
1

Glaucoma is the world’s leading cause of irreversible 
blindness [1,2]. About 76 million people are affected by 
glaucoma [2], with approximately 11.2 million progressing 
to bilateral blindness [1]. There are several types of glaucoma 
each with distinct characteristics [3], but primary open-angle 
glaucoma (POAG) is the most prevalent and is estimated 
to account for 74% of all cases [4]. Latin America has the 
second-highest prevalence of POAG, second only to Africa 
[2].

POAG is a progressive multifactorial neurodegenerative 
disease that affects the optic nerve and leads to the loss of 
retinal ganglion cells (RGCs) and their axons (nerve fibers). 
This degeneration is characterized by structural changes 

in the optic nerve head (ONH) and corresponding visual 
field defects [1,3,5]. Treatment is performed by reducing 
intraocular pressure (IOP), which is the main risk factor in 
determining glaucomatous damage and the only parameter 
that can directly act as treatment [6,7]. In some patients, IOP 
control is not achieved with clinical treatment; therefore, 
antiglaucomatous surgery is indicated.

A strong genetic component is involved in the develop-
ment of POAG. Several studies have identified susceptibility 
loci for POAG. The first studies, performed by genetic 
linkage, identified genes with a monogenic pattern of inheri-
tance, such as MYOC, OPTN, and CYP1B1 [8–10]. Individuals 
with this form of inheritance usually develop the disease at 
an early age (<40 years) [11–14]. However, disease-causing 
variants in these genes are relatively rare in the population, 
accounting for only 5%–10% of all cases of POAG [12,15,16].

Most cases of POAG occur after the age of 40 and have a 
complex pattern of inheritance resulting from the interaction 
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Purpose: Glaucoma is the world’s leading cause of irreversible blindness, with primary open-angle glaucoma (POAG) 
being the most prevalent subtype. In recent years, there have been advances in knowledge about the genetics involved 
in POAG, but genetic studies in admixed populations, such as Brazilians, are still rare. This study aimed to evaluate the 
association of single nucleotide variants (SNV) of the ABCA1 (rs2472493) and GAS7 (rs9913911) genes with POAG in a 
sample of the Brazilian population. Furthermore, the study aimed to evaluate the relationship between these SNVs and 
the need for surgical intervention in glaucoma control.
Methods: A cross-sectional association study with 1,009 subjects (505 patients with POAG and 504 controls) was 
performed. Participants underwent a comprehensive ocular examination, including the need for surgical procedures for 
intraocular pressure control. Genotyping of SNVs was performed using the TaqMan genotyping assay.
Results: SNV rs9913911 of GAS7 was found to be associated with POAG in the presence of the risk allele A (p = 0.0004) 
and the AA genotype (p = 0.002). There was no association between SNV rs2472493 of ABCA1 for either the allele risk 
or genotypes. However, the combination of these variants showed an additive effect on the risk for POAG: ABCA1(GG) 
+ GAS7(AA; p = 0.02), ABCA1(GG) + GAS7(AG; p = 0.003), and ABCA1(AG) + GAS7(AG; p = 0.004). Also, POAG 
patients carrying the AA genotype of the GAS7 gene required antiglaucomatous surgery more frequently than those 
without the AA genotype (p = 0.01).
Conclusions: In a Brazilian population sample, there was an association identified between SNV rs9913911 (GAS7) and 
the risk of POAG, and an additive effect was found when GAS7 was combined with SNV rs2472493 (ABCA1). There was 
an association between SNV rs9913911 (GAS7) and the risk for antiglaucomatous surgery.
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of several genes and environmental factors [13,17–21]. In this 
form of polygenic inheritance, each single nucleotide variant 
(SNV) of different genes represents a minor effect on disease 
pathogenesis, and when combined, they significantly affect 
the clinical phenotype [11–13,17,18]. In recent years, more 
than 120 SNVs linked to POAG have been identified through 
genome-wide association studies (GWAS) [22,23].

Most of these studies were conducted in Asian or 
Caucasian populations. Depending on the population being 
assessed, the same SNV may or may not have an association 
with POAG. Therefore, replication studies must be performed 
to confirm the effects of these SNVs in other regions or with 
other ethnicities. Among the SNVs robustly identified in 
multiethnic studies, the rs2472493 (ABCA1) and rs9913911 
(GAS7) variants were significantly associated with POAG 
[22,24]. However, no individuals from South America 
participated in that study. Therefore, these two variants were 
selected to increase the odds of finding an association in our 
Brazilian admixed population because they could be more 
representative across different ethnicities. Even with the 
high prevalence of POAG in this region, genetic research has 
been scarce. To date, there has been no study of the relation-
ship between SNVs in ABCA1 and GAS7 genes and POAG 
in Brazil. These aspects are relevant to this area of research 
considering the highly miscegenational Brazilian population.

The main objective of this study was to evaluate the 
association of the SNVs of ABCA1 (rs2472493) and GAS7 
(rs9913911) to the risk of developing POAG in a sample of the 
Brazilian population. Moreover, we evaluated a) the combina-
tion of these SNVs with the risk of POAG and b) the relation-
ship of these SNVs to the need for surgical intervention.

METHODS

A cross-sectional association case-control study was 
conducted at the Center for Molecular Biology and Genetic 
Engineering (CBMEG) and Department of Ophthalmology, 
Clinical Hospital, University of Campinas (UNICAMP), 
Campinas, São Paulo and the Regional Hospital of 
Divinolândia, Divinolândia, São Paulo. The study was 
approved by the Ethics and Research Committee of the 
Faculty of Medical Sciences, University of Campinas 
(UNICAMP). The principles of the Declaration of Helsinki 
were respected, and written informed consent was obtained 
from all participants.

Casuistic: Individuals over 40 years of age participated in the 
study. Participants underwent ophthalmologic examinations, 
and those who met the selection criteria were classified into 
either the case group (POAG) or the control group.

The case group was composed of patients with POAG as 
defined by the following criteria: a) open angle at gonioscopy 
(according to Foster criteria) [25]; b) IOP >21 mmHg; c) ONH 
with at least two criteria (cupping >0.7, cupping asymmetry 
>0.2, thinning of the neuroretinal rhyme, hemorrhage or 
notch in the ONH); or d) typical visual field defects according 
to Anderson’s criteria [26] (Humphrey, SITA-standart 24–2 
or 30–2). Surgical procedures were indicated when IOP was 
uncontrolled with risk or evidence of glaucoma progression.

The control group consisted of individuals over 40 
years of age who had been seen at the previously mentioned 
ophthalmology outpatient clinics. The selected participants 
had ophthalmologic examinations, with results that included 
open angle at gonioscopy, IOP <21 mmHg, ONH cup <0.5, 
and no family history of glaucoma or blindness of unknown 
origin.

Participants who had any of the following exclusion 
criteria were removed from the study: secondary glaucomas, 
developmental glaucomas, high myopes (> −6.0 ED), fundo-
scopic changes compatible with age-related macular degen-
eration, severe diabetic retinopathies, optic neuropathies, 
neurodegenerative diseases, or ocular or systemic diseases 
that could affect a visual field examination of the optic nerve.

Genetic evaluation: All participants (cases and controls) 
had 5–10 ml of peripheral blood drawn into a sterile vial 
containing ethylene diamine tetraacetic acid (EDTA). 
Genomic DNA was extracted using the phenol/chloroform 
method.

A polymerase chain reaction was performed to amplify 
the region containing the studied SNVs. The genotyping of 
the SNVs rs9913911 of the GAS7 gene and rs2472493 of the 
ABCA1 gene for the identification of risk alleles A (GAS7) and 
G (ABCA1) was performed with a TaqMan assay according 
to the standardization protocol provided by the manufacturer 
(SNP Genotyping Assays TaqMan, Thermo Fisher, Waltham, 
MA). The genotyping results were confirmed in 10% of the 
samples using Sanger sequencing.

Statistical analysis: All statistical analyses were performed 
using R software (R Core Team, 2014). All genotypes of the 
case and control groups were evaluated for Hardy–Weinberg 
equilibrium (HWE) using the chi-square goodness-of-fit test. 
Analyses of gender and age were performed by Fischer’s 
exact test and the Mann–Whitney nonparametric test, respec-
tively. To investigate the association of the variants with 
POAG, a logistic regression model (stepwise) was used (Stats 
Package of R; R Core Team, 2014). To analyze the associa-
tion between the need for antiglaucomatous surgery and the 
variants, the chi-square test was used. The Kruskal–Wallis 
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test was performed to analyze the association of the number 
of antiglaucomatous surgeries with the variants. Statistical 
significance was p <0.05.

RESULTS

The total sample size was 1,009 participants. The case group 
consisted of 505 subjects, 51.3% male, and the control group 
consisted of 504 subjects, 57.7% female (p = 0.004). The mean 
ages were 68.1 ± 11.8 for the case group and 66.7 ± 10.1 for 
the control group (p = 0.047; Table 1). Due to the differences 
observed in sex and age between the groups, the analyses 
were adjusted for these variables. Table 2 depicts the geno-
typic and allelic frequencies of each variant and the HWE p 
value. All cases and controls were in HWE (p >0.05) for the 
two variants studied.

Multivariate logistic regression analysis, adjusted for 
sex and age, was performed to analyze the association of the 
studied variants with the presence of POAG (Table 3). The 
presence of the risk allele A of the GAS7 variant rs9913911 
was found to have a significant association with POAG (p 
= 0.0004, OR 1.41), as well as with the AA genotype (p = 
0.002, OR 1.96). For the ABCA1 variant rs2472493, there were 
no significant associations with the alleles and genotypes. 
However, when evaluating the combination of these two 

variants, an additive effect was observed in the risk for POAG 
with the following haplotypes: ABCA1(GG) + GAS7(AA; p = 
0.02), ABCA1(GG) + GAS7(AG; p = 0.003), and ABCA1(AG) 
+ GAS7(AG; p = 0.004) (Table 4). However, in terms of age 
and sex, no significant associations were observed among 
these haplotypes.

An analysis was conducted to identify associations 
between the studied risk variants and antiglaucomatous 
surgery (Table 5). The ABCA1 genotypes showed no asso-
ciation with the need for antiglaucomatous surgery, but for 
the GAS7 gene, a higher number of individuals carrying the 
AA genotype needed antiglaucomatous surgery (p = 0.01, 
OR 1.90). There was no relationship between the number 
of antiglaucomatous surgeries and the investigated variants 
(Table 6).

DISCUSSION

Genetic studies related to POAG have only rarely been 
conducted among South American populations, including the 
Brazilian population, which represents approximately 49% 
of individuals from this region (United Nations 2020 Demo-
graphic Yearbook. 71st Issue. New York, United Nations 
2021). To our knowledge, this was the first study investigating 
the SNVs of ABCA1 (rs2472493) and GAS7 (rs9913911) in a 

Table 1. Description of the variables sex and age among cases (505) and controls (504).

Sex/Age Cases Controls p-value OR CI (95%)
Male 259 (51.3%) 213 (42.3%)

0.004 0.69 0.54–0.89
Female 246 (48.7%) 291 (57.7%)
Age 68.1 (±11.8) 66.7 (±10.1) 0.047 1.01 1.00–1.02

Analyses of sex and age were performed by Fischer’s exact test and the Mann–Whitney nonparametric test, respectively.

Table 2. Descriptive analysis of genotype and allele frequencies between cases and controls.

Variant Genotypes and 
Alleles Case n (%) P-HWE Case Control n (%) P-HWE Control

ABCA1 
(rs2472493)

A/A 171 (33.9%)

0.850

187 (37.1%)

0.876
A/G 241 (47.7%) 231 (45.8%)
G/G 93 (18.4%) 86 (17.1%)
A 583 (57.7%) 605 (60.0%)
G 427 (42.3%) 403 (40.0%)

GAS7 
(rs9913911)

A/A 264 (52.3%)

0.855

211 (41.9%)

0.980
A/G 201 (39.8%) 231 (45.8%)
G/G 40 (7.9%) 62 (12.3%)
A 729 (72.2%) 653 (64.8%)
G 281 (27.8%) 355 (35.2%)

Evaluation for Hardy–Weinberg equilibrium (HWE) was performed by the chi-square goodness-of-fit test.
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sample of the Brazilian population. This was a case-control 

study with 1,009 participants and consisted of the replication 

of GAS7 and ABCA1 variants that were previously associated 

with POAG. The results are important, considering that the 

Table 3. Association analysis of ABCA1 (rs2472493) and GAS7 (rs9913911) variants 
between cases (505) and controls through multivariate logistic regression.

Variant Genotype/allele p-value OR CI (95%)

ABCA1 
(rs2472493)

GG x AA 0.36 1.18 0.82–1.69
GA x AA 0.34 1.14 0.86–1.50

presence G x absence G 0.35 1.09 0.89–1.34

GAS7 
(rs9913911)

AA x GG 0.002 1.96 1.26–3.06
AG x GG 0.18 1.35 0.87–2.11

presence A x absence A 0.0004 1.41 1.15–1.73

OR, Odds Ratio; CI (95%), 95% Confidence Interval

Table 4. Analysis of ABCA1 (rs2472493) and GAS7 (rs9913911) haplotypes between 
cases and controls through multivariate logistic regression.

Haplotypes p-value OR CI (95%)
ABCA1 (GG) + GAS7 (AA) 0.02 4.11 1.18–15.43
ABCA1 (AG) + GAS7 (AA) 0.07 2.51 0.93–6.95
ABCA1 (GG) + GAS7 (AG) 0.003 6.88 1.98–25.99
ABCA1 (AG) + GAS7 (AG) 0.004 4.41 1.61–12.35

OR, Odds Ratio; CI (95%), 95% Confidence Interval

Table 5. Analysis between SNVs in the ABCA1 (rs2472493) and GAS7 (rs9913911) genes 
and requirement of antiglaucomatous surgery by chi-square test.

Variant Genotype No Surgery n (%) Surgery n (%) p-value OR CI (95%)

ABCA1 
(rs2472493)

AA 85 (49.7%) 86 (50.3%) Ref. - -
AG 115 (47.7%) 126 (52.3%) 0.38 1.15 0.84–1.58
GG 36 (38.7%) 57 (61.3%) 0.05 1.47 0.99–2.19

GAS7 
(rs9913911)

AA 120 (45.5%) 144 (54.5%) 0.01 1.90 1.13–3.32
AG 95 (47.3%) 106 (52.7%) 0.20 1.42 0.83–2.50
GG 21 (52.5%) 19 (47.5%) Ref. - -

OR, Odds Ratio; CI (95%), 95% Confidence Interval.

Table 6. Analysis between SNVs of ABCA1 (rs2472493) and GAS7 (rs9913911) and the 
number of antiglaucomatous surgeries by Kruskal-Wallis test.

Variant Genotype
Number of surgeries

p-value
Mean Min. Max.

ABCA1 (rs2472493)
AA 0.795 0 7

0.211AG 0.793 0 6
GG 0.892 0 3

GAS7 (rs9913911)
AA 0.789 0 4

0.694AG 0.860 0 7
GG 0.725 0 3

Statistical significance was p <0.05.
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Brazilian population is highly admixed and ethnically hetero-
geneous [28–30]. Furthermore, the analysis of these variants 
contributes to the creation of a genetic panel of POAG risk 
for Brazilians.

In this study, the frequencies of the GAS7 rs9913911 
A allele and the ABCA1 rs2472493 G allele were 0.684 and 
0.411, respectively. These frequencies are in agreement with 
the three largest multiethnic genomic data sets of these SNVs 
in the human species (TopMed, gnomAD, 1000Genome) 
rs9913911, rs2472493 [31,32] (Supplementary Table 1). These 
data indicate that due to its miscegenation, the Brazilian 
population could be a valuable resource for studies aimed 
at using admixture as a tool for mapping complex traits in 
humans.

SNV rs9913911 (GAS7) showed a significant associa-
tion with POAG. Individuals carrying the A risk allele were 
41% more likely to have glaucoma, and in the presence of 
the AA genotype, the figure was 96%, suggesting that each 
copy of the A allele confers an increased risk of POAG. This 
result is consistent with previous studies conducted in other 
populations. A study by Hysi and collaborators [31] exam-
ining Caucasian individuals from Australia, New Zealand, 
Iceland, and the USA was the first to identify the association 
between GAS7 rs9913911 and POAG (p = 2.98E-13). This 
finding was later replicated in other studies of Caucasian 
(p = 2.13E-21) [32] and Japanese (p = 3.32E-04) populations 
[33]. A multiethnic study revealed an association between the 
GAS7 variant and POAG in Caucasians (p = 6.9E-17) but not 
in Asians, Hispanics, and African Americans; there were no 
participants from South America [24]. Recently, a multiethnic 
meta-analysis also detected this association in Caucasians 
and Asians (p = 5.90E-33 and p = 1.02E-06, respectively), 
but not in African descendants [22] (Supplementary Table 2).

Regarding the rs2472493 variant (ABCA1), no significant 
associations of the G risk allele or GG genotype and POAG 
were observed, in contrast to previous studies performed in 
Caucasians from the USA, Europe, and Oceania [24,31,32,34] 
or in the Japanese population [35]. Other studies conducted 
with different ethnicities also found no association between 
rs2472493 and POAG. One was a study by Alkhatib et al. 
[36] with a sample of Jordanian Arabs in which there was 
no association of this variant with POAG (p = 0.69 for allele 
and p = 0.71 for genotype). Bonnemaijer and colleagues [37] 
conducted a multicenter study with a large number of African 
and African American participants, and their results also 
showed no significant association (p = 0.093). A multiethnic 
GWAS performed by Choquet and collaborators [24] reported 
no association of this SNV with POAG in Hispanics, Asians, 
or African Americans as well (p = 0.046, p = 0.90, and p = 

0.018, respectively). These divergent results in different popu-
lations may be due to differences in the ancestry architecture, 
as well as different genetic etiologies in the development of 
glaucoma (Supplementary Table 3).

The effect of the combination of the risk variants of 
the ABCA1 and GAS7 genes was analyzed. This haplotype 
showed an additive effect on the risk of developing POAG. 
To date, no studies have analyzed the combination of these 
variants alone. The GAS7 gene is mainly related to aqueous 
humor homeostasis, and variants in this gene have also been 
associated with increased IOP [31,38–41]. The ABCA1 gene 
has also been identified in GWAS involving endophenotypes, 
such as IOP [31]. However, the ABCA1 gene is associated 
with age-related neuroinflammatory and neurodegenera-
tive processes, which may increase susceptibility to loss of 
RGCs, facilitating glaucomatous damage [42–46]. One of 
the possible mechanisms is TBK1 activation, which leads to 
ABCA1 ubiquitination. Its degradation reduces ANXA secre-
tion, facilitating retinal inflammation and RGC apoptosis 
[47]. Furthermore, the GAS7 and ABCA1 genes may interact 
through the ARHGEF12 gene (using ingenuity pathway 
analysis) and influence the risk of glaucoma by increasing 
IOP [48]. Both the ABCA1 and GAS7 genes are expressed 
in ocular tissues, including sclera, cornea, optic nerve, 
trabecular meshwork, and retina [31]. The SNV rs2472493, 
located upstream of ABCA1 (Genevar database), is associ-
ated with ABCA1 transcript levels in lymphoblastoid cell 
lines and may change the sequence of motifs for proteins 
such as FOXJ2 and SIX5. This SNV is also in high linkage 
disequilibrium with an SNV near ABCA1 (rs2472494) that 
alters the regulatory motif for binding of the PAX6 gene, 
involved in eye development. Therefore, these characteristics 
may suggest regulatory roles for rs2472493 and rs2472494 
(near ABCA1) [34] in gene expression. According to the 
Ensembl Genome Browser, the SNV 9,913,911 (GAS7 gene) 
is an intron variant located in a regulatory region, but to our 
knowledge, no data on how this variant might change gene 
expression have been reported. Therefore, when evaluating 
the combination of these risk variants, the increased risk of 
POAG may be due to the different mechanisms involved in 
glaucoma pathophysiology (trabecular meshwork and ONH) 
compacted with the hypothesis of the complex inheritance 
pattern of this ocular disorder. Thus, in addition to functional 
studies, further studies in other populations are needed to 
replicate these findings and to ratify this hypothesis.

The current study also evaluated whether these specific 
variants were associated with the need for antiglaucomatous 
surgery. The need for surgery may be indicative of a more 
severe evolution of glaucoma; however, it is important to 
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consider that several factors may influence the indication of 
a surgical procedure, such as glaucoma stage and treatment 
compliance, among others. These are difficult factors to 
control for in a study with this design, making a prospective 
longitudinal controlled study more suitable. In the current 
study, patients with POAG and the AA genotype for GAS7 
(rs9913911) had a 90% greater chance of requiring surgery 
for glaucoma treatment, which may indicate a more aggres-
sive glaucoma evolution. There was no significant association 
regarding the number of surgeries. To date, no studies have 
performed this analysis.

The present study had a sample size limitation, which 
probably made it difficult to detect an association between 
rs2472493 (ABCA1) and POAG. This result may also indicate 
that the effect conferred by this variant was low in this popu-
lation, which would explain the need for such a large sample 
size to detect an association. However, for rs9913911 (GAS7), 
it was possible to replicate previously published results and 
reinforce the importance of this variant with POAG. The post 
hoc analysis showed that the sample had a power of 80.9% 
to detect differences regarding the risk allele A compared to 
the wild-type allele G in the GAS7 gene. Regarding the G 
risk allele in the ABCA1 gene, a sample of 17,200 individuals 
would be required to obtain a sample power of 80% with a 
type I error of 5%. Given its transversal design, this study 
was not able to robustly address the evaluation of a combina-
tion of both alleles with regard to age of diagnosis and IOP 
due to a lack of information about adherence to treatment and 
late diagnosis of glaucoma.

The strength of this study was the careful diagnoses 
of the cases, performed by specialists. The controls were 
subjected to strict criteria, and only participants over 40 years 
old were included to increase the diagnostic certainty of the 
non-disease state. Another positive aspect was that the repli-
cation of these variants in Brazil was performed in the state of 
São Paulo, which is characterized by a highly admixed popu-
lation [49], a factor that differentiates this study from most 
others that were conducted in other countries [49]. Admixed 
populations, such as those in Brazil, are underrepresented in 
genomic banks, which contain data mostly from Caucasian 
populations [49]. The Brazilian population is highly heteroge-
neous and resulted from migration events over five centuries 
that were accompanied by the intensive admixing of three 
main ancestral roots: Amerindians (the native population), 
Europeans, and Africans (the two main sources of migra-
tion) [29]. Brazil is a country of continental dimensions, and 
its genetic composition varies from region to region [29]. 
However, it has been demonstrated that urban populations 
tend to be genetically equivalent [50]. For autosomal markers, 

the proportion of European ancestry has been estimated at 
60%–79%, with African ancestry at 10%–29% [50] and 
Amerindian ancestry at 7%–18% [50]. The lack of diversity in 
international gene banks may limit access for people of non-
Caucasian ancestry to the benefits of precision medicine and 
more accurate testing, potentially increasing health dispari-
ties [51]. These reasons justify the need for further studies to 
better understand the role of genetic variants in susceptibility 
to POAG in the Brazilian population.

Conclusions: In conclusion, this study has shown that in this 
sample of the Brazilian population, the rs9913911 variant of 
the GAS7 gene is significantly associated with POAG in the 
presence of the A allele and the AA genotype. There was 
no significant association between the rs2472493 variant of 
the ABCA1 gene and POAG; however, when in combination 
with the GAS7 risk allele, there was an additive risk effect 
for POAG. Additionally, there was a significant relationship 
between the need for antiglaucomatous surgery and the pres-
ence of the AA genotype of the rs9913911 variant of the GAS7 
gene. These findings provide further insight into the genetic 
profile associated with the pathogenesis of glaucoma in our 
population.

APPENDIX 1. FREQUENCIES OF RISK ALLELES 
OF THE GAS7 (RS9913911) AND ABCA1 (RS2472493) 
VARIANTS.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. ASSOCIATION OF THE GAS7 
(RS9913911) VARIANT WITH POAG.

To access the data, click or select the words “Appendix 2.”

APPENDIX 3. ASSOCIATION OF THE ABCA1 
(RS2472493) VARIANT WITH POAG.

To access the data, click or select the words “Appendix 3.”
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