, High grade Male 69 UPC
18 T1, Low grade Female 47 UPC
19 T1, Low grade Female 55 UPC
20 T1, High grade Male 52 UPC

Total Low grade (12), High
grade (8)

Male (11),
Female (9)

Average (Mean
± SD) 57.1 ± 2.8

UPC (18)
MC (2)

UPC—urothelial papillary carcinoma; MC—micropapillary carcinoma.
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