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Abstract: Many single-particle tracking data related to the motion in crowded environments exhibit
anomalous diffusion behavior. This phenomenon can be described by different theoretical models.
In this paper, fractional Brownian motion (FBM) was examined as the exemplary Gaussian process with
fractional dynamics. The autocovariance function (ACVF) is a function that determines completely the
Gaussian process. In the case of experimental data with anomalous dynamics, the main problem is first
to recognize the type of anomaly and then to reconstruct properly the physical rules governing such a
phenomenon. The challenge is to identify the process from short trajectory inputs. Various approaches to
address this problem can be found in the literature, e.g., theoretical properties of the sample ACVF for a
given process. This method is effective; however, it does not utilize all of the information contained in the
sample ACVF for a given trajectory, i.e., only values of statistics for selected lags are used for identification.
An evolution of this approach is proposed in this paper, where the process is determined based on the
knowledge extracted from the ACVF. The designed method is intuitive and it uses information directly
available in a new fashion. Moreover, the knowledge retrieval from the sample ACVF vector is enhanced
with a learning-based scheme operating on the most informative subset of available lags, which is proven
to be an effective encoder of the properties inherited in complex data. Finally, the robustness of the
proposed algorithm for FBM is demonstrated with the use of Monte Carlo simulations.

Keywords: anomalous diffusion; fractional Brownian motion; estimation; autocovariance function;
neural network; Monte Carlo simulations

1. Introduction

Many single-particle tracking data related to the motion in crowded environments exhibit anomalous
diffusion behavior [1,2]. This behavior is also visible in various phenomena such as finance [3,4], ecology
[5], hydrology [6], and biology [7], as well as meteorology and geophysics [8,9]. Anomalous diffusion
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behavior is manifested by deviations from the laws of Brownian motion (BM). One of the most common
definitions of the anomalous diffusion process is expressed in the nonlinear behavior of its second moment:

E
[

X2(t)
]
∼ tα, (1)

where α is the so-called anomalous diffusion exponent. When α = 1, the process is classified as diffusion,
while for α 6= 1, we call it anomalous diffusion. More precisely, for α < 1, it is called subdiffusion, while
for α > 1, it is superdiffusion. It should be mentioned that anomalous diffusion can be also related to the
non-Gaussian probability density function of the corresponding process; for instance, see [10–13].

The class of anomalous diffusion processes is very rich. The most classical anomalous diffusion models
are fractional Brownian motion (FBM) [8,14], Lévy stable motion [15], continuous-time random walk [16,17],
and the subordinated processes (also called time-changed processes) [18–25]. We also mention here the
processes with time- or position-dependent diffusion coefficients such as scaled Brownian motion [26,27]
or heterogeneous diffusion models [28], as well as the superstatistical process [29] or diffusing diffusivity
models (also called Brownian yet non-Gaussian diffusion process) [30]. We also refer the readers to the articles
[31–34] and the references therein.

In the case of experimental data with anomalous dynamics, the main problem is first to recognize the
type of anomaly and then to reconstruct properly the physical rules governing such a phenomenon. The main
challenge is to identify the process from short trajectory inputs. Various approaches to address this problem
can be found in the literature; for instance, see [35–42]. One of the simplest and most efficient approaches is
based on the theoretical properties of the sample autocovariance function (ACVF) [43]. It is known that the
ACVF is the characteristic that determines completely the centered Gaussian process. Thus, its sample version
is a proper tool for the testing and estimation of the parameters of this process. The approach presented in the
literature [43] is effective; however, it does not utilize all of the information contained in the sample ACVF for
a given trajectory, i.e., only values of statistics for selected lags are utilized. Therefore, an evolution of this
approach is proposed in this paper.

Herein, we compared three approaches that apply the ACVF for estimation of the anomalous diffusion
exponent. The first one, the so-called naive method, uses the ACVF in one specific lag to estimate
the anomalous diffusion exponent of the given process. The second algorithm is based on the ACVF
corresponding to the vector of the selected lags. The last technique is based on the sample ACVF
information extracted with the most informative subset of available lags. The designed novel method in
the third approach is intuitive and it uses information directly available in a new fashion. Information
retrieval from the sample ACVF vector is performed here with a learning-based scheme operating on the
most informative lags, i.e., a feedforward neural network (FNN) [44] is designed and applied for solving
the regression task. This approach has been proven to be an effective encoder of the properties inherited
in complex data [45–47]. The goal is to preliminarily assess (using computer simulations) the predictive
properties of an FNN for the estimation of the anomalous diffusion exponent based on a short data set.
This exercise provides evidence of the performance of the simple version of the neural network (NN)
adapted for the defined regimes (anomalous diffusion) and the ACVF vector, which is a projection of a valid
complex and real trajectory, e.g., for particle movement in a solution. The reported results can be further
enhanced by the exploitation of adaptive mechanisms inserted into recurrent neural networks (RNNs)
and/or the detailed and proper inferences of multiscale pattern(s) for deep learning [1–5]. The advantage
of the application of an FNN to the task defined above is that a trained neural network model can be a
robust and efficient estimator for anomalous diffusion exponents, e.g., complex relations hidden in ACVF
data can be extracted within one-step, concluding in a trained feedforward neural network.

The robustness of the introduced algorithm based on the ACVF and NN methods in comparison to the
known ACVF-based techniques is demonstrated herein for the exemplary Gaussian process using Monte
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Carlo simulations. We considered the FBM as an exemplary model with fractional dynamics; that is, the
Gaussian process with stationary increments and the so-called self-similar property parametrized by the
Hurst exponent H = 0.5α, where α is the anomalous diffusion exponent given in (1).

The main goal of the paper was to prove that the incorporation of intelligent-based algorithms
into classical estimation schemes can shed new light on the investigation of the anomalous diffusion
phenomenon. Moreover, the classical tools enhanced by artificial intelligence (AI) methods are more
effective in comparison to the known statistical algorithms used for anomalous diffusion parametrization.

The rest of the paper is organized as follows: In Section 2, we outline the definition of the
fractional Brownian motion and the exemplary Gaussian process with anomalous diffusion behavior.
Next, in Section 3, we discuss two of the estimation methods for the Hurst exponent based on the ACVF
that are commonly used in various applications. In the next section, we present a new approach for the
estimation of the H index. Namely, in the new algorithm, we combined the ACVF and NN methods. To
demonstrate the effectiveness of the new approach, in Section 5, we present a simulation study where
we compare the three considered algorithms for the estimation of the Hurst exponent. The last section
concludes the paper and presents a future study.

2. Fractional Brownian Motion

Fractional Brownian motion (FBM) {XH(t), t ≥ 0} with the Hurst index H ∈ (0, 1) is a continuous
and centered Gaussian process defined through the following Langevin equation [14,48–50]:

dXH(t)
dt

= DξH(t), (2)

where the parameter D is the diffusion coefficient. In Equation (2), {ξH(t), t ≥ 0} is the fractional Gaussian
noise process with the autocorrelation function satisfying the following:

Corr(ξH(0), ξH(t)) ∼ 2H(2H − 1)Dt2(H−1), t ≥ 0. (3)

The FBM was introduced by Kolmogorov in 1940 (see [8]). FBM is the only Gaussian process with the
self-similar property. Because the FBM is a centered Gaussian process, it can be also defined through the
ACVF that, in this case, is given by [14]:

E [XH(t)XH(s)] =
1
2

D
(

t2H + s2H − |t− s|2H
)

, where t, s ≥ 0. (4)

Thus, for the given t ≥ 0, XH(t) ∼ N
(
0, Dt2H). The FBM has stationary increments. Moreover, if

H > 1/2, then the increments of the process are positively correlated, while for H < 1/2, they are negatively
correlated. Moreover, for H > 1/2, the FBM exhibits the so-called long range dependence, which means that
the following property is satisfied:

∞

∑
n=1

E [XH(1)(XH(n + 1)− XH(n))] = ∞. (5)

As can be seen, for H = 1/2, the FBM reduces to the ordinary Brownian motion (BM). It should
be mentioned that the FBM is considered one of the classical processes used to describe the anomalous
diffusion phenomenon. Indeed, for H < 1/2, it exhibits subdiffusion behavior, while for H > 1/2, it shows
superdiffusion behavior. To see the differences between the behavior of the trajectories corresponding to
different anomalous types, in Figure 1, we demonstrate the exemplary trajectories of FBM for H = 0.3
(subdiffusion), H = 0.5 (diffusion), and H = 0.7 (superdiffusion).
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Figure 1. Exemplary trajectories for H ∈ {0.3, 0.5, 0.7}.

3. ACVF-Based Methods for the Estimation of the Hurst Exponent

In this article, we consider three approaches that utilize the ACVF in the estimation of the Hurst
parameter H. Here, we depict two approaches known from the literature. The last technique is described
in detail in the next section.

The methods presented in this section are based on the sample version of the ACVF. Let us consider
the trajectory of FBM, XH = {XH(1), XH(2), · · · , XH(n)}, and the corresponding sample of increments,
ξH = {ξH(1), ξH(2), · · · , ξH(n)}, where ξH(t) = XH(t) − XH(t − 1) for t = 1, 2, . . . , n. The sample
ACVF for ξH is given by [51]:

γ̂ξ(τ) =
1
n

n−τ

∑
t=1

ξH(t)ξH(t + τ), τ = 0, 1, . . . , n− 1. (6)

The statistic γ̂ξ(τ) is a rescaled estimator of the theoretical autocovariance function for γξ(τ),
corresponding to lag τ, where γξ(τ) = E (ξH(1)ξH(1 + τ)). One can easily show that the statistic (6) is a
biased estimator of γξ(τ), namely:

E
[
γ̂ξ(τ)

]
=

1
n
E
[

n−τ

∑
t=1

ξH(t)ξH(t + τ)

]
=

=
n− τ

n
E [ξH(1)ξH(1 + τ)] =

D(n− τ)

2n

(
|τ + 1|2H + |τ − 1|2H − 2|τ|2H

)
=

n− τ

n
γξ(τ).

However, in our considerations, we used the biased version of the γξ(τ) estimator due to its lower
variance in comparison to the unbiased one.

In the literature, a few possibilities of estimating the Hurst parameter H using the ACVF have been
presented. In the simplest approach, we considered only the first lag τ = 1, and compared the statistic
γ̂ξ(1) with the desirable theoretical value of γξ(1) = D

2 (2
2H − 2). Thus, using the following relation:

γ̂ξ(1) =
D
2

(
22H − 2

)
,

one can obtain the simple estimator of H:

Ĥ =
1
2

log2

(
γ̂ξ(1)

2
D

+ 2
)

. (7)

As such an approach is simple, we refer to it as naive (the M1 method) in the following analyses.
In this approach, the diffusion coefficient D is assumed to be known. However, in real applications, the D
parameter can also be estimated as a sample variance of the vector ξ. As one can see, the ACVF for lag
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τ = 1 includes the necessary information about the FBM process. Unfortunately, if the corresponding
measurements are burdened by an additive error (i.e., some measurement noise), γ(1) changes accordingly,
resulting in the need to consider more advanced techniques for the estimation of the H parameter; for
instance, see [52,53] and the discussion therein.

In an alternative approach for estimating the H parameter, one can simultaneously use more lags τ.
Thus, we can fit the function τ 7→ D

2
(
|τ + 1|2H + |τ − 1|2H − 2|τ|2H) to the empirical ACVF γ̂ξ(τ) for the

corresponding lags τ = 1, 2, . . . , τmax in the least squares sense, i.e., the estimator is calculated as follows:

Ĥ = arg minH∈(0,1)

τmax

∑
τ=1

[
γ̂ξ(τ)−

D
2

(
|τ + 1|2H + |τ − 1|2H − 2|τ|2H

)]2
, (8)

for some maximum lag τmax. Again, if the diffusion coefficient is unknown, we can estimate it by considering
arg min over (H, D) ∈ (0, 1)× (0, ∞). This approach is unfortunately much more complex, as it requires
nonlinear regression methods. In the further analysis, we refer to this approach as the M2 method.

4. ACVF and NN-Based Methods for the Estimation of the Hurst Exponent

As mentioned above, three methods for the estimation of the Hurst exponent H are compared in this
article. All of the identification algorithms are based on the ACVF. The first (M1) and the second (M2)
methods were described in the previous section. In this section, we present the algorithm based on the
ACVF and NN methods, denoted as the M3 method in the simulation study.

One might expect that the two proposed methods provide the best estimation results when
the data follows the “pure” theoretical model, i.e., FBM. In reality, this is rarely the case—often,
the observed trajectories are biased by a measurement error and/or various interleaving processes cover
the anomalous diffusion component in the acquired signal. A purely statistical approach, such as in
the M1 and M2 methods, can bring about limitations in real-world data applications, whereas artificial
intelligence has shown its potential to overcome parasitic conditions in data from numerous fields of
applications [45,54–56]. This triggers applications of learning-based schemes that enable weakening of
the initial assumptions related to data properties and model building, providing good estimators for a
wide range of anomalous diffusion regimes (i.e., for a wide range of H values). The assumed architecture
for the neural network model and the training process are crucial aspects for efficient data exploration in
artificial intelligent schemes, with the latter being of particular importance for NN model performance
[44]. As a consequence, the input data properties used for the NN model training condition the reliability
of the observed outputs—i.e., the value of the estimated H and its uncertainty in the reported study.

In the previous section, we assumed that the relationship between the data and the estimated
parameter is known and given by Equations (7) and (8) for the M1 and M2 methods, respectively.
Now, we propose to use a feedforward neural network as the predictor of this theoretical relationship,
i.e., E[H|{γ̂ξ(τ)}]. To be more precise, the FNN is proposed as the model of the hidden relationships in
the experimental data. The last one means that obtaining a formal expression for the rules governing
the phenomena in a real-world system is not the main subject of interest here, but encoded in the FNN
model, these rules are used to enhance the reliability of the Hurst exponent estimation from the data that
correspond to the FBM, according to our assumption. It is worth noting that the modeling of E[H|XH ] or
E[H|ξH ] is also possible with the NN-based approach; however, more sophisticated NN topologies are
required to reconstruct the long dependency valid for the FBM model (for H � 0.5). Thus, dealing with
long and varying input vector lengths is required to realize this task; models based on RNNs, long
short-term memory (LSTM) neural networks [57], or other forms of intelligent recurrence should be used,
which implies higher requirements regarding their training [58].
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The information about the underlying process is concentrated in the first couple of lags of the sample
ACVF. In this paper, 32 lags (including the 0th lag) were used as the input for the Hurst exponent estimation.
In the next section, it is shown that this amount was sufficient for our study.

The proposed architecture of the neural network model consists of three hidden layers of consecutive
sizes of 64, 64, and 32. The Swish-1 [59] activation function, defined as:

Swish-β(x) := x× σ(βx) =
x

1 + e−βx , (9)

was used for the neurons in each layer—in many applications, this expression outperforms the other
activation functions [59].

In the designed FNN predictor, the size of the first layer was conditioned by the number of lags
corresponding to the ACVF used during the experiment (i.e., 32 neurons were inserted into the first layer)
and the output layer consisted of one neuron, which produced the H estimator as the model response.
Since the estimated value of the Hurst exponent was within the range of H ∈ (0, 1) and the FNN model
designed for its estimation can produce all real numbers as the output, post-processing transformation
needed to be applied to the response of the output neuron. Here, the sigmoid function, defined as:

σ(x) :=
1

1 + e−x , (10)

was used. The function given in (10) projects all real numbers to the interval (0, 1).
To boost the FNN training process, the Adam optimization algorithm [60] was applied as it quickly

converges to a minimum [61–64]. The mean squared error (MSE) was used to quantify the prediction
error of the FNN model.

5. Simulation Study

The efficiency of the three methods (M1, M2, and M3) designed for H estimation is demonstrated in
this section using computer simulations. Cholesky decomposition [65] was used for the generation
of the FBM trajectories, since it allows to simulate outputs with extreme H parameter values
(unlike Davies–Harte [66], which can fail to generate small samples for H parameters close to 1). Regarding
the practical usefulness of the designed procedures, their efficiency can be expressed in the context of the
length of the input trajectory required to estimate H with expected reliability. This study was performed
for trajectories of various lengths, and the results are reported below.

The two statistical methods described in Section 3 were ready to use, whereas the designed
feedforward neural network needed to be trained in advance, for which training and validation datasets
were prepared.

The training dataset was formed with 1,572,64 FBM trajectories generated during computer
simulations. This set consisted of vectors of different lengths (from 32 up to 1024) and referred to different
H parameter values. For every trajectory length, N ∈ {32, 64, 128, 256, 512, 1024}, 262,144 trajectories were
generated using computer simulations (262,144× 6 = 1,572,864), each with the H parameter selected randomly
from the uniform distribution U(0, 1). Next, for each trajectory ξH , the ACVF (biased estimator (6), as
introduced earlier) was calculated, resulting in a set of ACVFs of lengths N (N lags—τ ∈ {0, 1, . . . , N− 1})
with corresponding H parameters. Using the same procedure, the validation and test subsets were generated,
each of a size of 196,608 (32,768 × 6 = 196,608).

The length of the ACVF vectors for the NN training was limited to 32 first lags (namely, τ ∈ {0, 1, . . . , 31}).
This selection was preceded by the calculation of MAE prediction error, such as in Figure 2—more input
samples do not decrease the error, whereas a smaller input size increases the MAE value.
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Figure 2. The MAE calculated for the M3 method when a different number of lags is used as the feedforward
neural network (FNN) input (determining the size of the input layer of the FNN), depending also on the
selected quantile; the number of lags (32) selected for use in the paper are marked with a red line.

To train the FNN (the architecture of the FNN as described in Section 4), input data were gathered
into batches of 64 (the number of training examples used to calculate weight updates). The total number of
NN parameters was 8385, trained for 13 epochs (the number of times that the training algorithm operated
on the entire training dataset), for a total of 93 s× 13 epochs ≈ 20 min. The number of epochs was selected
dynamically using the early stopping method [67]. Since the model did not improve the prediction error
significantly after the third epoch, the training procedure could be stopped then (then, the training time
would be 5 min). Calculations were performed on a PC with Intel Core i7 (3.7 GHz, 6 cores, 12 threads)
and RAM of 64 GB.

The test dataset was used to compare the M1, M2, and M3 methods—for M1, the first lag was used
(τ = 1); for M2, the set of lags was τ ∈ {0, 1, . . . , τmax} (if not stated differently, τmax = 31); M3 always
used 32 lags (τ ∈ {0, 1, . . . , 31}). The metrics used were the absolute error and (for the aggregated results)
the mean absolute error.

Figure 3 provides a comparison of the MAEs for the three methods (i.e., M1, M2, and M3) when
dealing with trajectories of different lengths and with the diffusion characteristic (H parameter), grouped
by the true parameter H into the bins [0–0.2), [0.2–0.4), [0.4–0.6), [0.6–0.8), and [0.8–1).
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Figure 3. MAE heatmap for the M1, M2, and M3 methods depending on the length of the input trajectory
and the value of the Hurst exponent applied during the computer simulations.

The conclusion is that the NN-based approach (M3) is more efficient than the other schemes studied in the
paper, as it did not need long trajectories to estimate the Hurst exponent H with a minimized/minor error. For
H close to 0 or 1, there was a significant difference in the MAEs between the considered methods—although
the NN approach achieved a similar level of error to the other methods when fed samples of a size of 64 for
the estimation, M1 and M2 struggled to deliver equivalent performance for longer inputs, i.e., up to 16-times
longer trajectories, as was shown during the computer simulations. It is worth noting that the estimation error
for the Hurst exponent in the diffusion case (i.e., H ≈ 0.5) was similar for all of the considered approaches.
In summary, since M1 estimated H reliably when using only the first lag, which was also true for the other
methods, it was possible to distinguish between normal and anomalous diffusion using the information
contained in the first lag or the first few lags.

To further compare these methods, the distribution of the (absolute) prediction error is shown in
Figure 4. A logarithmic scale was applied to the y-axis in the boxplots to distinguish the performance of
the following algorithms. The figure is divided into six parts, each reporting on the performance of the
M1, M2, and M3 methods. In this way, it was possible to analyze how the distributions of the prediction
error varied for each of these methods, the different lengths of the input trajectories, and also the different
diffusion types (i.e., superdiffusion and subdiffusion); similarly to Figure 3, the input data were grouped
evenly into five bins in reference to the true value of the H parameter.

Figure 4 depicts the spread of the estimation error and also reports on the number of outliers.
The obtained results prove that the NN-based algorithm can more reliably estimate the H value for its
following ranges (thus regimes of anomalous diffusion behavior) than in the two classical (M1 and M2)
methods.

When it comes to the analysis of the multidimensional spread of the observed distributions, M3
performed similarly to the other methods. However, it is worth noting that M1 could not be used to obtain
reliable results for some anomalous diffusion regimes, i.e., in several cases in Figure 4, the prediction
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errors were over 0.5 (which means that M1 could not distinguish between sub- and superdiffusion in
these cases). There were also some cases in the presented study when all of the methods working with the
smallest considered sample size (32) struggled to distinguish between subdiffusion and superdiffusion.
Nonetheless, M3 applied to two-times longer trajectories (i.e., 64 samples inserted as the input) performed
reliably and efficiently through the whole range of H values.
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Figure 4. Absolute error calculated for the M1, M2, and M3 methods when fed with simulated input
trajectories of different lengths and representing various modes of anomalous diffusion regimes (encoded
with the H value).
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It would be advantageous here to understand what makes M3 outperform the M2 algorithm. The most
straightforward explanation relies on the fact that the input information contributes to outputs in various
ways in M2 and M3. Namely, although M2 and M3 use the same input information, M2 explores each lag
with the same importance, which is not the case for the FNN. The neural network-based method can learn
inhomogeneous relationships contained in historical data, focusing on a specific subset of lags and leaving
others with less influence on the observed output. This is exactly how the intelligent unpacking mechanism
works in the M3 method.

This phenomenon can be clearly observed in Figure 5, where the MAE is compared for the methods
working with trajectories of different lengths, for different H parameter values, and various numbers
of lags used during the calculations. In the case of the M1 method, the results are presented only for
τ = 1, as there was no possibility to expand or shrink the set of lags here. M2 used lags up to τmax for the
Hurst exponent estimation, i.e., (τ ∈ {0, 1, . . . , τmax}) with τmax ∈ {2, 3, . . . , 31}. The number of used lags
could not be reduced for the M3 method since it required exactly 32 lags. To overcome this problem, a
selected number of the first values of the calculated lags for the ACVF (this number is later referred to as
non-zero lags) were extracted. The remaining lags were reset to zero during the calculations. This means
that the relationships valid for the raw data were cut at the level of some lags, resembling the diffusion
case H = 0.5 (i.e., there is no inter-dependency and the ACVF is equal to 0). All of these contributed to
weakening the anomalous behavior (filling further lags with zero diminished/removed the long-range
dependencies); thus, the reliability of the used methods for prolonged input data sequences could be
improved, especially in the case of the M3 algorithm (see Figures 3 and 4).
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Figure 5. MAE heatmap calculated for the M1, M2, and M3 methods depending on the length of the input
trajectory, τmax, and for the following ranges of Hurst exponent values.

Figure 5 proves that using at least 20 lags was sufficient to minimize the error of H estimation in M3.
However, the prediction error imperceptibly decreased for M2 with the addition of consecutive lags to the
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input. One of the explanations for this observation might be that the magnitude of the contribution to the
observed outputs (here, the value of the Hurst exponent) was smaller for the higher-order lags than for the
first few lags. This means that the feedforward neural network more efficiently unpacked the information
about the anomalous diffusion process than the M1 and M2 statistical schemes.

6. Summary and Conclusions

Anomalous diffusion is a complex phenomenon observed in physical systems. This complexity
is inherited in recorded data, which, in practice, can be additionally corrupted by measurement noise.
Moreover, anomalous diffusion components can emerge from a bunch of other regimes manifested in the
observed system (and thus, in recorded data). Unpacking and disentangling the information contained in
such data is a challenge, especially because complex interrelations are typically encoded in a small number
of data samples. The statistical modeling of anomalous dynamics is quite well established and is concerned
with the approximation of nontrivial patterns by the anomalous diffusion exponent. The problem is that
for complex systems and the limited a priori knowledge available, the statistical inference can bring about
non-robust estimation, especially when noisy components occur in data.

In recent years, there has been increasing interest in the use of AI methods of data exploration in
various areas of science and engineering, especially when dealing with complex systems and a limited
amount of preliminary information. In this paper, we proposed the application of a simple feedforward
neural network to the quantification of anomalous dynamics. Namely, we compared this AI-based
approach with statistical modeling, which allowed us to conclude that a combination of these two data
exploration methods can decrease the estimation error of the anomalous diffusion exponent.

Herein, we considered the FBM, as it is one of the classical Gaussian processes that can be used for the
description of anomalous diffusion behavior. Moreover, the FBM for special cases reduces to the classical
BM, and thus is also useful for the analysis of diffusion processes.

Our approach is based on the ACVF, which completely describes the zero-mean Gaussian process.
Thus, we selected the sample version of this statistic as a base for the estimation methodology.
Via a simulation study, we proved that the classical approaches that utilize the sample ACVF are effective;
however, when the process under consideration becomes anomalous diffusion, then their efficiency
decreases. Thus, there is a need to incorporate more advanced techniques. In this article, we addressed
such problems and proposed a simple modification of the classical ACVF-based approaches through the
inclusion of NN-based methodology. Our simulations showed that the introduced estimation method
outperformed the other considered approaches, especially for short trajectory lengths. This message is
crucial for practical applications, where the real trajectories may be relatively short. In this case, the method
based on a combination of ACVF and NN techniques seems to be more effective in contrast to the classical
algorithms. It should be highlighted that although the presented approach in this paper is based on the
ACVF, this methodology can be applied to any other statistic that is crucial for the estimation of anomalous
diffusion processes, e.g., mean squared displacement, p-variation, and ergodicity breaking parameter.
Moreover, the potential applicability of the described approach is much wider than the anomalous diffusion
field. It could bring new insight into studies of physical systems with various properties reflected and
decoded in the corresponding statistical quantities, i.e., long-range dependence, ergodicity breaking, or
self-similarity. Additionally, the FBM was considered here only as an exemplary anomalous diffusion
process, and the presented approach can be used for any other models with anomalous diffusion behavior.
The designed method can also also used not only for estimation purposes, but also for the classification of
the anomalous diffusion model governing physical phenomena. It could be directly achieved by the NN
learning various ACVF formulas that uniquely define different Gaussian processes. Finally, outside of
the Gaussian world, other appropriate statistics that evidently and precisely detect proper non-Gaussian
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models can be effectively brought into the identification process. Thus, the introduced approach is
universal in many areas and can be extended in various directions.

The combination of known statistical algorithms with the deep learning methodology is not a new
idea in the area of anomalous diffusion phenomena analysis. Many authors have recognized that simple
statistical methods in some cases seem to be inefficient for the proper identification or parametrization of
the anomalous diffusion model, especially for recordings with short-length trajectories. In recent years, in
the literature regarding anomalous diffusion processes, one can find the application of intelligent methods
that enhance the classical approaches. In the physical sciences, deep learning methods have ound very
interesting applications. We mention here the new approaches based on the artificial NN algorithms (i.e.,
[68–73]) or the general machine learning methods applied to fractional dynamics analysis (i.e., [74–77]).
However, to the best of our knowledge, a combination of ACVF- and NN-based methods has not been
presented in the context of anomalous diffusion analysis.

In a future study, we plan to analyze the influence of additive noise on the estimation results for a
model disturbed by external force. The same problem has been considered previously (e.g., in [53]), where
the effectiveness of the time-averaged mean square displacement-based approach for the H parameter
estimation was analyzed for the FBM with additive noise. Another future study will be related to the
combination of the other time-averaged statistics [78] and deep learning methodology for the estimation
problem in the anomalous diffusion regime.
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35. Sikora, G.; Burnecki, K.; Wyłomańska, A. Mean-squared displacement statistical test for fractional Brownian

motion. Phys. Rev. E 2017, 95, 032110. [CrossRef]
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