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A B S T R A C T   

Background: Sub-Saharan Africa (SSA) has one of the highest prevalence of malnutrition among 
children under 5 in the world. It is also the region most vulnerable to the adverse effect of climate 
change, and the one that records the most armed conflicts. The chains of causality suggested in 
the literature on the relationship between climate change, armed conflict, and malnutrition have 
rarely been supported by empirical evidence for SSA countries. 
Methods: This study proposes to highlight, under the hypothesis of spatial non-stationarity, the 
influence of climatic variations and armed conflicts on malnutrition in children under 5 in 
Ethiopia, Kenya, and Nigeria. To do this, we use spatial analysis on data from Demographic and 
Health Surveys (DHS), Uppsala Conflict Data Program Georeferenced Event Dataset (UCDP GED), 
Climate Hazards center InfraRed Precipitation with Station data (CHIRPS) and Moderate Reso-
lution Imaging Spectroradiometer (MODIS). 
Results: The results show that there is a spatial autocorrelation of malnutrition measured by the 
prevalence of underweight children in the three countries. Also, local geographically weighted 
analysis shows that armed conflict, temperature and rainfall are positively associated with the 
prevalence of underweight children in localities of Somali in Ethiopia, Mandera and Turkana of 
Wajir in Kenya, Borno and Yobe in Nigeria. 
Conclusion: In conclusion, the results of our spatial analysis support the implementation of 
conflict-sensitive climate change adaptation strategies.   

1. Introduction 

Malnutrition is a major public health problem in Sub-Saharan Africa [1]. It mainly refers to chronic malnutrition (i.e., wasting, 
being underweight and stunting), and being overweight or obese. People with malnutrition exhibit a decrease in physical and mental 
functions, and sometimes it leads to impaired clinical outcome of a disease [2]. In addition, in adulthood, malnourished children will 
have low work capacity and lower productivity [3,4]. Estimates by the Food and Agricultural Organization (FAO) revealed that in 
2020, about 37 % of children in SSA were stunted, 6.7 % suffered from wasting and 5.7 % were overweight [5]. 
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Among the factors that determine the nutritional status of children in SSA, climatic conditions and armed conflicts are regularly 
cited as the main causes of famine crises characterized by peaks in the prevalence of malnutrition [6,7]. Indeed, according to the 
Intergovernmental Panel on Climate Change (IPCC), SSA is the region of the world most vulnerable to the effects of climate change and 
will experience an increase in the frequency and intensity of precipitation and severe episodic droughts (IPCC, 2014). At the same time, 
it is the region most affected by armed conflicts since the end of the Cold War [8]. The interaction between increasingly prolonged 
drought episodes and armed conflicts contribute to further intensify the threats to food security in the region, leading to a decrease in 
the availability of food resources [9]. 

Considerable progress has been made in understanding how climate change can generate or interact with conflict, and ultimately 
affect health outcomes such as nutrition. In regions where natural resources (water, food and land) are scarce, the consequences of 
climate change such as drought and desertification could intensify competition for these resources, leading to conflict between 
communities [10]. These conflicts lead to a decline in agricultural production as crops and livestock are looted [28,29], and limit 
people’s access to markets and health care, increasing the risk of malnutrition [30]. For example, the Lake Chad basin, characterized by 
diminishing water resources (its surface area has shrunk from 25,000 km2 to 2000 km2 in 40 years) due to global warming [11], is 
experiencing an explosion of security crises (Jihadi upsurge: boko Haram and Islamic State) and pastoral violence due to competition 
for reduced resources [12], which have contributed to worsening food insecurity in the zone [32]. 

A closer review of the literature reveals that the mediating effect of climate change in the relationship between conflict and 
malnutrition would disappear if a number of socio-economic and institutional conditions (high dependence on agricultural incomes, 
inability to mitigate the negative effects of climate change, pre-existing tensions and conflicts) were not met [11]. Moreover, whether 
this mediating effect of climate change exists or not, it can influence the nutritional status of children by affecting the quality and 
quantity of food crops such as wheat, barley, rice and sorghum [12], the main staple foods in sub-Saharan African countries. Some 
researchers have shown that climate change is likely to adversely affect the production of more than 30 % of farmers in developing 
countries (IPCC, 2014). Similarly, Yordanov et al. [13]; Barnabás et al. [14] have noted that drought leads to a substantial drop in crop 
yields due to its negative effects on plant growth, physiology and reproduction. 

In addition, several publications highlight that climate change has a direct impact on health outcomes [12–17]. Indeed, extreme 
weather events, sea-level rise and climate variations impact food production systems and water resources [18], as well as the rates of 
spread and transmission of vector-borne, foodborne and waterborne diseases [19,20]. Exposure to extreme heat are associated with 
increased emergency room visits, increased deaths from cardiorespiratory disease, and adverse pregnancy and childbirth outcomes 
[15]. During flooding and sea level rise, water can be contaminated with environmental pathogens such as Campylobacter spp., 

Fig. 1. Distribution of the prevalence of malnutrition and armed conflicts between 2010 and 2020. 
Source: Authors based on DHS and UCDP data. 
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Salmonella spp. and Shigella spp that cause diarrheal disease in children and result in malnutrition [16]. Xu et al. [17], Asmall et al. 
[18] show that in Ethiopia and Kenya, children under 5 years born during a drought were more likely to be underweight than those 
born in non-drought years. 

Previous research has strongly focused on modeling the effects of climatic conditions or armed conflict on malnutrition over space 
and time [19–21], paying less attention to the situation where conflict and climate extremes events occur at the same time, particularly 
in SSA countries. Moreover, among the studies identified [22], none considered the spatial dependence of the observations and the 
spatial non-stationarity of the postulated relationships between climate change, conflict and malnutrition in their methodological 
approaches. In other words, the results of these studies assume that the effect of climate variables armed conflicts on malnutrition is 
identical or stationary throughout the study area. This assumption of stationarity is debatable. Cockx and Canters [23], Stewart 
Fotheringham et al. [24] show that based on this, a large amount of spatial information is lost as the relationships examined can exhibit 
significant spatial variation. Several studies have not only shown that malnutrition is characterized by a spatial dependence of ob-
servations [25–28], but also that armed conflicts [29,30] and climate change [31–33] in a locality have spillover effects on neighboring 
regions in SSA. Thus, taking into consideration the hypothesis of stationarity of the effects in the whole study area seems to us of little 
relevance. This research aims to highlight, under the hypothesis of spatial non-stationarity, the influence of climatic variations and 
armed conflicts on malnutrition among children under 5 in Ethiopia, Kenya and Nigeria. To do this, we use spatial analysis through 
Local Indicator of Spatial Analysis (LISA) and global (Spatial Error Model and Spatial Lag Model) and local spatial regression 
(Geographically Weighted Regression) models. This analysis uses voronoï polygon method on Demography Health Survey (DHS) 
spatial databases of countries considered in order to generate geographical areas from GPS coordinates of each cluster. Voronoï 
polygons are used to analyse spatial distribution of data by generating polygon layers from point layers. This study also uses geolocated 
conflict data from Uppsala Conflict Data Program (UCDP), and climate data from Climate Hazard center InfraRed Precipitation with 
Station data (CHIRPS) and Moderate Resolution Imaging Spectro radiometer (MODIS). 

The countries chosen in our study are among those most exposed to armed conflicts within the period 2010 to 2020 as shown in 
Fig. 1. During this period, for instance, Nigeria experienced a series of conflicts in the North-east, more specifically in the Borno and 
Yobe regions following the insurrection of the Islamist sect Boko Haram [34]. The country has also had to deal with other conflicts, one 
of the deadliest of which is associated with the Fulani militia. Regarding Ethiopia, the periods from 1961 to 1991 and 1998–2000 
marked the period of conflicts at the borders between Eritrea and Ethiopia that resulted in more than 80,000 deaths [35]. In recent 
decades, there has been a resurgence of conflict between the Ethiopian government supported by Eritrea and the Tigray Liberation 
Front (LFT). Meanwhile, Kenya has experienced intra-state conflicts related to natural resources, ethnicity (particularly in the Rift 
Valley), and land which have sometimes claimed many lives [36]. Most of Kenya’s elections have been preceded by electoral violence 
(1997, 2002, 2007, 2013 and 2017) which took the form of armed conflicts [37]. 

In addition, each of these countries has a food system that is significantly dependent on local rain-fed crops [38–40] and faces 
persistent malnutrition as shown in Fig. 1. In Kenya, during the 2004–2006 and 2008–2009 and 2013 droughts, annual agricultural 
growth declined by over 6 % [40]. In Ethiopia, the spatial and temporal variability of rainfall has increased. The duration of the rainy 
season(s) is decreasing, while the temperature (maximum, minimum, average) is increasing [41], severely affecting the crop and 
livestock sectors and resulting in food insecurity [42]. Several studies in Nigeria [38,43] have shown that climate change has a 
negative impact on agricultural production of rice and cocoa. 

2. Materials and methods 

2.1. Data 

This study uses data from the UCDP Georeferenced Event Dataset (UCDP GED) Global version 21.1 (available from: https://ucdp. 
uu.se/downloads/), the Demographic and Health Surveys (DHS) of Ethiopia (DHS-2016), Kenya (DHS-2014) and Nigeria (DHS-2013) 
and GPS data from each DHS (available from: https://dhsprogram.com/data/available-datasets.cfm), the Climate Hazards center 
InfraRed Precipitation with Station data (CHIRPS), the CHIRTS max (available from: https://www.chc.ucsb.edu/data) and the 
Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices (MOD13A3) Version 6 (available from: https://lpdaac. 
usgs.gov/products/mod13a3v006/.) 

The UCDP GED 21.1 database that results from a joint project between the Uppsala Conflict Data Program (UCDP) of Uppsala 
University and the Center for Civil War Studies of the International Peace Research Institute of Oslo (PRIO), provides geolocated data 
on conflicts around the world [32,44]. As for DHS, they provide data relating to population, health and nutrition. In addition, they 
provide information on the Global Positioning System (GPS) of clusters, i.e., longitude (in decimal degrees up to, at least, 6 decimal 
places), latitude (in decimal degrees up to, at least, 6 decimals) and the altitude (in meters). The geolocation of each cluster is carried 
out during the enumeration phase. To protect respondent’s confidentiality, the locations of each cluster have been moved from their 
actual location by 2 km (for urban points) and 10 km (for rural points). DHS data has the advantage of being comparable across 
countries and are freely accessible. The geographic areas (polygon layers) derived from the voronoï polygon method were generated 
around the coordinates of each DHS cluster (point layers), so that sampled households belonging to a cluster were included in the 
corresponding polygon. 

The Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS) provides near-global rainfall data over a period of 
30 years. CHIRPS and CHIRTSmax data were developed by United State Geological Survey (USGS) scientists in collaboration with the 
Climate Hazards Group at the University of California, Santa Barbara. The first provides satellite images at a resolution of 0.05◦ of the 
precipitation grid around the world [45], while the second produces data on maximum temperature. CHIRPS and CHIRTS max data are 
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quite accurate and efficient in assessing climatic conditions in Africa [46]. Moreover, Funk et al. [45]showed using spatial R 2 values, 
mean bias errors (MBE) and mean absolute errors (MAE) that climatological information from CHIRPS is consistently better than that 
from national meteorological agencies, the Climatological Research Unit (CRU), and the Worldclim. This is based on a sample of the 
following countries: Afghanistan, Colombia, Ethiopia, Mexico, Senegal, Burkina Faso, Mali, Niger and Chad. The MOD13A3 Version 6 
database provides monthly information on NDVI indicator (Normalized Difference Vegetation Index) with a spatial resolution of 1 km. 

The final database was obtained after several steps. First, the GPS data of each DHS cluster (point layer) were merged with the 
corresponding DHS survey data for each of the countries considered from the Stata14 software using the command “merge 1:1″ and the 
“dhs_clust” variable as the key to merge the files. Then, the climatic (temperature and precipitation) and vegetation (NDVI) data for 
each DHS-cluster (point layer) were extracted from the CHIRPS, CHIRTSmax and MOD13A3 raster databases and joined to the 
attribute table of these DHS-cluster using the “Point Sampling Tool” of the QGIS software. Finally, after applying the voronoï polygon 
method to each DHS cluster (point layer), the conflict data (point layer) from the UCDP databases were joined to each DHS voronoï 
polygon using the QGIS spatial join tool “Join by Location". 

2.2. Dependent variable 

The concept of malnutrition is subdivided into three categories: stunting, wasting and underweight. Each category is operation-
alized through appropriate anthropometric measurements. In this study, malnutrition was measured by moderate underweight. The 
measurement of the latter is based on the weight-for-age index. It is severe when the weight-for-age z-score is less than − 3 standard 
deviations, below the average of WHO 2006 Child Growth Standards. Whereas it is moderate if the weight-for-age z-score is less than 
− 2 standard deviations. Thus, by cluster DHS we calculated the prevalence of moderate underweight in children under 5. 

2.3. Independent variables 

2.3.1. Armed conflicts and climatic variables 
According to UCDP, armed conflict is a situation of incompatibility that results in at least 25 battle-related deaths per year in a 

specific country. It decomposes in three dimensions: inter- or intra-state armed conflict, non-state conflict and unilateral violence [47]. 
Although there is no specific time period between exposure to conflict and health outcomes for children in the literature, some re-
searchers consider conflicts that take place in the last 3–12 months or the most recent month prior to the survey [22,48]. Building on 
the work of Grace et al. [22], we select conflicts that occurred in the last 3–6 months prior to the start of DHS data collection for 
Ethiopia (2016) i.e., January 18, 2016 [49], Kenya (2014) i.e., May 7, 2014 [50] and Nigeria (2013) i.e., February 15, 2013 [51]. In 
this study, the armed conflict variable takes the value 1 for areas in conflict and 0 for areas in peace. Climatic variables such as monthly 
rainfalls and maximum monthly temperatures respectively from the CHIRPS and CHIRTSmax databases are extracted three months 
before the collection of DHS data on the nutritional status of children in the three countries included in this study. The main reason for 
this three-month lag is based on the work of Grace et al. [22], Randell et al. [52] who show that it takes about three months to feel the 
effects of climatic conditions on nutritional status. 

2.3.2. Other explanatory variables 
Several control variables are introduced in this study. Among these, we have the Normalized Difference Vegetation Index (NDVI) 

from the MOD13A3 version 6 data, which is a spectral indicator of plant biomass that is commonly used to measure agricultural 
drought conditions [53,54]. It varies between − 1.0 and +1.0, and measures the relative abundance and spatial distribution of 
vegetation, positive values indicating increased vegetation and negative values indicating features which are not vegetated, such as 
urban areas, bare soil/land, water and ice [55]. More specifically, moderate values between 0.2 and 0.3 represent shrubs and 
grasslands, while high values between 0.6 and 0.8 indicate temperate and tropical rainforests. NDVI values close to 0 represent bare 
soil and negative values, water bodies. Many researchers uses this index as an indicator of the impact of climate variability on food 
availability to explain the nutrition outcomes of children [22,56,57]. Also, we use the proportion of poor households in each DHS 
cluster. Siddiqui et al. [58] show that the prevalence of malnutrition is higher in poor areas. Poverty is characterized by unstable 
financial conditions that hamper the ability of households to access safe, sufficient and nutritious food [59]. 

We also have the proportion of households using unimproved water sources in each DHS cluster. Indeed, the most direct link 
between unsanitary water use and malnutrition is the occurrence of episodic diarrhea [60]. Kemajou [61] shows that access to un-
improved water sources increases the prevalence of diarrhea in SSA. In addition, the proportion of women with secondary education 
and above, the proportion of working women and the proportion of non-breastfeeding women in each DHS cluster are other variables 
we use in this study. Regarding exclusive breastfeeding, it has been demonstrated that it provides newborns and young children with 
the nutrients necessary for their health. Thus, it reduces the negative effects of nutrition on cognitive development in early childhood 
[62,63]. 

2.4. Statistical analysis 

Spatial analysis using Geographic Information System (GIS) has been widely applied to health and epidemiology research in most 
SSA countries [21,22]. In this study, the voronoï polygon method was used on the GPS data (point layers) of each DHS cluster to 
generate geographic areas (polygon layers), instead of basing the analysis on administrative units or sub-administrative units of 
countries in our sample such as municipalities and provinces. This method is efficient in space allocation and partitioning [64]. 
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Furthermore, it makes it possible to take the disparities that exist within a fairly large geographical area such as regions and divisions 
[65]. Fig. 2 shows the geographical areas resulting from the application of the voronoï polygon method to GPS points representing the 
geographical location of the DHS clusters in each of the territories considered. This study thus uses spatial analysis on the geographical 
areas generated by this method with QGIS 3.8.1 software. Spatial analysis is based on bivariate Local Indicator of Spatial Association 
(LISA) analysis with Geoda software and on spatial regression models estimated with R 4.0.0 software using the spatialreg and spgwr 
libraries. 

2.5. Bivariate spatial association 

In order to highlight the nature of spatial association between malnutrition measured by prevalence of moderate underweight and 
climatic variables in conflict zones, we use the Local Indicator of Spatial Association (LISA) with two variables [66]. The latter enables 
the identification of spatial patterns, i.e., either the spatial association is positive between malnutrition and climatic variables 
(High-High, Low-Low), or the spatial association is negative (High-Low, Low -High). In this analysis, the significance of the LISA 
statistic is assessed at 1 % level. The formula for the bivariate LISA statistic is defined as follows: 

IB =

∑

i

∑

j
wijyj ∗ xi

∑

i
x2

i
(1) 

In equation (1), yj, xi are the centered and reduced observations of two variables located in i and j; wij are weights that measure the 
neighborhood structure between the spatial units. The choice of the specification of the neighborhood matrix W= (wij)1≤i≤n,1≤j≤p is a 
crucial step in spatial analysis models [67]. The approaches commonly used to model neighborhood structure rely on the contiguity of 

Fig. 2. DHS clusters in Ethiopia, Kenya and Nigeria based on the voronoï polygon method.  
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Rook, Bishop and Queen, K-nearest neighbors and the distance [66,68]. In this study, the notion of distance was used to determine the 
neighborhood matrix. 

The interpretation of the Lisa bivariate analysis is based on the analysis of the significance map and the cluster map. The first map 
shows the locations where the local statistic is significant, the degree of significance increases as you move towards darker shades of 
green. The map starts with P < 0.05 and shows all the categories of significance that are meaningful for the given number of per-
mutations. P is the pseudo p-value given by P = R+1

M+1 where R is the number of times the computed Moran’s I from the permuted data 
sets and M represent the number of permutations. In our study, since there were 999 permutations, the smallest pseudo-P-value is 
0.001, with four such locations (the darkest shade of green). The cluster map with reference to the significance map gives the sig-
nificant locations where the spatial association between two variables can be positive (High-high and Low-low) or negative (High-low 
and Low-high). 

2.6. Spatial regression models 

To consider the spatial autocorrelation or spatial dependence of the observations when it exists, we use two models: global spatial 
regressions (LAG and SEM model) and local spatial regressions (Geographically Weighted Regression [GWR]). In the global model, 
when the spatial structure depends on the residuals the appropriate model is the Spatial Error Model (SEM), and when this structure is 
present in the dependent variable, the Spatial Lag Model (LAG) is most suitable. The estimated coefficients from these two models do 
not vary in space. In contrast, the GWR estimates coefficients that vary across geographic areas. In other words, the influence of an 
explanatory variable on the dependent variable varies from one place to another [69,70]. The idea behind the GWR method is that 
parameters can be estimated at any locations in the study area (here for each DHS voronoi polygon), from a dependent variable and a 
set of one or more independent variables. Thus, it could be that a globally non-significant variable in a study area is locally significant 
in the sub-units that constitute it [71]. 

2.6.1. Spatial lag model 
One way to introduce spatial autocorrelation into regression models is to introduce either a lagged endogenous variable Wy or one 

or more lagged exogenous variables WZ into the classical Ordinary Least Squares (OLS) model. This gives the following formulations: 

y= ρWy + Xβ + ε (2)  

y=Xβ + WZδ + ε (3) 

In equations (2) and (3), W is the weight matrix, Wy is the lagged dependent variable, ρ is the autoregressive spatial parameter that 
measures the intensity of the spatial interaction between observations y. The interpretation of the results of the LAG model is based on 
the calculation of the direct, the indirect and the total effects [68,72]. The direct effect measures the average effect of an increase of one 
unit of the independent variable on the dependent variable in the same locality. While the indirect effect measures the average effect of 
a one-unit increase in the independent variable in neighboring localities j on the dependent variable in the locality i(i∕= j). 

2.6.2. Spatial error model 
To specify the spatial autocorrelation, we also use an autoregressive error process: 

y=Xβ + ε (4) 

The ε term in equation (4) is decomposed as follows: 

ε= μWε + u (5) 

The parameter μ in equation (5) determines the intensity of the interdependence between the residuals. u ∼ N(0, σ2I) is the error 
term and σ2 the variance of the error term. Wrongly omitting a spatial autocorrelation of errors produces unbiased and inefficient 
estimators [66,68]. 

2.6.3. GWR model 
GWR is a spatial regression method that examines non-stationary spatial relationships, that is, the fact that the influence of an 

explanatory variable on the dependent variable may across geographical areas [24,73,74]. These are represented by the voronoï 
polygons associated with each DHS cluster. The GWR is used to identify localities in which climatic variables and armed conflicts 
influence the prevalence of malnutrition. The GWR is given as follows: 

yj = β0
(
uj, vj

)
+

∑
βi
(
uj, vj

)
xij + ϵj (6) 

In equation (6), (uj, vj) is the coordinates of the jth position; yj and xij are the dependent and independent variables respectively. 
β0(uj, vj) and βi(uj, vj) are the regression coefficients; ϵj is the error term. In this study, we use the coordinates of the DHS clusters of each 
region of the countries considered. The weights are obtained on the basis of a spatial Kernel function, in particular Gauss kernel 
function. We also use the CV (Cross Validation) method, widely used in the literature to determine the optimal kernel bandwidth 
[75–77]. 
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2.7. Evaluation of models 

Multicollinearity is assessed using the variance inflation factor (VIF). The presence of multicollinearity is indicated if the VIF values 
are greater than 5 in the OLS model. For model evaluation and comparison, likelihood ratio (LR) tests are performed to compare 
models. Also, to make the choice between the spatial error model (SEM model) and the spatial lag model (LAG model), the Lagrange 
multiplier (LM) test is used [78]. In addition, Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) are used 
to compare the results of Ordinary Least Squares (OLS) and spatial regression models. 

3. Results 

This section presents the results of the paper. First, descriptive spatial analysis is presented to characterize the nature of the 
bivariate spatial association (negative or positive) between climate variables and prevalence of moderate underweight in conflict areas 
in Ethiopia, Kenya and Nigeria. Then, the results of the spatial regression models will be presented. 

3.1. Results of bivariate LISA analysis 

3.1.1. Ethiopia 
There is a negative and significant spatial association (High-Low) between the prevalence of moderate underweight and average 

rainfall, and between prevalence of underweight and NDVI index in localities (Shabelle, Korahe, and Afder in Somali Region, and 
Semen Gondar in Amhara Region, and Mi’irabawi in Tigray Region) subject to intra-state conflict between the Ethiopian government 
and the Ogaden National Liberation Front (ONLF) group (Fig. 3). Moreover, there is a negative and significant spatial association (Low- 

Fig. 3. LISA bivariate spatial association (a-b) and areas of significance (d-f) in Ethiopia in 2016. ● Areas of armed conflict; Pred_und = prevalence 
of underweight; mean temp = mean temperature; mean_rain = mean rainfall; ndvi = normalize difference vegetation index. 
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High) between the prevalence of moderate underweight and the maximum temperature in the localities of Jarar, Doo and Fafan. The 
latter are also subject to conflicts between the government and the ONLF group. 

3.1.2. Kenya 
There is a negative and significant spatial association between the prevalence of moderate underweight and average rainfall (High- 

Low), and a positive and significant spatial association between the prevalence of moderate underweight and maximum temperatures 
(High-High) in localities in the North-eastern that are subject to violence between the Degodia and Garre clans (Mandera, Banissa, Fafi, 
Ijara, Wajir, Tarjab), and in Coast, Central, Nyanza and Rift Valley localities subject to violence between Dassanetch-Turkana, Borona- 
Burji, Borona-Gabra herders and the government of Kenya and Al Shabaab (Fig. 4). In addition, Fig. 4 shows that there is a negative and 
significant spatial association between the prevalence of moderate underweight and the NDVI index in some localities in the Northeast, 
the Rift Valley and the Coast. 

3.1.3. Nigeria 
In Borno, Yobe, Kano, Sokoto, Delta, Edo, Ogun, Cross River, and Akwa Ibom states where conflicts emerged in 2013 between the 

Nigerian government and the Jama’atuAhlus-Sunna Lidda’AwatiWal Jihad (Boko Haram), Deebam and Deewell cults, and the Black 
Axe and Eiye sects [79], there is a negative and significant spatial association (High-Low and Low-High) between underweight 
prevalence and average rainfall (Fig. 5). Fig. 5 also shows a negative and significant spatial association between the prevalence of 
moderate underweight and the NDVI index which, beyond the states mentioned above, extends to the states of Kebi, Bauchi 
(High-Low), Benue and Kwara (Low-High). In addition, there is a positive and significant spatial association (High-high and 

Fig. 4. LISA bivariate spatial association (a-b) and areas of significance (d-f) in Kenya in 2014. ● Areas of armed conflict; pred_und = prevalence of 
underweight; mean temp = mean temperature; mean_rain = mean rainfall; ndvi = normalize difference vegetation index. 
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Lower-Lower) between the prevalence of moderate underweight and maximum temperatures in the states of Borno, Yobe, Kano, 
Sokoto, the states of the Delta, of Edo, of Ogun, of Cross River and of Akwa Ibom. 

3.2. Results of spatial regression models 

The results presented in Table 1 show the existence of a positive spatial autocorrelation in the analysis of malnutrition in the three 
countries (Moran’s I for Ethiopia: 0.19, Kenya: 0.27 and Nigeria 0.53). Also, according to Table 2 the LAG model is better than MCO 
model in Ethiopia (AIC Lag: 4967.12 < AIC Mco: 4987.1), Kenya (AIC Lag: 7217.4 < AIC Mco: 7233.4) and Nigeria (AIC Lag: 6494.4 <
AIC Mco: 6501.5). It appears that the Rho parameter, which measures the spatial dependence, is statistically significant at the 5 % level 
for the three countries. The VIF value of the explanatory variables is below the threshold of 5, which reflects the absence of 
multicollinearity. 

Fig. 5. LISA bivariate spatial association (a-b) and areas of significance (d-f) in Nigeria in 2013. ● Areas of armed conflict; Pred_und = prevalence 
of underweight; mean temp = mean temperature; mean_rain = mean rainfall; ndvi = normalize difference vegetation index. 

Table 1 
Results of Moran’s I autocorrelation test and Lagrange multiplier tests.   

Ethiopia Kenya Nigeria 

Tests Value p-value value p-value Value p-value 
Moran I 0.19 2.2e-16 0.27 2.2e-16 0.53 2.2e-16 
LMerr 25.67 4.051e-07 17.908 2.318e-05 639.67 2.2e-16 
RLMerr 1.1296 0.2879 4.9037 0.0268 166.64 2.2e-16 
LMlag 34.67 3.905e-09 62.011 3.442e-15 577.07 2.2e-16 
RLMlag 10.13 0.001459 49.006 2.551e-12 104.04 2.2e-16  
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Table 2 
Results of estimation using the OLS, SEM and LAG in Ethiopia, Kenya and Nigeria.   

Ethiopia Kenya Nigeria  

VIF OLS SEM LAG VIF OLS SEM LAG VIF OLS SEM LAG 

max temp 1.602 − 0.032 − 0.058 − 0.098 1.681 − 0.132 0.029 − 0.107 4.832 − 0.411 1.394*** 0.162   
(0.072) (0.092) (0.071)  (0.111) (0.151) (0.108)  (0.340) (0.438) (0.302) 

mean rain 1.802 − 0.058 − 0.086 − 0.038 1.831 − 0.072*** − 0.066*** − 0.047*** 3.863 − 0.066*** 0.014 0.004   
(0.062) (0.081) (0.061)  (0.014) (0.018) (0.014)  (0.012) (0.019) (0.010) 

NDVI 2.093 − 6.415** − 3.482 − 3.284 1.565 0.686 3.818 2.590 1.971 − 11.659*** 1.564 0.353   
(2.879) (3.337) (2.842)  (2.966) (3.138) (2.881)  (2.332) (2.408) (2.058) 

Conflict 1.079 5.564** 2.827 4.000* 1.035 − 3.026** 0.008 − 0.542 1.088 3.711** 0.998 1.111   
(2.273) (2.237) (2.209)  (1.360) (1.487) (1.339)  (1.529) (1.382) (1.341) 

Water 1.558 0.006 0.001 − 0.0001 1.749 0.025** 0.021* 0.024* 1.833 0.015 0.019* 0.020*   
(0.021) (0.020) (0.020)  (0.012) (0.012) (0.012)  (0.013) (0.012) (0.011) 

Poor 1.924 0.149*** 0.153*** 0.145*** 2.597 0.103*** 0.088*** 0.085*** 3.566 − 0.004 − 0.018 − 0.023   
(0.022) (0.022) (0.022)  (0.013) (0.014) (0.013)  (0.017) (0.016) (0.015) 

Work of women 1.819 0.015 0.016 0.013 1.209 − 0.047* − 0.044* − 0.039* 1.409 0.032 0.031 0.036**   
(0.022) (0.022) (0.021)  (0.024) (0.024) (0.024)  (0.021) (0.020) (0.018) 

time water 1.475 0.034 0.022 0.022 1.572 0.036** 0.037** 0.033* 1.161 0.036** 0.051*** 0.040**   
(0.025) (0.025) (0.024)  (0.018) (0.018) (0.017)  (0.018) (0.017) (0.016) 

no_breastfeeding 1.033 − 0.063* − 0.036 − 0.044 1.107 − 0.013 − 0.069 − 0.052 1.219 − 0.113*** − 0.070** − 0.084**   
(0.035) (0.035) (0.034)  (0.098) (0.097) (0.095)  (0.040) (0.035) (0.035) 

Unsanitary 1.237 0.089*** 0.068*** 0.064*** 1.536 − 0.022* − 0.017 − 0.019 1.209 0.022 − 0.007 − 0.010   
(0.019) (0.021) (0.019)  (0.012) (0.012) (0.011)  (0.016) (0.016) (0.014) 

second et plus 1.924 − 0.091*** − 0.079*** − 0.074*** 1.809 − 0.004 0.017 0.014 3.858 − 0.138*** − 0.077*** − 0.077***   
(0.024) (0.025) (0.024)  (0.025) (0.025) (0.025)  (0.022) (0.021) (0.019) 

Observations  622 622 622  950 950 950  889 889 889 
AIC  4987.1 4970.2 4967.12  7233.4 7217.4 7198.2  6707.4 6494.4 6501.5 
Rho    0.429***    0.293***    0.827*** 

Note: *p < 0.1; **p < 0.05; ***p < 0.01; standard error are given in the brackets. Water: proportion of households using unimproved water sources in each dhs cluster, poor: proportion of poor households 
in each dhs cluster, work of women: proportion of working women, no breastfeeding: proportion of non-breastfeeding women in each dhs cluster, unsanitary: proportion of households using unimproved 
water sources in each DHS cluster, proportion second & plus: proportion of women with secondary education and above. 
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3.2.1. Ethiopia 
According to Table 2, the LAG model shows that there is no significant association between average rainfall, maximum temper-

atures, armed conflicts and the NDVI index and prevalence of moderate underweight. In contrast, the proportion of poor households 

Table 3 
Results of the estimation of the direct and indirect effects of the LAG model.   

Ethiopia  Kenya  Nigeria   

Direct Indirect Total Direct Indirect Total Direct Indirect Total 
max temp − 0.098 − 0.053 − 0.152 − 0.107 − 0.079 − 0.187 0.168 0.773 0.941 
mean rain − 0.038 − 0.020 − 0.058 − 0.047 − 0.035 − 0.082 0.004 0.017 0.021 
NDVI − 3.306 − 1.783 − 5.088 2.609 1.933 4.542 0.365 1.679 2.044 
Conflict 4.028 2.172 6.199 − 0.546 − 0.404 − 0.951 1.151 5.288 6.439 
Water 0.146 0.079 0.225 0.024 0.017 0.042 0.021 0.096 0.116 
Poor − 0.0001 − 0.000 − 0.000 0.085 0.063 0.149 − 0.023 − 0.107 − 0.130 
Work of women 0.013 0.007 0.020 − 0.039 − 0.029 − 0.069 0.037 0.171 0.208 
time water 0.022 0.001 0.034 0.033 0.024 0.057 0.041 0.189 0.231 
No breastfeed − 0.045 − 0.022 − 0.069 − 0.052 − 0.039 − 0.091 − 0.087 − 0.402 − 0.488 
Unsanitary 0.064 0.034 0.099 − 0.019 − 0.014 − 0.032 − 0.011 − 0.049 − 0.060 
second_&_plus − 0.075 − 0.040 − 0.115 0.013 0.010 0.024 − 0.080 − 0.369 − 0.449 

Note: Water: proportion of households using unimproved water sources in each dhs cluster, poor: proportion of poor households in each dhs cluster 
work of women: proportion of working women, no breastfeeding: proportion of non-breastfeeding women in each dhs cluster, unsanitary: proportion 
of households using unimproved water sources in each DHS cluster, proportion second & plus: proportion of women with secondary education and 
above. 

Fig. 6. GWR coefficients (a–d) and areas of significance (e–h) in Ethiopia.  
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and the proportion of households using unimproved toilet facilities are negatively associated with the prevalence of moderate un-
derweight, while the association between the proportion of women with secondary education is negative and significant. For sig-
nificant variables, Table 3 shows that the effect of a 1-point increase in the proportion of households using unimproved toilet facilities 
and the proportion of women with secondary education and above in a locality leads respectively to an increase and a reduction in the 
prevalence of moderate underweight of 6.4 and 7 points (direct effect) in that locality. 

Contrary to the results of the global LAG model, the local GWR analysis of Fig. 6 shows that there are a positive and significant 
association between maximum temperatures, the presence of armed conflicts and the prevalence of moderate underweight in the 
localities of the Somali region, in particular of Afder, Liben and Shabelle. In the same line, an increase in average rainfall leads to an 
increase in the prevalence of moderate underweight in the localities of Jijiga, Dire Dawa, Bircot and DegehBur in the Somali region. 
Similarly, the increase in the density of vegetation (NDVI) leads to a more pronounced drop in the prevalence of malnutrition in 
Kelemwellega, Mirabwellega, Asosa and Nuer, localities located in the regions of Oromia and Benshangul -gumaz. 

3.2.2. Kenya 
For Kenya, the LAG model results included in Table 2 show that the maximum temperatures, armed conflicts, the proportion of 

working women, the proportion of women with secondary education and above and the NDVI index are not significant. On the other 
hand, the relationship between the prevalence of moderate underweight and average rainfall is negative and significant, and positive 
and significant with the proportion of the poor. The direct and indirect effects summarized in Table 3 show that the effect of a 1 mm 
increase in average rainfall in a locality leads to a decrease in the prevalence of underweight in that locality by 4.7. Furthermore, a one- 
point increase in the proportion of poor people in a locality increases the prevalence of moderate underweight in that locality by 8 
points (direct effect). On the other hand, the prevalence of moderate underweight in a locality increases by 6.3 points when the 
proportion of poor households increases in neighboring localities. 

The local GWR model shows that the presence of conflicts increases the prevalence of moderate underweight in the localities of 
Ijara, Garissa Township and Dadab located in the Garissa region (Fig. 7). In addition, higher average rainfall is associated with lower 
prevalence of moderate underweight in Marsabit, Samburu, Turkana de Wajir and Mandera regions. This negative association being 
stronger in the region of Mandera. Also, higher maximum temperatures are positively associated with the prevalence of underweight 
under 5s in the Kwale, Taveta, Kilifi and Tana River regions. 

Fig. 6. (continued). 
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3.2.3. Nigéria 
The results of the LAG model for Nigeria (Table 2) show that mean rainfall, maximum temperature and conflict are not statistically 

associated with the prevalence of moderate underweight, except for the proportion of households using unimproved water sources and 
the proportion of women with secondary education. According to Table 3, the effect of a 1-point increase in the proportion of 
households that use unimproved water sources in a locality leads to an increase in the prevalence of moderate underweight by 4 points 
(direct effect). On the other hand, the direct effect of an increase in the proportion of women with secondary education and above on 
underweight is negative (− 0.08). It also emerges from this table that the neighborhood effects (indirect effects) are higher than the 
direct effects. 

The local GWR analysis for Nigeria (Fig. 8) shows that higher average rainfall is negatively associated with the prevalence of 
moderate underweight in the states of Zamfara, Katsina, Kaduna, Jugawa, Kano, Bauchi and Gombe. This association is even more 
pronounced in Yobe and Borno states. In addition, Fig. 8 shows that association between the density of vegetation (NDVI) and the 
prevalence of moderate underweight is significant and negative. The latter is greater in Borno and Yobe states than in Niger and 
Kaduna states in Nigeria. Moreover, the presence of armed conflicts is still not statistically significant. 

4. Discussion and conclusion 

This study examines spatial patterns and estimates under the assumption of spatial non-stationarity, the influence of armed con-
flicts and climatic variables (temperature and precipitation) on malnutrition measure by prevalence of moderate underweight among 
children under 5 in Ethiopia, Kenya and Nigeria. The spatial analysis carried out here highlights the existence of spatial autocorrelation 
of malnutrition in the three countries considered. Also, while the spatial LAG and SEM models indicate that the effect of conflict, 
average rainfall and maximum temperature on malnutrition may be globally insignificant, the GWR model shows locally significant 
effects. 

The results from the estimation of the LAG model show that the relationship between armed conflicts and the prevalence of 
moderately underweight under 5s is not significant in Ethiopia, Kenya and Nigeria. This result is in line with the results of Grace et al. 

Fig. 7. GWR coefficients (a–d) and areas of significance (e–h) in Kenya.  

D. Kemajou Njatang et al.                                                                                                                                                                                           



Heliyon 9 (2023) e21672

14

[22] and is contrary to those obtained by Minoiu and Shemyakina [80] and Dahab et al. [21]. However, according to the results of the 
local GWR analysis, it appears that armed conflicts have a positive and significant influence on the prevalence of underweight under 5s 
in the localities of Afder, Liben and Shabelle of the Somali region of Ethiopia, and of Ijara, Garissa township and Dabaab in the Garissa 
region of Kenya. In recent years, Garissa and Somali regions have recorded a significant number of unresolved intra-clan conflicts and 
attacks by Al-Shabaab militias in Kenya and ONLF in Ethiopia [35,36] with negative consequences on the food supply chain, a 
determinant of malnutrition [19,20]. 

The results on the absence of association between conflict and malnutrition in Nigeria are contrary to those found by Makinde et al. 
[81]. However, they did not take into account the fact that there is a latent period between exposure to conflict and the first signs of 
malnutrition among children. This could have biased their results. Thus, the absence of an association between conflict and under-
weight children in Nigeria could be explained by the fact that populations, especially women, in the context of war have adopted food 
survival strategies inherited from past conflicts such as the Biafran war (1967–1970) to ensure that their offspring are well fed. Bonkat 
[82], Iwuagwu [83] have shown that during the Biafran war, the Igbo developed food survival strategies, especially by adapting to the 
consumption of several plants and animals hitherto unknown in their food habits such as termites, mushrooms, snails, crickets or 
locusts. Also, according to the same authors, lemon grass was harvested, boiled and sieved, and the drink consumed as tea, cold or hot 
according to preference, to alleviate famine. 

Food security and agricultural production in Ethiopia, Kenya and Nigeria, key determinants of malnutrition, are threatened by 
rising temperatures and changing rainfall patterns [46]. Our results show that higher average rainfall is associated with lower 
prevalence of moderately underweight under 5s in Marsabit, Samburu, Turkana, Wajir and Mandera regions in Kenya and Borno, Yobe, 
Kaduna, Jugawa, Kano, Bauchi, Gombe in Nigeria. The regions of Borno, Yobe and Mandera represent the areas where the negative 
effect of rainfall is most accentuated. These regions are characterized by their mainly rainfed agriculture based on the production of 
cereals, millet, sorghum and wheat, which constitute the means of subsistence of many families [84,85]. Reduced rainfall is likely to 
exacerbate malnutrition among children by directly reducing the availability of crop and animal production, and indirectly by limiting 
the income generated by pastoral households from agricultural activities [86]. In the Mandera region, Tawane et al. [87] showed that 
extreme climatic conditions caused food insecurity among pastoral communities. In contrast, in the case of Ethiopia, our results show a 
positive relationship between rainfall and the prevalence of malnutrition in the Somali region. 

Fig. 7. (continued). 
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Higher temperatures have an impact on children’s nutrition either by affecting the quantity and quality of food available in a given 
region and therefore on food prices and their access [88], or by increasing the risk of infectious diseases [46]. In SSA, higher tem-
peratures may be associated with a higher risk of diarrheal diseases, which may affect nutrition in children [61,89]. Our results show 
that the rise in temperatures leads to an increase in the prevalence of moderately underweight under 5s in some localities of the Somali 
region of Ethiopia, notably Afder, Liben and Shabelle, Kwale, Taveta, Kilifi and Tana River in Kenya. On the other hand, in Nigeria, the 
increase in maximum temperatures leads to a decrease of child malnutrition. On this point [46,90], note that warmer temperatures are 
positively associated with the presence of vegetation and should increase yields of certain crops. This suggests that these crops may 
have benefited from warmer temperatures, and therefore contributed to providing the household nutritional needs in Nigeria. 

The results also show that the increase in the density of vegetation (NDVI) leads to a decrease in the prevalence of moderate 
underweight in the localities of Oromia and Benshangul-gumaz regions in Ethiopia; and Borno, Yobe, Niger and Kaduna state in 
Nigeria. These results converge with those of Johnson and Brown [91], Bauer and Mburu [56], Mburu [56], Sandler and Sun [57], 
Grace et al. [22]. For example, Johnson and Brown [91] show that low NDVI values are associated with high rates of malnutrition 
(underweight and wasting) in children under five years in several West African countries. In the case of Nigeria, Arowolo et al. [92] 
showed through a spatiotemporal analysis that whereas cultivated land increased in all the states of the northern region, particularly 
Yobe and Borno, it decreased in the South. Thus, the explanation of our result is based on the increase in food availability reflecting the 
increase in the NDVI index, which would ultimately lead to a reduction in malnutrition. 

Several limitations can be attributed to this study. Firstly, to better understand the mechanisms by which climatic factors and 
armed conflicts affect nutritional status of children and food security, it is necessary to set up quantitative and qualitative surveys 
specific to the affected regions. Secondly, given that conflict and climate interact to determine the level of malnutrition, it would be 
important to introduce conflict-climate interaction variables into the non-spatial model. Thirdly, the use of grid (raster) data to 
measure the effect of extreme precipitation exposures has been shown to moderate the outcome estimates, suggesting that the asso-
ciations presented here may be underestimated. Fourthly, the GWR assumes that all modeled processes operate at the same spatial 
scale (fixed bandwidth). This assumption is limited. Future analysis could be extended by incorporating multiple imputation through 
Multi-scale Geographically Weighted Regression (MGWR). Finally, in terms of implications, our results support the need of conflict- 

Fig. 8. GWR coefficients (a–d) and areas of statistical significance (e–h) in Nigeria.  
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sensitive climate change adaptation measures adapted to each region. 
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