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Objective: To develop and evaluate the performance of a magnetic resonance imaging
(MRI)-based radiomics nomogram for prediction of response of patients with muscle-
invasive bladder cancer (MIBC) to neoadjuvant chemotherapy (NAC).

Methods: A total of 70 patients with clinical T2-4aN0M0 MIBC were enrolled in this
retrospective study. For each patient, 1316 radiomics features were extracted from T2-
weighted images (T2WI), diffusion-weighted images (DWI), and apparent diffusion
coefficient (ADC) maps. The variance threshold algorithm and the Student’s t-test or
the Mann–Whitney U test were applied to select optimal features. Multivariate logistic
regression analysis was used to eliminate irrelevant features, and the retained features
were incorporated into the final single-modality radiomics model. Combined radiomic
models were generated by combining single-modality radiomics models. A radiomics
nomogram, incorporating radiomics signatures and independent clinical risk factors, was
developed to determine whether the performance of the model in predicting tumor
response to NAC could be further improved.

Results: Based on pathological T stage post-surgery, 36 (51%) patients were classified
as good responders (GR) and 34 (49%) patients as non-good responders (non-GR). In
addition, 3 single-modality radiomics models and 4 combined radiomics models were
established. Among all radiomics models, the combined radiomics model based on
T2WI_Score, DWI_Score, and ADC_Score yielded the highest area under the receiver
operating characteristics curve (AUC) (0.967, 95% confidence interval (CI): 0.930–0.995).
A radiomics nomogram, integrating the clinical T stage and 3 single-modality radiomics
models, yielded a higher AUC (0.973, 95%CI: 0.934–0.998) than other combined
radiomics models.
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Conclusion: The proposed MRI-based radiomics nomogram has the potential to be
used as a non-invasive tool for the quantitatively prediction of tumor response to NAC in
patients with MIBC.
Keywords: muscle-invasive bladder cancer, neoadjuvant chemotherapy, MRI, radiomics, nomogram
INTRODUCTION

Neoadjuvant chemotherapy (NAC), as the standard treatment
for muscle-invasive bladder cancer (MIBC), can significantly
improve overall survival (OS) (1, 2). However, only 29–55% of
patients with MIBC have shown a favorable response to NAC (3,
4). Non-responders are unnecessarily exposed to treatment-
related adverse effects, and delay in definitive surgical
treatment may have profound effects on OS (5). Therefore,
accurate identification of tumor response to NAC is critical to
develop more efficacious therapeutic strategies.

Some studies have shown that the mutations in single or
multiple genes and distinct molecular subtypes of bladder cancer
were associated with the efficacy of NAC for bladder cancer (6–9).
However, genetic testing and genomic clustering analysis are
invasive and expensive. Moreover, it is difficult to evaluate the
potential benefits of integrating these biomarkers into decision-
making on the use of NAC. While in the radiology, magnetic
resonance imaging (MRI), as a reproducible and non-invasive
examination method, possesses extensive clinical applications and
unique advantages in predicting the efficacy of treatment (10–13).
Previously, diffusion-weighted MRI (DW-MRI) has been used for
the prediction of therapeutic responses of patients with MIBC
noninvasively (14, 15). However, the above-mentioned studies
have only concentrated on a single-modality with limited imaging
data, therefore, multi-parameter medical imaging studies need to
be conducted.

To date, with advances in high-throughput post-processing
techniques, radiomics, combining several quantitative imaging
features, has exhibited significant advantages in providing more
valuable information about the tissue characteristics compared
with visual inspection (16, 17). Radiomics, a noninvasive and
reliable method, has been extensively used in oncology to
improve disease diagnosis and to predict tumor response to
treatment in rectal cancer, breast cancer, and cervical cancer (18–
21). Nonetheless, the clinical value of radiomics in MIBC
patients has still remained elusive. Therefore, the present study
aimed to investigate the capability of MRI-based radiomics
models to predict response of patients with MIBC to NAC.
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MATERIALS AND METHODS

Patients
We enrolled 112 consecutive patients withMIBCwhowere treated
with NAC in our center between September 2015 and May 2021.
The study flowchart is shown in Figure 1. The inclusion criteria
were as follows: (a) urothelial carcinoma confirmed by biopsy,
(b) clinical stage T2-4aN0M0, (c) patients who underwent NAC
followed by surgery, (d) patients who received MRI of bladder
before NAC and biopsy. The exclusion criteria were as follows:
(a) patients who did not undergo surgery after the completion of
NAC in our hospital (n=21), (b) patients who had other
malignancies (n=6), (c) unavailability of clinical data or
pretreatment MR images (n=9), (d) poor imaging quality
making difficulties in segmentation (n=6). Finally, a total of 70
patients were included in the present study. Baseline clinical data,
including age, gender, pretreatment histologic grade, number of
lesions, clinical T stage (cT), pathological T stage (pT), and
treatment were derived from medical records.

Treatment Protocol and
Therapeutic Effects
All patients received 2-4 cycles of gemcitabine/cisplatin-based NAC,
which was consisted of 1,000 mg/m2 gemcitabine on days 1 and 8
and 75 mg/m2 cisplatin on day 2 via intravenous infusion every 21
days. After NAC, surgery was performed according to the restaging
of the remaining tumor, which was evaluated byMRI of the bladder.
Patients with non-MIBC (≤ cT1) received transurethral resection of
bladder tumor (TURBT) and concurrent chemoradiotherapy.
Patients with MIBC (≥ cT2) underwent partial or radical
cystectomy with pelvic lymphadenectomy.

The evaluation of tumor response to NAC was carried out
according to the pT stage after surgery. Patients with non-MIBC
(≤ pT1) were categorized as good responders (GR), while those
with MIBC (≥ pT2) were categorized as non-good responders
(non-GR).

MRI
All patients underwent MRI with eight-channel phased array
body coil through a 3.0-T scanner (GE Discovery 750; GE
Healthcare, Milwaukee, WI, USA). T2-weighted images
(T2WI), DW images (DWI), and apparent diffusion coefficient
(ADC) maps derived from DWI were obtained. Further imaging
data are presented in Table 1.

Tumor Segmentation and
Feature Extraction
Image segmentation was performed by two radiologists
independently (reader 1 and reader 2 with 3 and 23 years of
May 2022 | Volume 12 | Article 878499
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experience in interpreting genitourinary MR images,
respectively). These two radiologists were blinded to patients’
clinical data, while they had access to all MR images to verify the
lesion boundaries and exclude areas of necrosis or vessels. For
patients with multiple lesions, the one with the highest clinical T
stage or the largest tumor with the equal T stage was selected for
analysis. Regions of interest (ROIs) were manually delineated
slice-by-slice through the whole tumor on T2WI and DWI (b
value of 1000 s/mm2) sequences, respectively, using ITK-SNAP
(www.itksnap.org). Contours of ROIs delineated on DWI were
saved and imported into the corresponding ADC maps.

Radiomics features were extracted automatically using the
Artificial Intelligence Kit software (ver. 3.3.0; A.K., GE
Healthcare) based on the open-source Pyradiomics python
package. A total of 1316 radiomics features were extracted
from T2WI, DWI, and ADC maps of each patient, which
Frontiers in Oncology | www.frontiersin.org 3
included 18 first-order histogram features, 14 shape-based
features, 24 gray-level co-occurrence matrix (GLCM) features,
16 gray-level size zone matrix (GLSZM) features, 16 gray-level
run length matrix (GLRLM) features, 14 gray-level dependence
matrix (GLDM) features, 744 wavelet features, 5 neighboring
gray-tone difference matrix (NGTDM) features, 186 Laplacian of
Gaussian (LoGsigma=2.0/3.0) features, and 279 local binary
pattern features.

The interclass correlation coefficients (ICCs) were calculated
to investigate the consistency of features derived from ROIs
drawn by two radiologists. Those stable features with ICCs ≥ 0.75
were applied for the subsequent feature selection process. Before
the feature selection, data preprocessing and feature
normalization were performed. When the data exceeded the
range of the mean value and standard deviation, the outliers were
replaced by the median of the specific variance vector.
TABLE 1 | MRI sequence parameters.

Parameters Axial T2WI Sagittal T2WI DWI

Repetition time (ms) 5043 6240 2288
Echo time (ms) 102 102 58.4
No. of echo trains per section 21 21 1
Matrix size 320×256 320×256 128×160
Field of view (cm×cm) 20×20 22×22 38×38
Slice thickness (mm) 3 3 5
Interslice gap (mm) 0.3 0.3 0.3
Number of excitations 2 1 4
Acquisition time (sec) 146 182 32
b-value (sec/mm2) 0, 1000
May 2022 | Volume 12 | Articl
FIGURE 1 | Flowchart of study design. MIBC, muscle-invasive bladder cancer.
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Selection of Radiomics Features and
Construction of Radiomics Models
The feature selection was performed within each modality of the
T2WI, DWI, and ADC maps. Firstly, the variance threshold
algorithm (variance threshold selected at 1.0, so that features
with variance ≥ 1.0 were selected) was applied for dimensionality
reduction. Secondly, we used the Student’s t-test or the Mann–
Whitney U test to eliminate irrelevant features, and features with
P <0.05 were selected. Finally, the multivariate logistic regression
analysis was used to select the most significant features. The
radiomics scores (Radscore), which included the T2WI_Score,
DWI_Score, and ADC_Score, were calculated via the linear
combination of the selected features weighted by their
respective coefficients from each patient.

The combined radiomics models were established by
combining single-modality radiomics models with all possible
combinations using multivariable logistic regression. The
performance of each radiomics model in predicting tumor
response to NAC was evaluated by the receiver operating
characteristic (ROC) curve analysis. The DeLong test was used
to compare differences among radiomics models.

Nomogram Construction
The differences in clinical factors between GR and non-GR groups
were compared using univariate analysis. The radiomics nomogram
was constructed by integrating the independent clinical risk factors
and Radscore of the single-modality radiomics model. The predictive
performance of the nomogram was estimated based on the area
under the receiver operating characteristics curve (AUC), accuracy,
specificity, and sensitivity. Afterwards, the calibration curve was used
to depict the performance-associated characteristics of the radiomics
models graphically. Finally, decision curve analysis was performed to
evaluate the clinical applicability of multimodal radiomics by
quantifying the net benefit at different threshold probabilities. The
DeLong test was used to compare differences among the radiomics
models and the nomogram.

Statistical Analysis
The statistical analysis was performed using R 3.4.3 software (R
Core Team, Vienna, Austria). The independent t-test or the
Mann-Whitney U test was used for the analysis of continuous
variables. Categorical variables were assessed by the Chi-square
test or the Fisher’s exact test, followed by Bonferroni correction.
A two-tailed P < 0.05 was considered statistically significant.
RESULTS

Patients’ Characteristics
The relevant clinical characteristics of patients are summarized
in Table 2. In our study, there were 36 (51%) and 34 (49%)
patients in the GR and non-GR groups, respectively. Only cT
stage was significantly different between the GR and non-GR
groups (P-adjusted < 0.0167). Other clinical characteristics were
not statistically different between the GR and non-GR groups (P
= 0.28–0.99).
Frontiers in Oncology | www.frontiersin.org 4
Selection of Radiomics Features and
Construction of Radiomics Models
After feature selection, three optimal radiomics features were
retained from the T2WI, DWI, ADC maps, respectively. The
selected features for each single-modality radiomics signature
with non-zero coefficients are presented in the Radscore
calculation formula. The single-modality radiomics signature
was established with a Radscore calculated as follows:

T2WI _ score =  0:13  +  (1:40 

�  log _ sigma _ 3 _ 0 _mm_ 3D_NGTDM_

Contrast +  1:17

� wavelet _ LowHighHigh _GLDM_

DependenceVariance  –  1:00 �  wavelet _HHH_NGTDMÞ
DWI _ score   ¼   0:12 + ( �0:56

� wavelet _  LowHighHigh  _GLCM_
Correlation  +  0:76 

�  wavelet _ LowHighHigh  _ firstorder _
Entropy  –  0:66 

�  wavelet _ LowLowLow _GLCM_
Correlation)
ADC_ score = 0:18  +  (0:94 

�  wavelet _HighLowLow _GLRLM_
RunEntropy  +  0:82 

� wavelet _ LowLowLow _ firstorder _
10Percentile  +  0:70 

� wavelet _ LowLowHigh _GLCM_
DifferenceAverage)

The combined radiomics models were constructed by integrating
different single-modality radiomics models derived from each
modality (T2WI, DWI, and ADC maps) using the following
formulas:

ModelT2WI+DWI = – 0:12 + (0:94�  Radscore _ T2WI  + 0:78 �
Radscore _DWIÞ
ModelT2WI+ADC = 0:05  +  (1:16 �  Radscore _ T2WI  +  1:49 �
Radscore _ADCÞ
ModelDWI+ADC = 0:01 + (0:95 �  Radscore _DWI  +  1:00 �
Radscore _ADCÞ
ModelT2WI+DWI+ADC =  0:02  +  (1:19 �  Radscore _

T2WI  +  1:01 �  Radscore _DWI +  1:69 �  Radscore _ADC)

Diagnostic Performance of the
Radiomics Models
In total, three single-modality radiomics models and four combined
radiomics models were established. The performances of all the
radiomics models in predicting the tumor response to NAC are
shown in Table 3 and Figure 2. Among single-modality radiomics
May 2022 | Volume 12 | Article 878499
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models, T2WI yielded a higher AUC of 0.890 [95% confidence
interval (CI), 0.639–0.831] than others. The combined radiomics
model of Radscore_T2WI, Radscore_DWI, and Radscore_ADC
(ModelT2WI+DWI+ADC) yielded the highest AUC, sensitivity, and
specificity of 0.967 (95% CI, 0.930–0.995), 0.889, and 0.941,
respectively, for predicting the tumor response to NAC.

Development and Performance of the
Radiomics Nomogram
A radiomics nomogram was constructed by integrating the
clinical T stage and Radscore_T2WI, Radscore_DWI, and
Radscore_ADC using the following formula (Figure 3):
Frontiers in Oncology | www.frontiersin.org 5
Modelnomogram = – 1:92  +  (1:60 � clinical _ T _ stage  +  1:33

�  Radscore _ T2WI +  0:69 

�  Radscore _DWI  +  1:53 

�  Radscore _ADC)

The calibration curve of the radiologic nomogram showed a
good agreement between the probability of tumor response to
NAC assessed by the nomograms and the actual probability
(Figure 4). The Hosmer–Lemeshow test yielded a non-
significant result (P = 0.785), which indicated no departure
TABLE 3 | Diagnostic performance of all radiomics models and the nomogram.

AUC (95%CI) Sensitivity Specificity PPV NPV Accuracy

ModelT2WI 0.890 (0.639,0.831) 0.639 0.971 0.958 0717 0.800
ModelDWI 0.768 (0.619,0.803) 0.861 0.618 0.705 0.808 0.743
ModelADC 0.796 (0.694,0.867) 0.806 0.676 0.906 0.667 0.743
ModelT2WI+DWI 0.913 (0.648,0.832) 0.694 0.971 0.962 0.750 0.829
ModelT2WI+ADC 0.959 (0.684,0.866) 0.861 0.941 0.939 0.865 0.900
ModelDWI+ADC 0.867 (0.712,0.871) 0.861 0.765 0.795 0.839 0.814
ModelT2WI+DWI+ADC 0.967 (0.930,0.995) 0.889 0.941 0.941 0.889 0.914
Modelnomogram 0.973 (0.934,0.998) 0.944 0.941 0.944 0.941 0.943
May 2022
 | Volume 12 | Arti
AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive-predictive value; NPV, negative-predictive value; cT, clinical T stage.
TABLE 2 | Characteristics of patients with MIBC.

Characteristics No. of patients Good Responder (n = 36) Non-Good Responder (n = 34) P value

Age* (years old, mean ± SD) 61.9 ± 8.3 61.1 ± 9.1 62.8 ± 7.4 0.39
Gender
Male 62 30 (83%) 32 (94%) 0.30
Female 8 6 (17%) 2 (6%)

Number of lesions 0.99
Solitary 48 24 (64%) 24 (60%)
Multiple 22 12 (36%) 10 (40%)

Clinical T stage (cT) 0.004
cT2 21 17 (55%) 4 (28%)
cT3 43 17(39%) 26 (64%)
cT4a 6 2 (6%) 4 (8%)

Histological grade 0.28
Low grade 14 9 (36%) 5 (36%)
High grade 56 27 (64%) 29 (64%)

NAC courses 0.38
2 18 7 (19%) 11 (32%)
3 32 19 (53%) 13 (38%)
4 20 10 (28%) 10 (30%)

Surgery N/A
Radical cystectomy + PLND 23 1 (12%) 22 (60%)
Partial cystectomy + PLND 9 3 (21%) 6 (12%)
TURBT+CRT 38 32 (67%) 6 (28%)

Pathological Stages (pT) N/A
pT0 2 2 (5%)
pTa 1 1 (3%)
pTis 1 1 (3%)
pT1 32 32 (89%)
pT2 13 13 (38%)
pT3 15 15 (44%)
pT4 6 6 (18%)
cle
Except where indicated, data include number of participants, with percentages in parentheses. SD, standard deviation, MIBC,muscle-invasive bladder cancer; TURBT,transurethral
resection of bladder tumor; NAC,neoadjuvant chemotherapy; CRT, chemoradiotherapy; PLND,pelvic lymphadenectomy; N/A,not applicable; RC, radical cystectomy.
*Data are presented as mean ± standard deviation.
878499
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from the goodness of fit. The nomogram yielded AUC,
sensitivity, and specificity of 0.973 (95% CI: 0.934–0.998),
0.944, and 0.941, respectively, for predicting the tumor
response to NAC (Table 2). The results of Decision curve
Frontiers in Oncology | www.frontiersin.org 6
analysis indicated that when the threshold probability was
between 0 and 0.96, the net benefit of using the radiomics
model to predict the tumor response to NAC was greater than
that of the all or none scheme (Figure 4).
FIGURE 3 | Nomogram to predict the probability of becoming a good responder after neoadjuvant chemotherapy.
FIGURE 2 | Area under the receiver operating characteristics curves of each radiomics model.
May 2022 | Volume 12 | Article 878499
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DISCUSSION

Noninvasively predicting tumor response to NAC in patients
with MIBC is of great significance. In previous studies, MRI had
achieved good performances in predicting tumor response to
treatment (10, 14). Yoshida et al. reported that mean ADC value
(before treatment) was a potential biomarker for predicting
pathological complete response (pCR) of MIBC patients to
chemoradiotherapy (10). Nguyen et al. showed that histogram
analysis of ADC value may provide valuable information to
predict the response to NAC prior to the treatment (14).
Although these results indicated that ADC value had a great
potential in predicting treatment response, their limitations lay
in the small sample size and limited imaging information.
Therefore, further research and exploration are needed.

As a new non-invasive technique, radiomics can provide
more information by extracting high-throughput features from
medical images. However, few previous studies have shown that
radiomics features considerably depend on various MR
acquisition/reconstruction scenarios and pre-processing steps
(i.e., normalization and quantization) (22, 23). To avoid the
influences of these factors, we chose MR images from the same
MR scanner with the same scanning parameters. In the present
study, the pretreatment radiomics nomogram, incorporating
clinical T stage with the single-modality radiomics model, had
a higher predictive capability than the radiomic models alone for
prediction of response of patients with MIBC to NAC.

We used the radiomics approach to extract a large number of
quantitative features from T2WI, DWI, and ADC maps. Of the
optimal features selected, wavelet-transformed features
accounted for the majority, which was consistent with previous
studies (24, 25). Zhao et al. demonstrated that most features
selected in their radiomics nomogram were wavelet-transformed
features (24). Another study showed that wavelet-transformed
textures improved the performance of the model in predicting
response of patients with breast cancer to NAC (25). These
Frontiers in Oncology | www.frontiersin.org 7
studies revealed that wavelet-transformed features may be the
key component in radiomic models.

In our study, a significant difference was found in cT stage
between GR and non-GR groups. Lesions with cT2 stage
accounted for a larger proportion than lesions with cT3 stage in
the GR group, while a larger proportion of lesions with cT3 stage
was found in the non-GR group. This indicated that tumors with a
lower cT stage were more likely to have a good response to NAC.

We investigated differences in the performance of combined
radiomics models and single-modality radiomics models. The
ModelT2WI achieved the best predictive performance with the
highest AUC among the single-modality radiomics models. This
revealed that the T2WI sequence might have a preferable effect on
predicting tumor response to NAC, which was similar to the
findings of previous studies (26, 27). Among combined radiomics
models, ModelT2WI+DWI+ADC based on anatomical and functional
imaging exhibited a better predictive performance than single-
modality radiomicsmodels (28). The nomogram, which combined
the clinical T stage with Radscores, preserved the significant
features of each model and yielded the highest AUC in
predicting tumor response to NAC. The calibration curves
further highlighted the accuracy of the prediction performance.
The DCA clearly showed that the nomogram may provide a
greater net benefit than the “treat all” or “treat none” strategies.

In the era of precision medicine, the accuracy of prediction
can only be improved via comprehensively analyzing all useful
information. Previous studies have shown that molecular
subtype, mRNA expression analysis, and gene mutations have
the potential to predict pCR of MIBC patients to NAC (8, 9, 29).
However, the performance of biomarkers in predicting the
efficacy of NAC is not promising. Moreover, the use of
biomarkers to predict the efficacy of NAC for MIBC patients
has still some limitations. Genetic testing and genomic clustering
analysis are invasive, expensive, and subjected to limitations of
tumor biopsy samples. To date, no biomarkers have been
incorporated into routine clinical practice. Importantly, this
A B

FIGURE 4 | Calibration curves and decision curve analysis (DCA) of the nomogram. Calibration curves for the radiomics nomogram (A). The Y-axis represents
actual outcome of response to neoadjuvant chemotherapy, and the X-axis represents the predicted probability. The closer the fit of the diagonal red line to the ideal
dotted line indicates the predictive accuracy of the nomogram. DCA for the radiomics nomogram (B). The Y-axis represents the net benefit. The X-axis represents
the threshold probability. The net benefit of the nomogram is greater than that of the all or none scheme at a wide range of threshold probabilities.
May 2022 | Volume 12 | Article 878499
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study is the first attempt to explore the nomogram incorporating
high-throughput MRI-based radiomics features with clinical T
stage for individualized prediction of response of MIBC patients
to NAC. The nomogram achieved a favorable performance in
quantitatively predicting tumor response to NAC. The
nomogram may assist clinicians to make clinical decisions and
develop further effective treatments. Based on this nomogram,
for those patients who might not have a good response to NAC,
radical cystectomy with lymph node dissection would be
preferred (30).
LIMITATIONS

There are several limitations in the present study. Firstly, due to the
small sample size, no validation of the model using a separate cohort
was performed, which might cause overestimation of the predictive
performance of the radiomics nomogram. Secondly, all the MR
images were acquired from a single institution with the same
scanner. Thirdly, for cases with multiple tumors, we only
analyzed the lesion with the highest clinical T stage or the largest
one with the same T stage, which might lead to selection bias.
Hence, further multicenter study with a larger sample size is
required, and it is essential to indicate whether MRI-based
radiomics can predict the OS of patients with MIBC
undergoing NAC.
CONCLUSIONS

The proposed MRI-based radiomics nomogram, integrating
radiomics features with MRI-determined cT stage, has the
potential to accurately predict tumor response to NAC and it
may enable clinicians to optimize clinical decision-making in
patients with MIBC.
Frontiers in Oncology | www.frontiersin.org 8
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