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Abstract The selective, high affinity A2B adenosine
receptor (AdoR) antagonists that were synthesized by
several research groups should aid in determining the role
of the A2B AdoR in inflammatory diseases like asthma or
rheumatoid arthritis (RA) and angiogenic diseases like
diabetic retinopathy or cancer. CV Therapeutics scientists
discovered the selective, high affinity A2B AdoR antagonist
10, a 8-(4-pyrazolyl)-xanthine derivative [CVT-6883,
Ki(hA2B)=22 nM; Ki(hA1)=1,940 nM; Ki(hA2A)=3,280;
and Ki(hA3)=1,070 nM] that has favorable pharmacokinet-
ic (PK) properties (t1/2=4 h and F>35% rat). Compound 10
demonstrated functional antagonism at the A2B AdoR (KB=
6 nM) and efficacy in a mouse model of asthma. In two
phase 1 clinical trials, CVT-6883 was found to be safe, well
tolerated, and suitable for once daily dosing. A second
compound 20, 8-(5-pyrazolyl)-xanthine, has been nominat-
ed for development from Baraldi’s group in conjunction
with King Pharmaceuticals that has favorable A2B AdoR
affinity and selectivity [Ki(hA2B)=5.5 nM; Ki(hA1) >
1,000 nM; Ki(hA2A) >1,000; and Ki(hA3) >1,000 nM],
and it has been demonstrated to be a functional antagonist.
A third compound 32, a 2-aminopyrimidine, from the
Almirall group has high A2B AdoR affinity and selectivity
[Ki(hA2B)=17 nM; Ki(hA1) >1,000 nM; Ki(hA2A) >2,500;
and Ki(hA3) >1,000 nM], and 32 has been moved into
preclinical safety testing. Since three highly selective, high
affinity A2B AdoR antagonists have been nominated for
development with 10 (CVT-6883) being the furthest along

in the development process, the role of the A2B AdoR in
various disease states will soon be established.
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Abbreviations
NECA 5′-N-ethylcarboxamidoadenosine
HEK human embryonic kidney cells
cAMP cyclic adenosine monophosphate
SAR structure-activity relationship
dAUC dose-adjusted area under curve
CHO Chinese hamster ovary
BSMCs bronchial smooth muscle cells
IL-6 interleukin-6
MCP-1 monocyte chemotactic protein-1
HLFs human lung fibroblasts
OPN osteopontin
MMPs matrix metalloproteases

Introduction

The need for a selective, high affinity A2B adenosine
receptor (AdoR) antagonist, to fully establish the therapeu-
tic potential of this class of agents as anti-inflammatory and
antiangiogenic agents, has attracted the interest of several
medicinal chemistry groups around the world [1–11]. The
structural approach taken by these groups can be divided
into two classes of compounds, xanthines and non-xanthine
derivatives. The xanthine derivatives caffeine and theoph-
ylline are considered classic nonselective antagonists for
adenosine receptors (Fig. 1). Theophylline 1, which has
9 µM affinity for the A2B AdoR, displays no selectivity
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against the other AdoRs [12]. Enprofylline 2, a 3-propyl
xanthine derivative has moderate A2B affinity and low
selectivity over the other AdoRs. Following further struc-
tural exploration of the xanthine moiety by several groups,
the discovery of 8-phenylxanthines as selective A2B AdoR
antagonists was made [13–15]. Among these 8-phenyl-
xanthine derivatives, p-cyanoanilide 3 (MRS-1754) of
Jacobson et al. [16] and a negatively charged compound 4
(PSB-1115) of Muller et al. [17] stand out as selective A2B

AdoR antagonists. To address the metabolic stability of
compound 3 in human liver microsomal enzymes, Zablocki
et al. [18] synthesized compound 5 (CVT-5440) that
contains a bioisostere of the metabolically labile amide
group present in 3. Compound 5 demonstrated good affinity
for the A2B AdoR and selectivity over the other AdoRs.
Improved in vitro metabolic stability was also observed in 5
compared to 3, but 5 still has a very low systemic exposure
in rats when dosed orally, presumably due to low solubility.

Xanthines

CV Therapeutics (CVT) chemists started with these initial
leads in their search for the discovery of a selective, high
affinity A2B AdoR antagonist with good pharmaceutical
properties [19, 20]. Kalla et al. [21] have explored various
heterocycles as bioisosteric replacements for the phenyl
group at the 8-position of xanthine and discovered that the
8-(pyrazol-4-yl)xanthines display good A2B AdoR affinity
(Fig. 2). The prototypical compound 1,3-dipropyl-8-(1H-
pyrazol-4-yl)xanthine 6 (CVT-5450) has high A2B AdoR
affinity (9 nM), but displayed very low selectivity.
Following oral dosing in rats, 6 displayed very high levels

of systemic exposure; this encouraged CVT chemists to
probe the 8-(pyrazol-4-yl)xanthine ligand to increase the
selectivity [8]. Benzyl substitution on the pyrazole ring
increased the selectivity compared to the phenyl, phe-
nethyl, and phenpropyl derivatives. Optimization of the
phenyl ring substitution suggested that the electron
withdrawing groups F and CF3 at the meta-position
increased selectivity toward the A2B AdoR. Compound 7,
1,3-dipropyl-8-(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-
4-yl)xanthine that has 3-CF3 benzyl substitution on the
pyrazole ring, displayed better selectivity compared to the
unsubstituted derivative 6. Replacing the 1,3-dipropyl
groups of the xanthine core with various alkyl groups like
methyl, ethyl, butyl, and isobutyl groups suggested that
smaller alkyl groups relative to propyl increase the A2B

AdoR affinity and selectivity compared to the large groups.
Compound 1,3-dimethyl-8-(1-(3-(trifluoromethyl)benzyl)-
1H-pyrazol-4-yl)-xanthine 8 (CVT-6975) has very high A2B

AdoR affinity and selectivity [21]. This observation promp-
ted further investigation of the differential alkyl substitution
at N-1 and N-3 positions [22]. Compound 9 displayed
better affinity and selectivity compared to the dipropyl
derivative 7, but has weaker affinity and selectivity com-
pared to the dimethyl derivative 8. The 3-ethyl-1-propyl-8-
(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-xanthine 10
(CVT-6883) has very good A2B AdoR affinity, and also it
displayed good selectivity over other AdoR subtypes [22].

Investigation of the monosubstitution at the N-1 position
of the 8-pyrazolyl xanthine delivered a very high affinity
and selective A2B AdoR antagonists [23]. For example, the
1-propyl-8-(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-4-
yl)-xanthine 11 (CVT-7124) displays high A2B AdoR
affinity (6 nM) and very good selectivity. This further
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supports the Hayallah et al. observation in the 8-phenyl
xanthine series of compounds, that the monosubstitution at
the N-1 position of the xanthine core enhances the A2B

AdoR selectivity [17].
Elzein et al. replaced the phenyl group of 7 with

different heterocycles including 3-phenyl-1,2,4-oxadiazoles,
5-phenyl-1,2,4-oxadiazoles and 3-phenyl-isoxazoles as
these groups in the 8-phenyl xanthine series [18]
improved the selectivity for the A2B AdoR receptor
(Fig. 3) [24]. In this series, all the compounds display very
good selectivity regardless of the substitutions at the N-1
and N-3 positions of the xanthine core. The 1,3-dipropyl
analogue 8-(1-((5-(4-chlorophenyl)-1,2,4-oxadiazol-3-yl)
methyl)-1H-pyrazol-4-yl)-xanthine 12 and N-1 propyl, N-
3 ethyl analogues 3-ethyl-1-propyl-8-(1-((5-(4-(trifluoro-
methyl)phenyl)-1,2,4-oxadiazol-3-yl)methyl)-xanthine 13
and 3-ethyl-1-propyl-8-(1-((5-(4-(trifluoromethyl)phenyl)
isoxazol-3-yl)methyl)-1H-pyrazol-4-yl)-xanthine 14 display
high affinity and selectivity for the A2B AdoR. Similar to
the phenyl series of compounds, the N-1 monosubstituted
oxadiazole and isoxazole derivatives of 8-pyrazolyl xan-
thines displayed high affinity and selectivity for the A2B

AdoR. The N-1 propyl derivative 15 (CVT-6694) has a
very high A2B affinity (7 nM) and very weak affinity for the
A1, A2A, and A3 AdoRs [23]. The cyclopropyl methyl
analogues 16 and 17 also displayed high affinity and
selectivity for the A2B AdoR.

In summary, CVT chemists discovered several high
affinity and selective A2B AdoR antagonists. The pharma-
cophore, 8-(pyrazol-4-yl)xanthine, identified by the CVT
chemists can provide selective A2B AdoR antagonists
depending on the substitution pattern. From the above

compounds, two selective antagonists 10 (CVT-6883) and
15 (CVT-6694) were chosen for further evaluation of the
pharmacological and pharmaceutical properties. Compound
10 antagonized the 5′-N-ethylcarboxamidoadenosine
(NECA)-induced cyclic adenosine monophosphate (cAMP)
accumulation in human embryonic kidney (HEK)-A2B cells
and NIH 3T3 cells, and compound 15 completely abolished
the NECA-induced cAMP accumulation in bronchial
smooth muscle cells (BSMCs) [25] proving that these
compounds are functioning as antagonists for the hA2B

AdoR. Compound 10, when dosed orally in rats at 2 mg/kg,
displayed excellent systemic exposure with a Cmax

1,100 ng/ml and dose-adjusted area under curve (dAUC)
6,500 ng.h/ml [22] with a long half-life of 4 h (IV dosing,
rat). When dosed orally in rats compound 15 exhibited very
low systemic exposure. Therefore, compound 10 was
selected as a lead molecule and moved into CVT’s
development program.

Baraldi’s group evaluated a series of 8-heterocyclic
substituted xanthines as antagonists for the A2B AdoR
[26]. Of these derivatives, 8-(pyrazol-5-yl)xanthine deriv-
atives displayed high affinity and selectivity for the A2B

AdoR (Fig. 4). These 5-pyrazolyl derivatives 18 and 19
showed good affinity for the A2B AdoR and selectivity
over other AdoR subtypes [27]. Both compounds block
NECA-induced cAMP accumulation with IC50 values in
the nanomolar range. Further exploration of the 5-
pyrazolyl class resulted in a lead compound 20 (MRE-
2029-F20) that has high affinity and selectivity for the A2B

AdoR. The tritium-labeled derivative 21 ([3H]MRE-2029-
F20) displayed a KD value of 1.65±0.10 nM in Chinese
hamster ovary (CHO) cells expressing hA2B receptors, and
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it can be useful as a pharmacological tool in binding
studies [28].

In recent patent applications, Adenosine Therapeutics
described a series of 8-pyridyl substituted xanthines as A2B

AdoR antagonists (Fig. 5) [29]. The 8-pyridyl was further
extended by substitution with heteroaryl (23 and 25),
heterocyclyl (22), or alaninol (24) groups. According to
the patent applications, some of these derivatives (22–25)
have an A2B AdoR affinity of <100 nM, but no selectivity
data were given, so it is hard to completely evaluate the
series.

9-Deazaxanthines

9-Deazaxanthines (pyrrolo[2,3-d]pyrimidinones) were ini-
tially explored by Grahner et al. as antagonists for the A1

and A2 AdoRs (Fig. 6) [30]. In most cases, the authors
observed that the structure-activity relationships (SAR) of
9-deazaxanthines are parallel to those of xanthine deriva-
tives and also noticed an increased selectivity over A1

AdoR. The authors concluded that the xanthines and 9-
deazaxanthines bind in the same mode to the adenosine
receptors, and thus, the similar SAR. Hayallah et al. have
investigated the N-1 monosubstituted 9-deazaxanthines,

because the corresponding xanthines generally exhibit high
A2B AdoR selectivity [17]. The compound 6-phenyl-3-
propyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione 26
has displayed good A2B AdoR affinity, but it did not
exhibit good selectivity over the A1 AdoR as expected.
Vidal et al. have synthesized 8-phenyl-9-deazaxanthines
that have a sulfonamide linker at the para-position of the
phenyl group, and many compounds exhibited good A2B

AdoR affinity [31]. For instance, 27 of the above series
displayed 6 nM affinity for the A2B AdoR and displayed
good selectivity. In a recent publication, Carotti et al.
presented several 9-deazaxanthines that have piperidine
amides and piperazine amide substitution at the para-
position of the 8-phenyl group [32]. Representatives from
these classes, compounds 28 and 29 (Fig. 6), respectively,
displayed both high affinity and selectivity for the A2B

AdoR. CVT chemists have explored the 8-pyrazolyl-9-
deazaxanthines as A2B AdoR antagonists [33]. The m-F
benzyl derivative 30, 6-(1-(3-fluorobenzyl)-1H-pyrazol-4-
yl)-1,3-dipropyl-1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-
dione, has good A2B AdoR affinity, but it did not offer good
selectivity over other the AdoR subtypes. The
corresponding m-CF3 benzyl derivative 31 displayed lower
affinity for the A2B receptor than 30, but it exhibited good
selectivity for the A2B AdoR. Overall the 9-deazaxanthines
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afforded similar SAR to the parent xanthines with respect to
A2B AdoR affinity and, in most cases, higher selectivity.

Non-xanthine analogues

Two series of compounds, 2-aminopyridines and 2-amino-
pyrimidines, were published as A2B AdoR antagonists in
patent applications from Almirall Prodesfarma (Fig. 7) [34,
35]. From these series of compounds, Vidal et al. recently
published on the common core and substituents, namely, N-
heteroaryl 4′-furyl-4,5′-bipyrimidin-2′-amines, as high af-
finity and selective A2B AdoR antagonists [36]. For example,
the 2′-amino(3-pyridyl) derivative 32 (LAS38096) has a A2B

affinity of 17 nM and has very good selectivity. Similar
analogues, 2′-amino(5-pyrimidinyl) derivative 33 and 2′-
amino(6-oxo-1,6-dihydropyridin-3-yl) derivative 34, dis-

played good A2B affinity of 24 and 16 nM, respectively,
and both compounds have very good A2B AdoR selectivity
as well. Compound 32 inhibited the NECA-induced cAMP
levels in HEK-293 expressing human A2B AdoR and CHO
cells transfected with mouse A2B AdoR with IC50s of
321 nM and 349 nM, respectively. Following oral dosing
in rats (10 mg/kg), compound 32 displayed good systemic
exposure with a Cmax of 11 µM and an AUC of 16 µM/h. It
also displayed good exposure following oral dosing in
mouse and dogs. Based on its in vitro pharmacology and
pharmacokinetic profile, 32 was moved into preclinical
development.

Adenine derivatives have been explored as adenosine
receptor antagonists by several research groups (Fig. 8) [37,
38]. Cristalli and coworkers reported a series of 2-
substituted 9-alkyl derivatives as selective A2B receptor
antagonists (not shown) [39]. Harada et al. at Eisai explored
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the 2-alkynyl-8-aryl-9-methyl adenine derivatives as A2B

AdoR antagonists [40]. Of these derivatives, compound 35
with a 3-F phenyl substitution at the 8-position displayed
good A2B affinity, but no binding selectivity over other
AdoR subtypes (Fig. 8). Substituting the 3-F phenyl of 35
with a 2-furyl group provided compound 36 with good A2B

affinity, but again with no selectivity. Further optimization
of the 9-position of the adenine derivative 35 led to the 3-
benzamide derivative 37 with excellent A2B affinity [41].
Compound 37 displayed good selectivity over the A1 AdoR
subtype only. These analogues inhibited NECA-induced
cAMP production in CHO K1 cells expressing the human
A2B AdoR demonstrating that these compounds are

antagonists. Further optimization of the SAR may lead to
selective A2B antagonists in the adenine series.

In recent publications, scientists at OSI Pharmaceuticals have
shown that 2-phenyl-7-deazaadenines (pyrrolopyrimidines)
display good A2B AdoR affinity (Fig. 8) [42]. A lead
compound 38 in the pyrrolopyrimidine series demonstrated
excellent A2B AdoR affinity and promising selectivity. A
tritium-labeled analogue 39 ([3H]OSIP-339391) of 38 was
synthesized, which displayed a KD value of 0.41±0.06 nM for
binding to human A2B AdoR expressed in HEK-293 cells.
This represents a selective and high affinity radioligand that
can be a useful tool in further characterization of the
pharmacology of the A2B AdoR.

Fig. 6 Deazaxanthines as A2B

antagonists

Fig. 7 Almirall A2B antagonists
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Pharmacology discussion

Since the goal of obtaining a high affinity and selective A2B

antagonist has been achieved by several research groups,
the agents obtained have been used to establish the anti-
inflammatory properties in both in vitro cellular studies
and in asthma models. CVT chemists have synthesized
several A2B-selective antagonists including 15 (CVT-
6694) and 10 (CVT-6883). Following stimulation with a
nonselective agonist NECA, compound 15 attenuated the
increased production of both interleukin (IL)-6 and
monocyte chemotactic protein-1 (MCP-1) in bronchoal-
veolar lavage smooth muscle cells [25]. These experi-
ments suggest a novel mechanism whereby adenosine
acts as a proinflammatory mediator in the bronchiole
airways. Similarly, A2B AdoR subtype is the predominant
AdoR expressed in human lung fibroblasts (HLFs), which
on activation by NECA increases the release of IL-6 in a
concentration-dependent manner and induces the differen-
tiation of fibroblast into myofibroblasts [43]. Synergy
exists between hypoxia and NECA activation of the A2B

AdoR in HLFs, thus resulting in a pronounced increase in
the release of IL-6. The A2B antagonist 15 completely
abolished the augmented effect of NECA on the IL-6
release; however, it as expected did not affect the hypoxia-
induced release of IL-6 [44]. In a mouse asthma model
(ragweed challenge), compound 10 (dose: 1 mg/kg IP,
14-day treatment) was as effective as montelukast in
reducing AMP-induced airway reactivity [48]. Compound
10 reduced significantly bleomycin (3.0 U/kg)-induced
pulmonary fibrosis and inflammation in mice [47].
Furthermore, 10 (dose: 1 mg/kg IP b.i.d.) relative to

vehicle controls reduced lung fibrosis and levels of
macrophage-derived mediators of lung remodeling [IL-6,
osteopontin (OPN), transforming growth factor (TGF)-β1,
and matrix metalloproteases (MMPs)] in adenosine deam-
inase-deficient (ADA -/-) mice [47].

The selective A2B AdoR antagonist, MRE-2029-F20
synthesized by Baraldi’s group, shows the inhibition of
cAMP levels in neutrophils, lymphocytes, and HMC1
cells that naturally express the A2B AdoR that may play
a role in inflammatory diseases [45]. The selective A2B

AdoR antagonist 32 (LAS38096) synthesized by Almirall
has been shown to inhibit the NECA-induced produc-
tion of IL-6 in a dose-dependent manner in both human
and mouse fibroblasts [36]. This further confirms the
anti-inflammatory properties of A2B AdoR antagonists.

Conclusion

Compound 10 (CVT-6883), a potent selective, orally
available, and potentially first in class A2B AdoR
antagonist, has been entered into clinical trials by CV
Therapeutics [46]. The data from two phase 1 clinical
trials, a single ascending dose study in 24 healthy
volunteers and a multiple ascending dose study in 30
volunteers, demonstrated that CVT-6883 was safe and
well tolerated with no serious adverse events reported.
Furthermore, the pharmacokinetic results indicated the
suitability of CVT-6883 for once daily chronic dosing.
The potential utility of CVT-6883 is in several disease
areas including asthma, chronic obstructive pulmonary
disease, and pulmonary fibrosis [47, 48].

Fig. 8 Purines and
7-deazapurines as A2B

antagonists
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The discovery of three selective, high affinity A2B AdoR
antagonists (10, 20, and 32) should aid in determining the
pharmacological role of the A2B AdoR in various disease
states in animal models and in clinical trials.
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