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Epigenomics encompasses a broad field of study, including the investigation of chroma-
tin states, chromatin modifications and their impact on gene regulation; as well as the
phenomena of epigenetic inheritance. The epigenome is a multi-modal layer of informa-
tion superimposed on DNA sequences, instructing their usage in gene expression. As
such, it is an emerging focus of efforts to improve crop performance. Broadly, this might
be divided into avenues that leverage chromatin information to better annotate and
decode plant genomes, and into complementary strategies that aim to identify and select
for heritable epialleles that control crop traits independent of underlying genotype. In this
review, we focus on the first approach, which we term ‘epigenome guided’ improvement.
This encompasses the use of chromatin profiles to enhance our understanding of the
composition and structure of complex crop genomes. We discuss the current progress
and future prospects towards integrating this epigenomic information into crop improve-
ment strategies; in particular for CRISPR/Cas9 gene editing and precision genome engin-
eering. We also highlight some specific opportunities and challenges for grain and
horticultural crops.

Epigenome guided improvement
Epigenomics, through its exploration of the combinatorial code of chromatin modifications, can play a
role in crop improvement strategies by enriching our understanding of crop genomes and as the molecu-
lar basis of traits. The investigation of heritable epigenetic variation that underpins traits in crops is an
accelerating area of research with many exciting challenges on the horizon, including better understand-
ing the epigenetic basis of traits, the stability and heritability of epialleles, and the sources of epigenetic
variation in crops. These aspects have been reviewed extensively in recent years [1–6]. In this review, we
explore the complementary topic of epigenome guided improvement, including the use of chromatin
profiles to identify functional genes and cis-regulatory elements (CREs) in crop genomes and the appli-
cations of this information to engineer new variation for key traits in crops.

The challenge of genome annotation
Crop genomes vary dramatically in size [7], ranging from the relatively small genome of rice at
∼400 Mb [8], the large genome of maize at 2.4 Gb [9], through to the huge 17 Gb genome of hexa-
ploid bread wheat [10]. In moderate to large genomes, genes (as we understand them today) are in
the minority; they are interspersed between transposable elements (TEs) and other repetitive DNA ele-
ments. While the plant genomics community has become very proficient at economically sequencing
and assembling entire genomes [11], it remains challenging to identify functional protein-coding
genes [12,13]. Even more difficult is the comprehensive identification of all the gene CREs in a
genome, largely because the knowledge of DNA sequence alone is usually insufficient to confidently
pinpoint these, often small, regions [14,15]. Indeed, the CREs that are critical for controlling genes
and agronomic traits can be located in tens of thousands of base pairs from the genes they regulate
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[16,17]. Examples include, the enhancer of teosinte branched 1 (tb1) [18] and the VEGETATIVE TO
GENERATIVE (VGT1) enhancer of ZmRap2.7 [19], where genetic mapping has identified putative CREs 60–
70 kb upstream of the cognate genes in maize. As we embrace new breeding technologies, such as precise gene
editing, accurate genome annotations are essential for efficiency improvement and the elucidation of the
molecular basis of agronomic traits.
Different parts of the genome, such as expressed genes, silent genes, TEs and CREs are marked by different

chromatin states. These are defined by the presence or absence of specific covalent histone or DNA modifica-
tions. Studying the chromatin states of different genomic elements has greatly advanced our understanding of
the roles of various chromatin modifications. However, researchers have noted the power of reversing this
approach and using chromatin states to de novo annotate or refine existing genome annotations [14,20,21] or
even predict the translational output of the genome (‘expressome’) [22]. There are many epigenomic and chro-
matin features that can be used to assist with genome annotation that include histone modifications and DNA
methylation, chromatin accessibility and higher-order chromatin interactions. In the following sections, we
discuss and contrast the utility of different chromatin features for plant genome annotation.

Chromatin accessibility and chromatin interactions
The specificity and quantity of transcription are regulated via the interactions between sequence-specific
DNA-binding transcription factors (TFs) and the CREs in promoters and distal enhancers [23]. Transcriptionally
active genes are more sensitive to nuclease digestion and are found in ‘open’ chromatin regions. Transcriptionally
repressed genes, on the other hand, are frequently clustered within ‘closed’ chromatin regions [24]. While some
enhancers are found close to their target core promoter, others might be found thousands of base pairs upstream
or downstream of their target gene(s), yet these regions are also marked by accessible chromatin [25]. Through
the use of complementary chromatin capture technology, such as Hi–C, it has been shown that distal-regulatory
regions loop around and physically interact with gene promoters in plants [16].
ATAC-Seq (the assay for transposase-accessible chromatin with high-throughput sequencing) is a powerful

approach for the identification of CREs. It takes advantage of an engineered Tn5 transposase’s preference to
insert into accessible chromatin regions [26]. This method has been used to map accessible regions and puta-
tive gene distal CREs in multiple crop genomes, for example, maize [16], Medicago truncatula, rice, tomato
[25], sorghum, soybean and barley [17]. Significantly, in maize, it was found that even though accessible chro-
matin regions only comprise a few percent of the genome, they are highly enriched for functional genetic vari-
ation associated with agronomic traits [27]. Additional complementary technologies can also be used to
identify or confirm CREs in plant genomes [14], including STARR-seq [16,28] and MOA-seq [29]. These chro-
matin profiling methods provide powerful filters for the identification of expressed genes and their regulatory
elements.

Histone modifications
Histone modifications are an important chromatin modification that can be used to guide genome annotation.
Histones are primarily defined by their role in the packing of DNA into chromatin fibers. Nucleosomes represent
a barrier to transcription, accordingly, their placement and modifications affect transcription or silencing of par-
ticular DNA regions; some modifications are more favorable to transcription. To facilitate these processes, his-
tones are subject to a wide variety of post-translational modifications including methylation, acetylation and
phosphorylation [30]. The gold standard for genome-wide mapping of histone modifications is chromatin
immuno-precipitation and sequencing (ChIP-seq). This process involves immuno-precipitation of DNA–protein
(histones or other DNA-binding proteins) complexes using antibodies to a specific protein or modified protein (e.
g. histone specifically tri-methylated at lysine 4 residue) and sequencing any DNA fragments found in the immu-
noprecipitated complexes [31]. Recent innovations including CUT&RUN [32,33] and CUT&Tag [34] also facili-
tate profiling of chromatin modifications using lower input and less sequencing reads. These technologies enable
co-localization of histone modification types with particular genomic sequences and features, including tran-
scribed genes, promoters, transcription start sites (TSS), gene coding regions, as well as transcriptional repressed
loci [35] (Figure 1). For example, Histone H3 Lysine 4 trimethylation (H3K4me3) is associated with transcrip-
tional activation and is found at TSS, together with histones H3 acetylated at Lysine 9/27/56 positions; while gene
bodies contain H3K4me1 and H3K36me3 (Figure 1) [16,35–37]. In contrast, the presence of the H3K27me3
mark is indicative of transcriptional repression at a locus [38]. Compact and transcriptionally repressed
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heterochromatin is characterized by the presence of DNA methylation, the H3K9me2 mark, and often a particu-
lar class of small RNA molecules [39].
These patterns of chromatin modifications, especially histone modifications, can give insight into the regions

of the genome that may be fruitful targets for gene editing. In particular, this information is useful not only to
identify functional genes but also to refine gene boundaries and resolve inconsistencies in gene annotations.
Mendieta et al. [35], applied this histone code in maize and several other species, to enhance the existing
genome annotations. In maize alone, thousands of new genes were identified as well as a total of 13 159 dis-
crepancies pertaining to gene length, number and other mis-annotations [35].
In animals, CREs, especially those located far from genes, are marked with distinct chromatin modifications

including H3K4me1 and the presence of enhancer RNA transcripts [14]. In contrast, in plants CREs seem to
lack H3K4me1 or any other single defining chromatin signature [16] complicating the process of CREs identifi-
cation. Oka et al. [40], used a combination of DNA methylation, chromatin accessibility and histone acetyl-
ation, to identify 1500 enhancers in two tissue types. Ricci et al. [16] identified accessible chromatin regions
genome-wide in maize and profiled the chromatin modifications of these regions to investigate the likely fea-
tures of gene distal CREs in plants. In total, four different combinations of flanking chromatin marks could be
identified, including those depleted of any chromatin marks (the majority); primarily H3K27me3, those
flanked by strong H3K9/K27/K56 acetylation and those flanked by multiple marks typical of transcribed genes
including H3K4me1, H3K4me3, H3K36me3 and H3K9/K27/K56ac. The latter may represent unannotated
genes or transcriptional units rather than CREs. Thus, accessible gene distal plant CREs are likely characterized
by three types of chromatin signatures (Figure 2A–C).
However, both chromatin accessibility and histone modification profiles have notable limitations for genome

annotation. While some marks are developmentally stable, most are highly specific to tissue or cell type [41,42].
Thus, profiling of chromatin accessibility and/or histone modifications across a wide range of tissues, cell types
or growth conditions would be required to gain full knowledge of the possible CREs within a certain species.

DNA methylation
Given the dynamic nature of most chromatin modifications, another component of the epigenetic landscape
that can have particularly high utility in genome annotation is DNA methylation. Methylation can be identified

Figure 1. Chromatin modifications associated with transcribed genes can guide the selection of targets for gene editing.

Actively transcribed genes are typically characterized by low DNA methylation, particularly in the promoter region (*note the gene

body frequently also contains CG-only DNA methylation, not shown in this diagram); accessible chromatin around the TSS;

H3K4me3 and H3K9/27/56ac around the TSS; and H3K4me1 and H3K36me3 in the body of the gene. These features can be

used to identify genes and refine gene boundaries.
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in the genome using high-throughput sequencing approaches including bisulfite sequencing and enzymatic
conversion methods [43,44]. Direct profiling of DNA methylation is also now possible using Nanopore long-
read sequencing technology, which may be particularly useful for large and repetitive genomes [45]. Relatively
speaking, the DNA methylome is far more stable during most stages of vegetative development in plants com-
pared with the dynamic nature of chromatin accessibility and histone modifications [46]. This feature may
enable DNA methylation signatures to pinpoint both the active or the inactive genes, and the CREs in a tissue
or organ, in contrast with other chromatin modifications that have the most utility in identifying expressed ele-
ments [46]. From the early days of genome sequencing and assembly, it was noted that genes and the expressed
portion of the genome largely lack DNA methylation and this feature could be used to identify coding regions
in the genome [47,48]. DNA methylation has been used to refine both gene [20] and cis-element annotations
[16,17,40,49,50] in plant genomes. In particular, unmethylated regions (UMRs) of DNA can demarcate poten-
tial cis-regulatory regions that containing regulatory elements up/downstream of genes of interest and appear
highly stable during development in the tissues profiled to date [50]. These observations raise the possibility
that the DNA methylome of a single tissue could be profiled to uncover the majority of useful CREs in an
entire plant genome. This includes both accessible UMRs (Figure 2A–C) and also inaccessible UMRs that
would not be discovered using chromatin accessibility assays but could be discovered by profiling DNA methy-
lation in a single tissue (Figure 2D). These CREs stably lack methylation across tissues but may only be
involved in promoting gene expression in specific tissues. One caveat is that the relationship between methyla-
tion and transcription is not always so clear; a few TFs preferentially bind methylated DNA [51] and in some
cases methylation can recruit gene activators and promote expression [52,53]. While profiling DNA methyla-
tion to distil a genome has the potential to be very powerful, it is likely to have the most utility in crops with
large genomes. In plants with compact genomes under 0.5 Gb, the potential benefits for CRE identification are

A
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D

Figure 2. Chromatin modifications associated with putative CREs in plants.

(A–C) Gene distal accessible chromatin regions mark putative CREs in plant genomes, which lack DNA methylation, and are

typically associated with either H3K27me3 (‘K27[me] Type’) (A); H3K9/K27/K56ac (‘K9/27/56 [ac] type’) (B); and those depleted

of histone modifications (‘accessible unmethylated type’) (C). (D) The fourth category of putative CREs in plant genomes are

unmethylated but inaccessible, these are hypothesized to be CREs that are not active in the profiled tissue. *This type is also

decorated with the same spectrum of histone modifications shown in (A–C); however, the co-occurrence of histone

modifications for different classes of inaccessible UMRs has not been investigated in detail.
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diminished due to the relatively low levels of DNA methylation genome wide and high gene density [50]. For
instance, the majority of the Arabidopsis genome is unmethylated and most CREs are likely in close vicinity
(<5 kb) to the genes they regulate. In a large genome like maize, intergenic accessible chromatin regions that
mark CREs are mostly >5 kb from genes [17]. Mapping UMRs can enrich genome annotations and provide
practical information for gene editing, including the potential for expression of genes, their regulatory regions
or even guide the prioritization of intergenic quantitative trait loci (QTL) for further investigation.

Using chromatin-based genome annotations for gene editing—from gene
knockout to tuning gene expression
With accurate genome annotations in hand, the door is now open to precision crop genome editing and
genome design. In this section, we discuss the prospects of moving from simple gene knockout based CRISPR/
Cas9 approaches to tuning gene expression guided by chromatin profiles.
The development of target-specific genome editing technologies such as clustered regularly interspaced short

palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) have paved the way for a new era of
genome engineering [54]. These technologies have proved very useful for generating SNPs, insertions or dele-
tions in the coding sequence of genes, which can alter reading frames, cause premature stop codons and ultim-
ately disrupt the function of target genes [54]. In some cases, a gene knockout is the desired goal and hence
this approach works very well. However, in many other cases, it is likely that modulating gene expression rather
than a complete loss of function will have greater agronomic benefit. Complete loss-of-function or
gain-of-function mutations can have dramatic negative pleiotropic consequences [55]. Conversely, the discovery
of the alleles underlying crop domestication in a variety of species has revealed that domestication is frequently
underpinned by regulatory variants rather than loss of function [56]. While newer technologies such as base
editing [54] may enable modulating the activity of a gene, and gain of function mutations are possible,
CRISPR/Cas targeted to a coding sequence is commonly intended for gene knockout.
In contrast with targeting a coding sequence, there is great potential in using CRISPR/Cas to generate expres-

sion variation by targeting gene-regulatory sequences [6,57]. For instance, the critical function of WUSCHEL
(WUS) and CLAVATA3 (CLV3) in meristems is to maintain the balance between cell differentiation and self-
renewal. In tomato, natural and induced mutations that affect the expression of WUS and CLV3 can positively
affect the size of tomato floral meristems that leads to enlarged fruits compared with the wild progenitors [58]. In
fact, generating targeted mutations in the promoter of CLV3 has generated a range of new alleles that in turn
produce a continuum of phenotypic variation for tomato fruit size [59] and indeed other traits like architecture
[60]. Engineered quantitative variation for yield-related traits in maize was also achieved by engineering weak pro-
moter alleles of CLE genes [61]. In this example, CLE knockout alleles had a deleterious effect on yield, while cis-
regulatory editing to change gene expression boosted yield. Other recent work in both rice [62] and tomato [63]
has used CRISPR/Cas-based approaches to successfully modify gene promoters and even increase expression.
Surprisingly, one study found that there is a low correlation between the allele generated, transcript levels and the
trait outcome [60]; thus, while this approach clearly can achieve trait improvement, there is still more work to do
to fully understand the function and combinatorial nature of CREs for rational trait engineering.
Epigenome editing might also help address some of the shortcomings of gene knockout. Promoter DNA methyla-

tion is strongly associated with decreased gene expression [64,65]. Recent advancements have broadened the scope of
CRISPR, allowing for site-specific induction of DNA methylation using an inactive form (dCas9) to impart target
specificity. When coupled to a DNA methyltransferase or a demethylase (or other functionality), CRISPR–dCas9 can
be utilized to target the addition or removal of DNA methylation to silence or awaken genes [66–68]. This has been
used successfully to specifically alter the promoter methylation of the flowering time regulator FWA leading to highly
heritable changes in gene expression and flowering time [69–71]. Therefore, modulating DNA methylation at CREs
to adjust the expression of genes might be a viable alternative way to create regulatory variation in crops.
Editing gene promoters and CREs may offer the possibility to introduce novel alleles in ways that cannot be

achieved by knockout mutations or conventional breeding. This may be extremely useful in some specific situa-
tions as outlined in Table 1. For essential plant genes that are implicated in regulating agronomic traits, knock-
out is not an option; thus, CRE editing offers a promising alternative to generate new traits or indeed to study
gene function. Many genes are expressed in multiple tissues and have pleiotropic roles which may be difficult
to disentangle through coding-sequence mutations. For example, genes/loci such as VERNALIZATION1
(VRN1) affect both flowering, shoot architecture and root architecture in wheat and barley [72]; likewise,
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TEOSINTE BRANCHED1 (TB1) affects both lateral branching and inflorescence architecture in maize and
wheat [73,74]. Targeting CREs could enable uncoupling of expression between roots and shoots to tailor both
above and below ground traits to specific environments. Environments are another key example; it will be
meaningful to control gene expression for genes required in changing conditions or stresses. Another foresee-
able application is for plant defense compounds that may not be desirable (or even toxic) if produced in fruits
or other edible parts of a plant, but could be very useful if controllable expressed in other tissues/organs for
plant protection. CRE editing also presents the possibility to activate gene expression because CREs may bind
transcriptional repressors, prominent examples include jasmonate signaling [75] and the CLV3–WUS stem cell
homeostasis network [76], or to generate novel transcriptional output combinations. Lastly, as already demon-
strated by the work in tomato and maize, CRE variants provide an opportunity to fine-tune gene expression to
generate quantitative variation, particularly for dose-dependent genes like TFs.

Considerations for fruits and grains
DNA methylation is highly stable throughout most of the vegetative development of a plant, this means that
the profile of a single tissue, for example, a leaf could potentially be extrapolated to predict genes and CREs
relevant in other tissues or organs [50,77–79]. It is worth noting that a key factor (not covered in the present
review) that can affect methylation dynamics is biotic and abiotic stress [80,81]. It will be important to investi-
gate how well stress-response CREs can be predicted from the methylation profiles of unstressed tissues.
Developmentally, methylation is quite stable; that said, this is most true for CHG methylation (H is A, T or C),
which is more stable than CHH during vegetative development. Levels of CHH methylation show more quanti-
tative variation during development, particularly during germination [82–84]. In contrast, the patterns of CG
and CHG are highly stable; however, some cell types involved in reproduction are a notable exception [85].
This may complicate the use of genome annotations derived from DNA methylation profiles of leaves, for
guiding genome engineering in certain agronomically important target organs such as grains and fruits.
In several species, DNA methylation patterns have been observed to change during fruit ripening, including

tomato [86], pepper [87], strawberry [88], orange [89] and apple [90,91]. A study conducted by Zhong et al.
[86] utilized whole-genome bisulfite sequencing to determine that a change in DNA methylation, in particular
de-methylation, is associated with tomato fruit ripening and is variable through the development of the fruit.

Table 1. Categories of genes that make ideal targets for CRE editing

Gene category Possible results after CRE editing

Essential genes (gene knockout is lethal) CRE edited plants have reduced expression or altered expression patterns.
Reducing expression could prevent lethality to generate new traits and enable investigation
of gene function. Alternatively, a gene may only be essential in a specific tissue or
developmental stage, CRE editing may reduce or knockout expression in non-essential
tissues.

Genes expressed in multiple tissues CRE alleles show expression in a specific tissue or uncoupling of tissues.
In some cases, it may be desirable to uncouple gene expression in multiple tissues; for
example, to optimize the architecture of a root while not affecting the architecture of the
shoot; or to produce metabolites for plant protection in non-edible plant parts.

Genes expressed in multiple conditions or
responsive to environmental conditions

CRE alleles alter the timing or magnitude of induction in response to conditions/treatments.
For stress-responsive genes or other resistance genes, it may be desirable to generate
alleles that respond more quickly, are constitutively expressed or even recover more rapidly
following stresses. Alternatively, stress responses that are important in nature might be
undesirable in agriculture, CRE editing could make an essential stress response ‘duller’ to
reduce the impact on yield.

Silent genes Editing CRE activates the expression of a gene.
Because CREs can be both enhancers and repressors, editing a CRE has the potential to
activate the expression of a totally silent (cryptic) gene, or activate expression in a novel
tissue or developmental stage.

Dose-dependent genes CRE alleles alter expression levels and create quantitative variation.
The expression level, or ‘dose’, of a gene can have a direct impact on traits; particularly for
genes such as transcription factors. Altering expression levels is likely to generate new trait
variation. The extent to which this approach would work for structural genes requires further
investigation.
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This was corroborated with the production of a DEMETER-like DNA demethylases mutant, SlDML2, where the
resulting phenotype was a non-ripening tomato [92]. The mechanism that facilitates the dynamic nature of the
DNA methylation profile in fruits can vary between species. Strawberries and oranges also exhibit a change in
DNA methylation throughout the ripening process; however, in strawberries, this is facilitated by a down-
regulation of the RNA directed DNA methylation pathway [88]. In oranges, on the other hand, the ripening
process occurs in conjunction with an increase in methylation facilitated by the down-regulation of DNA
demethylase [89], presenting an entirely opposite mechanism to tomatoes.
DNA methylation patterns in grains also need careful consideration. In developing rice grains DNA methylation

profiles fluctuate through grain development as part of the regulatory mechanism for seed maturation [93]. DNA
methylation has been found to be a crucial component of embryogenesis and seed maturation, with abnormalities
such as botched cell division, apical domain aberrance and reduced viability associated with epi-mutants [94]. In
particular, the endosperm is epigenetically divergent from other tissues [85]. The endosperm is a tissue surround-
ing the embryo in plant seeds, and is analogous in function to the placenta in animals whereby nutrients are pro-
vided to the developing embryo [95] and is hugely valuable in agriculture. As is characteristic of flowering plants,
the endosperm arises from a double fertilization event, the fertilization of the diploid cell producing a triploid
endosperm tissue. Prior to fertilization CG methylation is reduced, in part due to the expression of the
5-methylcytosine DNA glycosylase DME [96]. Endosperm DNA is maternally hypomethylated, and methylation is
typically more dynamic during development than in other tissues [97–99]. This is a combinatory effect of an
initial down-regulation of the RdDM pathway early in development which limits CHH methylation, as well as a
loss of CG methylation prior to fertilization and potentially further active or passive loss leading to lower CG
methylation compared with the central cell [85,96]. Moreover, the effects of imprinting also take effect on the
endosperm epigenetic profile, where preferential expression of one parental allele over the other is controlled by
epigenetic silencing of the other. This phenomenon can be detected in the endosperm in plants and in the placenta
in animals, where maternally inherited genes are less DNA methylated than those from the paternal parent [95].
Instances in which DNA methylation is more dynamic could present issues when using UMRs from vegeta-

tive tissues as predictions for CREs in reproductive tissues. One possibility is that predicted CREs might
become methylated and no longer function in these tissues. Yet, these regions could still be edited to alter
expression patterns in non-reproductive tissues, for example, by removing a repressor element. More likely, the
more dynamic nature of DNA methylation in fruits and grains raises the possibility that cryptic CREs could be
uncovered in these tissues due to the removal of DNA methylation. Indeed, this is the case in tomatoes, where
cryptic binding sites for the transcription factor RIN are uncovered during ripening [86]. The same could also
be the case in cereal endosperm in some species and warrants further investigation.

Summary
• Epigenome guided improvement is already being deployed for effective modification of traits

in crops.

• The presence, absence and combination of chromatin modifications can be used to locate
genes and gene-regulatory regions in crop genomes.

• The fruits and grains of crop species may represent special cases that require further investi-
gation because patterns of DNA methylation can change in the cells that comprise these
reproductive organs.

• We foresee great potential for epigenome guided improvement in the future, most notably to
pinpoint targets for genome engineering to fine-tune gene expression.
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