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ABSTRACT
Objectives Identifying high- risk patients is crucial for 
effective cardiovascular disease (CVD) prevention. It is 
not known whether electronic health record (EHR)- based 
machine- learning (ML) models can improve CVD risk 
stratification compared with a secondary prevention 
risk score developed from randomised clinical trials 
(Thrombolysis in Myocardial Infarction Risk Score for 
Secondary Prevention, TRS 2°P).
Methods We identified patients with CVD in a large 
health system, including atherosclerotic CVD (ASCVD), split 
into 80% training and 20% test sets. A rich set of EHR 
patient features was extracted. ML models were trained 
to estimate 5- year CVD event risk (random forests (RF), 
gradient- boosted machines (GBM), extreme gradient- 
boosted models (XGBoost), logistic regression with an L

2 
penalty and L1 penalty (Lasso)). ML models and TRS 2°P 
were evaluated by the area under the receiver operating 
characteristic curve (AUC).
Results The cohort included 32 192 patients (median 
age 74 years, with 46% female, 63% non- Hispanic white 
and 12% Asian patients and 23 475 patients with ASCVD). 
There were 4010 events over 5 years of follow- up. ML 
models demonstrated good overall performance; XGBoost 
demonstrated AUC 0.70 (95% CI 0.68 to 0.71) in the full 
CVD cohort and AUC 0.71 (95% CI 0.69 to 0.73) in patients 
with ASCVD, with comparable performance by GBM, RF 
and Lasso. TRS 2°P performed poorly in all CVD (AUC 0.51, 
95% CI 0.50 to 0.53) and ASCVD (AUC 0.50, 95% CI 0.48 
to 0.52) patients. ML identified nontraditional predictive 
variables including education level and primary care visits.
Conclusions In a multiethnic real- world population, EHR- 
based ML approaches significantly improved CVD risk 
stratification for secondary prevention.

INTRODUCTION
In patients with established cardiovascular 
disease (CVD), secondary prevention strate-
gies aim to minimise recurrent CVD events 
including myocardial infarction (MI), stroke 
and death.1 Despite the use of first- line ther-
apies, patients with established CVD remain 
at elevated risk for recurrent CVD events.2 
Identifying high- risk patients is crucial to 

guide treatment intensification and person-
alisation, including with add- on therapies 
such as advanced lipid- lowering agents or 
novel antidiabetic agents.3 4 However, our 
ability to risk- stratify patients is limited by a 
paucity of validated predictive algorithms for 
secondary prevention.5 6 The Pooled Cohort 
Equations (PCEs) are used widely to predict 
atherosclerotic CVD (ASCVD) risk and guide 
statin therapy for primary prevention, but are 
not recommended for those with established 
CVD or those on statin therapy.7 8 Previ-
ously proposed models such as the Throm-
bolysis in Myocardial Infarction Risk Score 
for Secondary Prevention (TRS 2°P) were 
also developed and validated in clinical trial 
cohorts leading to unclear applicability to 
diverse real- world CVD populations.9

Key questions

What is already known about this subject?
 ► Patients with established cardiovascular disease 
(CVD) are at high risk for a recurrent event. Identifying 
high- risk patients can help guide and intensify pre-
ventive therapy. It is not known whether electronic 
health record (EHR)- based machine learning (ML) 
models can improve CVD risk stratification com-
pared with the Thrombolysis in Myocardial Infarction 
Risk Score for Secondary Prevention Risk Score for 
Secondary Prevention (TRS 2°P) developed from 
clinical trials.

What does this study add?
 ► In a multiethnic secondary prevention population, 
various EHR- based ML models significantly outper-
formed TRS 2°P for risk stratification for CVD events. 
The use of a rich patient feature set from the EHR 
was more important than model choice.

How might this impact on clinical practice?
 ► For secondary prevention, EHR- based ML approach-
es may be used to improve risk stratification and 
targeted treatment intensification.
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Machine learning (ML) can help develop broadly 
applicable risk stratification models for real world 
settings by leveraging datasets such as electronic health 
records (EHRs) and identifying variables and relation-
ships between variables that may not be identified by 
traditional models.10 11 ML models have demonstrated 
significant promise for risk stratification in medicine 
across various populations, including for cardiovas-
cular risk.10–13 To address the risk stratification gap for 
secondary prevention, we aimed to develop and evaluate 
supervised EHR- trained ML models to stratify CVD event 
risk compared with TRS 2°P in a multiethnic secondary 
prevention cohort for CVD risk stratification.

METHODS
Patient and public involvement
Patients and/or the public were not involved in the 
design, or conduct, or reporting, or dissemination plans 
of this research.

Study cohort
The study cohort included adults with established CVD 
who were over 18 years of age who received care from 
a large, community- based Northern California health 
system between 1 January 2009 and 31 December 2018. 
Patients were required to have at least two outpatient 
visits that were at least 1 year apart and were excluded 
if they had less than 5 years of total follow- up and did 
not have an outcome event. The index date was defined 
as the first outpatient visit that was 1 year after the first 
clinic visit. If there were no cholesterol lab results before 
a patient’s index date, the index date was shifted to the 
date of the first cholesterol lab result. Established CVD 
was defined as per the 2013 American College of Cardi-
ology/American Heart Association (ACC/AHA) Guide-
line on the Assessment of Cardiovascular Risk including 
prior MI, stroke, coronary revascularisation procedures, 
atrial fibrillation, congestive heart failure or coronary 
artery disease or equivalents.8 The subcohort of patients 
with (ASCVD: coronary artery disease, cerebrovascular 
disease, peripheral arterial disease, polyvascular disease 
(two or more ASCVD conditions)) was identified.

Patient variables
Prior CVD conditions were identified by the Interna-
tional Classification of Diseases, 9th and 10th Revision, 
Clinical Modification (ICD- 9- CM/ICD- 10- CM) coding 
scheme (online supplemental table 1). Patients on 
statins were identified by the first two digits of generic 
product identifier codes 39. Variables included in the 
modified TRS 2°P score were extracted (namely, age ≥75 
years, diabetes, hypertension, current smoking, periph-
eral artery disease, prior stroke, prior coronary artery 
bypass grafting (CABG), history of heart failure, renal 
dysfunction (estimated glomerular filtration rate <60 
mL/min/1.73 m2 by the MDRD formula), and history 
of MI).9 Age at index date was not available for patients 
whose age at the end of the study period (2018) was 89 

years or greater, because the precise index age of these 
specific patients was deidentified in the database to 
protect privacy. For total cholesterol, HDL cholesterol, 
systolic blood pressure and smoking status, the most 
recent value on or before the index date was used. The 
most recent height, weight and diastolic blood pressure 
measurements before each patient’s index date were 
also included. Diabetes status was identified by either 
a diagnosis of diabetes (ICD- 9- CM: 250.*; ICD- 10- CM: 
E11*, Z79.4, Z79.84) or a diabetes medication (GPI2: 27) 
prescribed on or prior to index date. On the date of the 
patient’s blood pressure measurement, the use of anti-
hypertensive medications (GPI codes beginning with 33, 
34, 36, 37, 4013 or 4016) was assessed. Missing race was 
inferred based on the Social Security Record database as 
previously described.14

Additional patient variables were selected a priori based 
on EHR availability and relevance to CVD. Variables were 
grouped into socioeconomic, clinical and healthcare 
utilisation categories and extracted 1 year prior to the 
index date. Medical conditions were extracted from the 
EHR problem list coded in ICD- 9- CM/ICD- 10- CM and 
grouped into 283 categories using the Clinical Classifi-
cation Software (CCS).15 Self- reported family (parents 
or sibling) medical histories were extracted. CCS and 
family history conditions were coded as binary variables. 
Medication prescription information was obtained by 
using the first four digits of prescriptions’ GPI codes 
(GPI4). An indicator was created for each GPI4 denoting 
whether any medication from that GPI4 was prescribed. 
The total number of medication prescriptions in the 
prior year was included as a variable. Two indicator vari-
ables were included for each lab test: whether the test was 
ordered and returned a ‘normal’ result, and whether it 
was ordered and returned an ‘abnormal’ result. The total 
number of laboratory tests ordered and the total number 
which returned ‘abnormal’ results were included. Socio-
economic variables were derived from patient addresses 
and included census block group level indicators of 
educational attainment and median household income. 
In addition, the number of primary care, urgent care, 
specialty and other (eg, ancillary) service care visits in 
the previous year were included as healthcare utilisation 
variables.

Outcome
A CVD event was defined as the first acute MI, stroke, 
or fatal coronary artery disease per ACC/AHA guide-
lines after the index date.8 Acute MI was defined by ICD- 
9- CM codes 410.* and ICD- 10- CM codes I21.*, I22.*, 
I23.3, I24.0, I24.9, I25.9, or I51.3.12 13 Stroke events were 
defined based on ICD- 9- CM codes 430.*, 431.*, 432.*, 
433.*1, 434.*1 or 436.0 and ICD- 10- CM codes G46.*, 
I63.*, I67.85, I69.30, I77.89, P91.0, or Z86.73.14 Fatal 
coronary artery disease was defined by the presence of an 
ICD- 9- CM code 411.*, 413.*, or 414.* or an ICD- 10- CM 
code I20.*, I23.7, I24.*, I25.*, or T82.85 code, followed 
by death within a year. Follow- up was right censored after 
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a CVD event, an unrelated death, or after 5 years of event- 
free follow- up, whichever came first. Death information 
was retrieved from EHR and Social Security record data.

ML model development
ML model training and testing was performed in all 
patients with CVD and was repeated in the subcohort of 
patients with ASCVD. For ML model training and testing, 
the cohort was first randomly split into an 80% training/
validation set and a 20% held- out test set stratified by 
outcome. Rather than arbitrarily choose a single ML 
model, we trained and tested several supervised ML algo-
rithms as per accepted practice: random forests (RF), 
gradient boosted machines (GBM), extreme gradient 
boosted models (XGBoost) and logistic regression with 
the standard L2 penalty (LR) and with an L1 lasso penalty 
(LASSO).11

For the training and cross- validation pipeline, ML 
algorithms were given variables as inputs and to predict 
whether a patient would have a CVD event in the following 
5 years. For each ML algorithm, fivefold cross- validation 
was used on the training set to tune hyperparameters, 
such as tree depth, learning rate and number of trees. 
Hyperparameters used and values for those hyperparam-
eters are shown in online supplemental table 2 and a grid 
search approach was used for the hyperparameter tuning 
phase. Models were compared based on the mean area 
under the receiver operating characteristic curve (AUC), 
also known as the C- statistic, across the fivefold. Addition-
ally, 95% AUC CIs were also calculated.16 Feature impor-
tance was reported using the F- score, a measure which 
represents the fraction of times a given feature was used 
to split the data across all trees. Missing variables were 
imputed using Bayesian ridge estimators applied iter-
atively in order of ascending percentage variable miss-
ingness, and the mean posterior value was used as the 
imputed value. For each step of the cross- validation pipe-
line, the training/validation set was split into prespeci-
fied training (64%) and held- out cross- validation (16%) 
folds. The best- performing cross- validated models were 
retrained on the entire training set.

ML model testing
The final performance of the best- performing ML models 
including AUC with 95% CIs, sensitivity, specificity, preci-
sion and F1- score were reported and evaluated on the 
20% held- out test set. TRS 2°P- based CVD risk in the 
test set was calculated based on assigning 1 point to the 
presence of each included clinical variable, as previously 
described.9 Analyses were performed in Python V.3.7 
using the scikit- learn and XGBoost packages, V.0.21.2 
and V.0.90, respectively.17

RESULTS
The study cohort consisted of 32 192 patients with prior 
CVD, with a median age of 74 years, and with 46% 
female, 63% non- Hispanic white, 12% Asian and 6% 
Hispanic patients (figure 1; table 1). A total of 23 475 

patients (72.9%) had ASCVD and 15 724 (49%) were on 
statin therapy. A total of 12 821 patients had available 
variables to calculate a TRS 2°P score. During 5 years 
of follow- up, 4010 patients (12.5%) experienced a CVD 
event. There were 123 EHR variables selected for use in 
the final models (out of 1181 variables initially consid-
ered), including 37 medication binary values (by GPI4), 
21 binary laboratory values, 3 health utilisation variables 
(number of primary, specialty and other care visits), 32 
comorbidity variables, 1 family history variable and 7 soci-
oeconomic status variables (median household income 
and variables representing six levels of education). These 
variables are outlined in online supplemental list 1. The 
missingness of the variables is shown in online supple-
mental table 3.

In the held- out test set of all patients with CVD, 
XGBoost (0.70, 95% CI 0.68 to 0.71), GBM (AUC 0.69, 
95% CI 0.68 to 0.71), RF (AUC 0.69, 95% CI 0.67 to 71) 
and Lasso regression (AUC 0.69, 95% CI 0.67 to 0.71) 
performed comparably for CVD event risk stratification 
(figure 2). In comparison, the TRS 2°P model performed 
poorly, with AUC 0.512 (95% CI 0.498 to 0.526).

Among 23 475 patients with ASCVD, a total of 10 114 
patients had calculable TRS 2°P scores, and 2899 patients 
experienced an outcome event. In this subcohort, 
XGBoost (AUC 0.71, 95% CI 0.69 to 0.73), GBM (AUC 
0.70, 95% CI 0.68 to 0.72), RF (AUC 0.70, 95% CI 0.68 
to 0.72) and Lasso regression (AUC 0.70, 95% CI 0.68 to 
0.72) again performed comparably (figure 3). The TRS 
2°P model performed poorly, with AUC 0.50 (95% CI 
0.48 to 0.52). Online supplemental tables 4 and 5 outline 
extended performance metrics for the XGBoost model 
in the full CVD and ASCVD cohorts, respectively.

The top predictive variables identified by XGBoost, 
a top- performing model in the full cohort, included 

Figure 1 CONSORT diagram. *Patients with an outcome 
event (CVD event or death) within the 5 years follow- up 
window were not excluded. †Pre‐existing cardiovascular 
disease (or CVD) was defined by the following International 
Classification of Diseases, ninth Revision, Clinical 
Modification (ICD‐9‐CM) codes: atrial fibrillation: 427.31; 
heart failure: 428*; coronary artery disease: 411*, 413*, 414*; 
myocardial infarction; 410*; and stroke: 430–434*, 436* (refer 
to online supplemental table 1). CONSORT, Consolidated 
Standards of Reporting Trials; CVD, cardiovascular disease.

https://dx.doi.org/10.1136/openhrt-2021-001802
https://dx.doi.org/10.1136/openhrt-2021-001802
https://dx.doi.org/10.1136/openhrt-2021-001802
https://dx.doi.org/10.1136/openhrt-2021-001802
https://dx.doi.org/10.1136/openhrt-2021-001802
https://dx.doi.org/10.1136/openhrt-2021-001802
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Table 1 Baseline characteristics of study cohort stratified by presence or absence of an outcome CVD event

Characteristic,
N (% by column) unless specified Total (N=32 192) CVD event (N=4010) No CVD event (N=28 182)

Female 19 304 (59.9) 1859 (46.4) 12 898 (45.8)

Age (median, (IQR)) 74 (62–80) 79 (69–80) 73 (62–80)

Non- Hispanic white 20 230 (62.8) 2449 (61.1) 17 781 (63.1)

Asian 3864 (12.0) 457 (11.4) 3407 (12.1)

Hispanic 2938 (6.0) 276 (6.9) 1662 (5.9)

African- American 497 (1.5) 88 (2.2) 409 (1.5)

Missing race/ethnicity 5085 (15.8) 658 (16.4) 4427 (15.7)

Total cholesterol (mean (SD)) 175.8 (41.0) 173.1 (42.2) 176.1 (40.8)

HDL cholesterol, (mean (SD)) 52.9 (16.0) 52.2 (16.2) 53.0 (15.9)

Systolic blood pressure, (mean (SD)) 130.6 (19.1) 133.2 (20.5) 130.2 (18.9)

On anti- hypertensives 20 653 (64.2) 2713 (67.7) 17 940 (63.7)

Antiplatelet medication use (clopidogrel, ticagrelor, prasugrel) 4514 (14.0) 598 (14.9) 3916 (13.9)

History of type 2 diabetes 7501 (23.3) 1231 (30.7) 6270 (22.2)

Current smoking 1628 (5.1) 234 (5.8) 1394 (4.9)

On statin therapy 15 724 (48.8) 2052 (51.2) 13 672 (48.5)

Coronary artery disease 16 221 (50.4) 2010 (50.1) 14 211 (50.4)

Cerebrovascular disease 8647 (26.9) 1068 (26.6) 7579 (26.9)

Peripheral arterial disease 2416 (7.5) 450 (11.2) 1966 (7.0)

Polyvascular disease 3449 (10.7) 559 (13.9) 2890 (10.3)

Atrial fibrillation 4972 (15.4) 679 (16.9) 4293 (15.2)

Heart failure 2452 (7.6) 387 (9.7) 2065 (7.3)

eGFR <60 8340 (25.9) 1207 (30.1) 7133 (25.3)

History of CABG 5019 (15.6) 773 (19.3) 4246 (15.1)

TIMI 2°P score (mean, (SD)) 2.91 (1.43),
N=13 821

2.98 (1.32),
N=2051

2.90 (1.45),
N=11 770

CABG, coronary artery bypass grafting; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate.

Figure 2 Machine learning model and TRS 2°P 
performance for risk stratification among all patients with 
CVD, demonstrating area under the receiver operative 
characteristic curve (AUC) values and 95% CI. CVD, 
cardiovascular disease; GBM, gradient boosting machine; 
TRS 2°P, TIMI risk score for secondary prevention; XGBoost, 
extreme gradient boosting.

Figure 3 Machine learning model and TRS 2°P 
performance for risk stratification among patients, 
demonstrating area under the receiver operative 
characteristic curve (AUC) values and 95% CI. ASCVD, 
atherosclerotic cardiovascular disease; GBM, gradient 
boosting machine; TRS 2°P, TIMI risk score for secondary 
prevention; XGBoost, extreme gradient boosting.
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traditional risk factors including diabetes, hypertension, 
and age; established CVD including history of cerebrovas-
cular disease/stroke, CABG, peripheral arterial disease 
or polyvascular disease; Hispanic ethnicity or black race; 
and nontraditional factors including healthcare utilisa-
tion (number of visits) and education level (figure 4). 
The top predictive variables identified by XGBoost in the 
ASCVD cohort also included traditional risk factors, prior 
CVD, as well as non- traditional risk factors including 
healthcare utilisation and education level (figure 5).

DISCUSSION
In a cohort of multiethnic secondary prevention patients, 
ML models trained on EHR data predicted 5- year CVD 

event risk and significantly outperformed the TRS 2°P 
score. ML identified traditional and nontraditional 
predictive variables for CVD risk including education 
level and primary care visits.

Most CVD events occur in individuals that have already 
had a CVD event.2 In comparison with primary preven-
tion tools such as the PCE, widely used risk stratifica-
tion tools for secondary prevention remain lacking in 
contemporary practice. The previously described TRS 
2°P score for secondary prevention performed poorly in 
the present study, potentially because it was developed 
and validated in clinical trial cohorts with limited applica-
bility to our real- world population.1 9 18 TRS 2°P was also 

Figure 4 Predictive variables for CVD risk in the XGBoost 
model for all patients with CVD. As an example of model 
interpretability, feature rankings for the top variables are 
visualised for XGBoost, one of the top performing ML 
models. BP, blood pressure; CABG, coronary artery bypass 
grafting; CVD, cardiovascular disease; GFR, glomerular 
filtration rate; ML, machine learning; XGBoost, extreme 
gradient- boosted models.

Figure 5 Predictive variables for CVD risk in the XGBoost 
model for patients with ASCVD. As an example of model 
interpretability, feature rankings for the top variables are 
visualised for XGBoost, one of the top performing ML 
models. Ag, antigen; ASCVD, atherosclerotic CVD; BP, 
blood pressure; CABG, coronary artery bypass grafting; 
CVD, cardiovascular disease; GFR, glomerular filtration rate; 
ML, machine learning; XGBoost, extreme gradient- boosted 
models.
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calculable in only 40% of our CVD cohort due to missing 
variables, a known characteristic of real- world data, thus, 
further limiting its applicability. In contrast, ML models 
were applicable across our full cohort. As seen in prior 
work, ML can effectively tackle missing data in real- world 
settings to allow risk stratification broadly.11 Developing 
such risk stratification tools is crucial for prevention 
as they may first underscore the need to close existing 
standard- of- care gaps in high- risk patients, such as 
guideline- directed statin use—which was less than 50% in 
our study (but similar to other studies).19 Risk stratifica-
tion may further prompt targeted treatment intensifica-
tion such as the use of proprotein convertase subtilisin/
kexin type 9 inhibitors in patients with dyslipidaemia.1

Other prediction models for established CVD have been 
described, but with inconsistent performance, restricted 
inclusion criteria and lack of wide clinical use. The ACC/
AHA very high- risk criteria demonstrated poor perfor-
mance in the Second Manifestations of Arterial Disease 
study with a C- statistic of 0.54, and in the Reduction of 
Atherothrombosis for Continued Health registry with 
a C- statistic of 0.53. An algorithm developed from 912 
patients with stable coronary heart disease in the Heart 
and Soul study demonstrated a C- statistic of 0.65 in a vali-
dation cohort.5 A Framingham- derived prediction model 
for secondary events has poor performance for CVD risk 
discrimination.5 A risk score for stroke, MI and death 
in patients with stable angina that was developed from 
A Coronary disease Trial Investigating Outcome with 
Nifedipine Gastrointestinal Therapeutic System cohort 
excluded patients with left ventricular dysfunction, 
recent coronary events or interventions, planned coro-
nary interventions and clinical heart failure from its deri-
vation cohort, limiting generalisability.20 Other models 
were limited to populations of stable angina or coronary 
disease, and demonstrated varying levels of complexity 
and poorer performance with nonfatal outcomes.21–23 To 
the best of our knowledge, our effort is the first to broadly 
include CVD conditions without restriction to develop 
and evaluate ML- based models in comparison with the 
established TRS 2°P score and identify nontraditional 
predictive variables such as socioeconomic factors.

Several ML models in this study achieved performance 
on par with well- accepted predictive models in cardi-
ology. The PCE for primary prevention risk stratification 
demonstrated an AUC (reported there as the C- statistic, 
an alternative name for AUC) of 0.73 in the Women’s 
Health Initiate Cohort and AUCs of 0.68 (men) and 0.69 
(women) in the Cardiovascular Health Study.24–26 The 
CHA2DS2 -VASc score, a model widely used for stroke 
prediction in atrial fibrillation patients, has an AUC of 
0.68 in the Clinical Practice Research Datalink Database.27

Penalised LR (LASSO) performed comparably to more 
complex tree- based models in our study. This suggests 
that the richness of the EHR- derived patient feature 
set may be more important than the specific choice of 
model used. This also highlights the importance of 
broadly evaluating models across the range of complexity 

when developing ML approaches for health, rather than 
choosing complex or computationally expensive models 
with higher resource needs a priori. We also identify 
insights from the ML rather than presenting the ML as 
black box models whose recommendations must be taken 
on faith. Interpretable, locally trained models may reveal 
relevant nontraditional risk factors applicable to the local 
population. Markers of education level and healthcare 
utilisation were among the top predictive variables in our 
cohort, highlighting their relevance for CVD risk and 
associated disparities. Black race and Hispanic ethnicity 
were predictive of CVD risk as well. Prior CVD and tradi-
tional variables such as age, blood pressure, cholesterol 
and diabetes are established predictors of CVD risk; this 
was reinforced by the ML feature importance rankings.

Our study has certain limitations. Our cohort was 
composed of likely insured patients from Northern Cali-
fornia and may not be generalisable across the USA. 
However, our cohort is enriched with Hispanic and Asian 
populations as well as older adults, who have generally 
been excluded for CVD risk prediction cohorts.28 The 
use of systems not built for research purposes such as 
Social Security records and EHR data may have inherent 
limitations.29 We assess ML performance in a held- out 
test set; external validation can help assess wide general-
isability. Given the heterogeneity of CVD populations, a 
single, static risk stratification model with fixed variables 
may be less likely to be widely generalisable, as suggested 
by the poor performance of TRS 2°P in our cohort. Prior-
itising wide ML model generalisability during develop-
ment could in turn compromise local performance.1 30 
Instead, a flexible ML pipeline that can be ‘retrained’ in 
local populations, especially if less complex approaches 
like penalised LR are employed, may be preferable to 
preserve local real- world performance.12

CONCLUSION
EHR- trained ML models stratified CVD risk for secondary 
prevention in multiethnic patients while significantly 
outperforming the TIMI risk score for secondary preven-
tion. EHR- trained ML approaches may be used to improve 
risk stratification in diverse secondary prevention popula-
tions to guide targeted treatment intensification.
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