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Simple Summary: Although genome-wide association studies (GWAS) have been carried out within
a variety of cattle breeds, they are mainly based on the accumulated 305-day lactation yield traits
estimated by summing the test-day recorded every day during the lactation period, or combining
the weekly or monthly test-day records by linear interpolation. Since the additive genetic variance
for milk yield and composition changes during lactation, the genetic effects of QTL related to these
traits are not constant during the lactation period. Therefore, a better understanding of the genetic
architecture of milk production traits in different lactation stages (e.g., beginning, peak, and end
stages of lactation) is needed. The aim of this study was to detect genomic loci associated with
lactation performance during 9 to 50 days in milk (DIM) in Holstein dairy cows. Candidate genes
identified for milk production traits showed contrasting results between the EARLY and PEAK stages
of lactation. Based on the results of this study, it can be concluded that in any genomic study it should
be taken into account that the genetic effects of genes related to the lactation performance are not
constant during the lactation period.

Abstract: This study aimed to detect genomic loci associated with the lactation performance during 9
to 50 days in milk (DIM) in Holstein dairy cows. Daily milk yield (MY), fat yield (FY), and protein
yield (PY) during 9 to 50 DIM were recorded on 134 multiparous Holstein dairy cows distributed in
four research herds. Fat- and protein-corrected milk (FPCM), fat-corrected milk (FCM), and energy-
corrected milk (ECM) were predicted. The records collected during 9 to 25 DIM were put into the
early stage of lactation (EARLY) and those collected during 26 to 50 DIM were put into the peak stage
of lactation (PEAK). Then, the mean of traits in each cow included in each lactation stage (EARLY
and PEAK) were estimated and used as phenotypic observations for the genome-wide association
study. The included animals were genotyped with the Illumina BovineHD Genotyping BeadChip
(Illumina Inc., San Diego, CA, USA) for a total of 777,962 single nucleotide polymorphisms (SNPs).
After quality control, 585,109 variants were analyzed using GEMMA software in a mixed linear model.
Although there was no SNP associated with traits included at the 5% genome-wide significance
threshold, 18 SNPs were identified to be associated with milk yield and composition at the suggestive
genome-wide significance threshold. Candidate genes identified for milk production traits showed
contrasting results between the EARLY and PEAK stages of lactation. This suggests that differential
sets of candidate genes underlie the phenotypic expression of the considered traits in the EARLY and
PEAK stages of lactation. Although further functional studies are needed to validate our findings
in independent populations, it can be concluded that in any genomic study it should be taken into
account that the genetic effects of genes related to the lactation performance are not constant during
the lactation period.
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1. Introduction

Milk performance traits are among complex traits affecting profitability in dairy cattle.
These traits are influenced by management strategies, environmental conditions, physi-
ological stages, and genetic merit of the animal [1,2]. Over the last decades, advances in
genome sequencing technologies and availability of a huge number of genetic variants in
the form of single nucleotide polymorphisms (SNP) make it possible to identify genome
regions underlying complex traits such as lactation performance in dairy cattle [3,4]. Al-
though genome-wide association studies (GWAS) carried out on a variety of cattle breeds
identified many genomic regions and candidate genes associated with milk production
traits, they are mainly based on the estimated breeding value, daughter yield deviation,
and deregressed proof for the 305-day lactation yield traits [5–9]. The 305-day milk yield
is estimated by summing the test-day recorded every day during the lactation period,
or combining the monthly test-day records by linear interpolation [10]. It has been well
documented that the additive genetic variance for milk yield and composition changes dur-
ing lactation [11–13]; therefore, the genetic effects of genomic regions associated with these
traits are not constant during the lactation period. Hence, many genomic regions whose
genetic effects change during the lactation might not be detected in this approach [1,14].
Therefore, a better understanding of the genetic architecture of milk production traits in
different lactation stages (e.g., beginning, peak, and end stages of the lactation) is needed.
Previous studies indicated that heritability in the peak of lactation is higher than in other
lactation phases; therefore, a comparison of the main genomic regions associated with the
EARLY and PEAK stages of lactation would promote useful information about the genetic
architecture of milk production traits [13,15]. The aim of this study was to detect genomic
loci associated with lactation performance during 9 to 50 days in milk (DIM) in Holstein
dairy cows.

2. Materials and Methods
Animals and Phenotype

The used dataset consisted of daily milk yield (MY), fat yield (FY), protein yield (PY),
fat percentage (FP), and protein percentage (PP) recorded during 9 to 50 days in milk (DIM)
on 134 multiparous Holstein dairy cows in 4 research herds (Aarhus University, Aarhus,
Denmark; UCD Lyons Research farm, University College Dublin, Ireland; Agri-Food and
Biosciences Institute, Belfast, UK; and Leibniz Institute for Farm Animal Biology, Dum-
merstorf, Germany). The diet, fed as a total mixed ration (TMR), consisted of corn silage,
alfalfa hay, barley grain, fat powder, beet pulp, and feed additives. The included animals
were milked two times daily (morning and evening). Daily milk yield was estimated as
the sum of the morning and evening milk yields. The milk sample used for measuring fat
and protein contents was composed of 50% morning milk and 50% evening milk. Milk
samples were analyzed for composition of protein and fat content by mid-infrared analysis
(Foss, Hillerød, Denmark). Fat- and protein-corrected milk (FPCM) yield was predicted as:
FPCM kg = MY kg × (0.337 + 0.116 FP% + 0.06 × PP%). Energy-corrected milk (ECM)
yield was predicted as: ECM kg = MY kg × (0.25 + 0.122 × FP% + 0.077 × PP%) [16]. Fat-
corrected milk (FCM) yield was predicted as: FCM kg = 0.40 × MY kg + 15 × FY kg [17].
The records collected (predicted) during 9 to 25 DIM were put into the early stage of
lactation (EARLY) and those collected during 26 to 50 DIM were put into the peak stage of
lactation (PEAK). Then, means of traits in each cow included in each lactation stage (EARLY
and PEAK) were estimated and used as phenotypic observations for the genome-wide
association study.

3. Genome-Wide Association Study

The included animals were genotyped using the Illumina BovineHD Genotyping
BeadChip (Illumina Inc., San Diego, CA, USA) for more than 777,000 single nucleotide
polymorphisms (SNP). Quality control for SNPs was performed using PLINK [18]. Non-
mapped SNPs, and those with minor allele frequency (MAF) less than 5% were excluded.
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SNPs with call rate less than 95%, or a Hardy–Weinberg equilibrium p value less than
6.4 × 10−8 were excluded. In total, 585,109 SNPs were kept for the analyses. Genome-wide
association studies (GWAS) were performed as described by Tetens et al. [19] using a linear
mixed model approach through GEMMA [20]. The centered relatedness matrix was created
using all SNPs. The association test was then performed with phenotype, genotype, and the
centered relatedness matrix files. Univariate linear mixed models were used, and each SNP
was fitted as a covariate. The likelihood ratio test was used for each SNP against the null
hypothesis of g = 0 using the following statistical model.

y = Wα+ xβ+ u + ε (1)

where y is a n × 1 vector of phenotype values for the individuals (milk yield and compo-
sition); W is an n × c matrix of the included fixed effect (mean, herd, parity, calving year,
calving season, and age at the first calving (AFC, three classes)); α is an c × 1 vector of the
corresponding coefficients including the intercept; x is a vector of marker genotypes; β is
the vector of marker effects; u is the vector of random polygenic effects with a covariance
structure as u∼N(0, KVg), where K is genomic based additive genetic relationship matrix,
and Vg is the polygenic additive variance; and ε is the vector of residuals with a covari-
ance stricter as ε∼N(0, IVe), where I is an identity matrix and Ve is the residual variance.
The Bonferroni method was used to account for multiple comparisons [21]. The thresh-
olds of the Bonferroni corrected p values for suggestive and 5% genome-wide significance
association were set as 1.74 × 10−6 (1 divided by the number of SNPs) and 8.68 × 10−6

(0.05 divided by the number of SNPs), respectively [22].

4. Gene Prospection

In a post-GWAS study, gene ontology enrichment analysis can be performed to inves-
tigate pathways and biological processes that are shared by candidate genes identified for
a given trait [23]. In this study, to identify possible candidate genes associated with studied
milk production traits, genes located within the 100 kb flanking regions of associated SNPs
were identified using the Biomart tool [24] embedded in the Ensembl Genes database ver-
sion 93 (https://www.ensembl.org/index.html, accessed on 15 October 2018). The bovine
genome UMD 3.1 (https://oct2018.archive.ensembl.org/Bos_taurus/Info/Index, accessed
on 15 October 2018) was used as the reference genome. The list of candidate genes identified
for each trait was uploaded to Enrichr to perform gene ontology (GO) enrichment analy-
ses [25,26]. Significantly enriched terms were identified based on the retrieved adjusted
p value.

5. Results

Descriptive statistics for the included traits in the EARLY and PEAK stages of lactation
are presented in Table 1. The cows were genotyped for a total of 777,962 SNPs, of which
585,109 passed all quality control criteria and were used for the GWAS analysis. Manhattan
and Q-Q plots of SNPs associated with the considered traits in the EARLY and PEAK stages
of lactation are presented, respectively, in Figures 1 and 2. Although there was no SNP
associated with included traits at the 5% genome-wide significance threshold, 18 SNPs were
identified to be associated with milk yield and composition at the suggestive genome-wide
significance threshold.

https://www.ensembl.org/index.html
https://oct2018.archive.ensembl.org/Bos_taurus/Info/Index
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Table 1. Descriptive statistics for milk yield and composition in the EARLY and PEAK stages of
lactation 1 (n = 137).

EARLY PEAK

Trait 2 Mean SD Mean SD

Daily milk yield (kg) 35.2 5.57 39.61 6.97
Daily FPCM yield (kg) 3 37.3 6.27 38.67 6.25
Daily FCM yield (kg) 4 37.7 6.34 39.44 6.20
Daily ECM yield (kg) 5 40.2 6.77 41.41 6.69
Daily fat yield (kg) 1.58 0.30 1.58 0.26
Daily protein yield (kg) 1.20 0.23 1.18 0.24
Daily fat percentage (%) 4.51 0.56 4.10 0.51
Daily protein
percentage (%) 3.43 0.31 3.01 0.22

1 The records collected (predicted) during 9 to 25 (mean = 17 d) and 26 to 50 (mean = 38 d) days in milk were
put into the EARLY and PEAK stages of lactation, respectively. 2 The examined traits included daily milk
yield (MY), daily fat- and protein-corrected milk (FPCM), daily fat-corrected milk (FCM), energy-corrected milk
(ECM), daily fat yield (FY), and protein yield (PY). 3 FPCM kg = MY kg × (0.337 + 0.116 × FP % + 0.06 × PP %).
4 FCM kg = 0.4 × MY kg + 15 × FY kg. 5 ECM kg = MY kg × (0.25 + 0.122 × FP% + 0.077 × PP %).
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Figure 1. Manhattan and Q-Q plots of SNPs associated with milk yield and composition collected
(predicted) for the EARLY stage of lactation. The horizontal red and blue lines in the Manhattan
plots indicate the genome-wide significance threshold (−log10(8.7 × 10−8)), and the suggestive
significance threshold (−log10(1.74 × 10−6)). Chromosomes are shown in red (1, 4, 7, 10, 13, 16, 19,
22, 25, and 28), blue (2, 5, 8, 11, 14, 17, 20, 23, 26, and 29), or green (3, 6, 9, 12, 15, 18, 21, 24, 27, and 30).
The records of the traits collected (predicted) during 9 to 25 days in milk were put into the early stage
of lactation (EARLY). FPCM = fat- and protein-corrected milk yield; FCM = fat-corrected milk yield;
ECM = energy-corrected milk yield.
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Figure 2. Manhattan and Q-Q plots of SNPs associated with milk yield and composition collected
(predicted) for the PEAK stage of lactation. The horizontal red and blue lines in the Manhattan
plots indicate the genome-wide significance threshold (−log10(8.7 × 10−8)), and the suggestive
significance threshold (−log10(1.74 × 10−6)). Chromosomes are shown in red (1, 4, 7, 10, 13, 16, 19,
22, 25, and 28), blue (2, 5, 8, 11, 14, 17, 20, 23, 26, and 29), or green (3, 6, 9, 12, 15, 18, 21, 24, 27, and 30).
The records of the traits collected (predicted) during 26 to 50 days in milk were put into the peak
stage of lactation (PEAK). FPCM = fat- and protein-corrected milk yield; FCM = fat-corrected milk
yield; ECM = energy-corrected milk yield.

The identified SNPs, along with their position, and 100 kb flanking genes are presented
in Table 2 (Assembly UMD3. 1, annotation release 103). Four SNPs (BTA5 (n = 2), BTA16,
and BTA26) were identified to be associated with daily MY at the PEAK stage of lactation;
however, no SNP was found to be associated with MY at the EARLY stage of lactation.
There was one SNP on BTA21 and one SNP on BTA19 associated with daily ECM, FPCM,
and FCM yields at the EARLY and the PEAK stages of lactation, respectively. Six SNPs
(BTA19, BTA27, BTA28 (n = 4)) were identified to be associated with daily FY at the EARLY
stage of lactation; however, no SNP was found to be associated with daily FY at the PEAK
stage of lactation. Four SNPs (BTA3 and BTA4 (3)) and two SNPs (BTA26) were identified
to be associated with PY at the EARLY and PEAK stages of lactation, respectively.
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Table 2. Single nucleotide polymorphisms (SNP) detected by genome-wide association study
(GWAS) for daily milk yield and composition collected (predicted) during EARLY and PEAK stages
of lactation 1.

Trait Lactation Stage SNP 2 BTA 3 Position 4 p 5 100 kb Flanking Genes 6

Daily milk yield (kg) EARLY - - - - -

Daily milk yield (kg) PEAK

BovineHD0500029986 5 104728767 1.43 × 10−6 LOC100297751, VWF, ANO2
BovineHD0500029987 5 104731396 5.00 × 10−7 LOC100297751, VWF, ANO2
BovineHD1600010600 16 37008841 1.48 × 10−6 XCL2, LOC104974416, XCL1
BovineHD2600003772 26 14775291 1.24 × 10−6 LOC104976766, MYOF

Daily FPCM yield (kg) 7 EARLY BovineHD1900010590 19 36576999 1.53 × 10−6
LOC101902244,

LOC104975057, LOC512899,
WFIKKN2, LUC7L3

Daily FPCM yield (kg) PEAK BovineHD2100004343 21 15903999 8.25 × 10−7 LOC104975331

Daily FCM yield (kg) 8 EARLY BovineHD1900010590 19 36576999 1.07 × 10−6
LOC101902244,

LOC104975057, LOC512899,
WFIKKN2, LUC7L3

Daily FCM yield (kg) PEAK BovineHD2100004343 21 15903999 6.71 × 10−7 LOC104975331

Daily ECM yield (kg) 9 EARLY BovineHD1900010590 19 36576999 1.57 × 10−6
LOC101902244,

LOC104975057, LOC512899,
WFIKKN2, LUC7L3

Daily ECM yield (kg) PEAK BovineHD2100004343 21 15903999 8.20 × 10−7 LOC104975331

Daily fat yield (kg) EARLY

BovineHD1900009968 19 33866094 1.50 × 10−6

LOC100296637,
LOC101907886,

LOC104975044, UBB, PIGL,
TRPV2, CENPV

BovineHD2700010009 27 35283307 1.62 × 10−6 LOC104976121, ZMAT4

BovineHD2800003727 28 12969171 1.58 × 10−6
LOC101905153,

LOC104970905, ZNF37A,
LOC104970929, ZNF33B

BovineHD2800003728 28 12970103 1.24 × 10−6
LOC101905153,

LOC104970905, ZNF37A,
LOC104970929, ZNF33B

BovineHD2800003739 28 12999108 1.51 × 10−6
LOC101905153,

LOC104970905, ZNF37A,
LOC104970929, ZNF33B

BovineHD2800003747 28 13037081 6.93 × 10−7
LOC101905153,

LOC104970905, ZNF37A,
LOC104970929, ZNF33B

Daily fat yield (kg) PEAK - - - - -

Daily protein yield (kg) EARLY

BovineHD0300002517 3 7761414 1.16 × 10−6 ATF6
BovineHD0400016455 4 60555650 1.40 × 10−6 ELMO1
BovineHD0400016458 4 60561187 1.40 × 10−6 ELMO1
BovineHD0400016461 4 60566765 1.44 × 10−6 ELMO1

Daily protein yield (kg) PEAK
BovineHD2600003771 26 14773836 1.12 × 10−6 LOC104976766, MYOF
BovineHD2600003772 26 14775291 2.62 × 10−7 LOC104976766, MYOF

1 The records of the traits collected (predicted) during 9 to 25 days in milk were put into the early stage of lactation
(EARLY) and those collected during 26 to 50 days in milk were put into the peak stage of lactation (PEAK).
2 Single nucleotide polymorphism (SNP) name. 3 Bos taurus chromosome number. 4 Position of the SNP on
the chromosome. 5 P value of the mixed model for single SNP association analysis. 6 Genes in 100 kb flanking
regions of SNP position. Official gene symbol (Assembly UMD3.1, annotation release 103). 7 FPCM = fat- and
protein-corrected milk yield 8 FCM = fat-corrected milk yield. 9 ECM = energy-corrected milk yield.

Significantly enriched biological processes enriched by candidate genes identified
for considered traits are presented in Table 3. Functional genes identified as candidate
genes for MY at the PEAK stage of lactation were VWF, ANO2, XCL2, XCL1, and MYOF,
which participate in terms related to regulation of T cell chemotaxis and regulation of T cell
migration. Genes including UBB, PIGL, TRPV2, CENPV, ZMAT4, ZNF37A, and ZNF33B
were identified as candidate genes for FY at the EARLY stage of lactation. Establishment
of mitochondrion localization and microtubule-mediated and regulation of the intrinsic
apoptotic signaling pathway by the p53 class mediator are among the most important
terms enriched by the candidate gene identified for FY. ATF6 and ELMO1 were identified
as candidate genes for PY at the EARLY stage, and MYOF was the only candidate gene
identified for PY at the PEAK stage of lactation. Candidate genes identified for PY enriched
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terms related to regulation of transcription from the RNA polymerase II promoter in
response to stress.

Table 3. Gene ontologies (GO) terms enriched by 100 kb flanking genes for SNPs associated with
milk production traits in the EARLY and PEAK stages of lactation 1.

EARLY PEAK

Trait GO Term Description Genes GO Term Description Genes

MY 2

Positive regulation of T
cell chemotaxis
(GO:0010820)

Regulation of T cell
chemotaxis

(GO:0010819)
Positive regulation of T

cell migration
(GO:2000406)

VWF, XCL1, XCL2

FCMY 3

FPCMY 4

ECMY 5

Negative regulation of
cellular response to

transforming growth factor
beta stimulus (GO:1903845)

Negative regulation of
transforming growth factor

beta receptor signaling
pathway (GO:0030512)
Transforming growth
factor beta receptor
signaling pathway

(GO:0007179)

WFIKKN2, LUC7L3

FY 6

Establishment of
mitochondrion localization,

microtubule mediated
(GO:0034643)

Regulation of intrinsic
apoptotic signaling

pathway by p53 class
mediator (GO:1902253)

PIGL, TRPV2, CENPV

PY 7

Positive regulation of
transcription from RNA

polymerase II promoter in
response to stress

(GO:0036003)
Positive of transcription
from RNA polymerase II
promoter in response to
endoplasmic reticulum

stress (GO:1990440)

ATF6, ELMO1

1 The records collected (predicted) during 9 to 25 days in milk were put into the early stage of lactation (EARLY)
and those collected during 26 to 50 days in milk were put into the peak stage of lactation (PEAK). 2 Daily milk
yield. 3 FPCM = daily fat- and protein-corrected milk yield. 4 FCM = daily fat-corrected milk yield. 5 ECM = daily
energy-corrected milk yield. 6 Daily fat yield. 7 Daily protein yield.

6. Discussion

Genes including VWF, ANO2, XCL2, XCL1, and MYOF were identified as candidate
genes for MY in the PEAK stage of lactation. The association between ANO2 and VWF and
MY has been reported by previous studies [27–29]. It has been reported that an increased
expression level of VWF is associated with increased MY in Holstein dairy cows [27].
In addition, VWF and ANO2 have been reported as candidate genes for metabolic body
weight in dairy cows [30]. Positive regulation of T cell chemotaxis and positive regulation
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of T cell migration were identified as the most important terms enriched by VWF, XCL1,
and XCL2 genes. Regulation of T cell chemotaxis and migration may have an important role
on mammary gland immunity, decreasing the rate of mastitis and improving MY [31,32].
Previous studies reported that XCL1 and XCL2 are associated with inflammation, immunity
mechanisms, and environmental adaptation in cattle [33], as well as heat tolerance in
buffalo [34]. It has been reported that MYOF is associated with female fertility in dairy
cattle [35].

We identified WFIKKN2 and LUC7L3 as candidate genes for FPCM, ECM, and FCM
yields in the EARLY stage of lactation. The results showed that terms related to the
regulation of transforming growth factor are enriched by WFIKKN2 and LUC7L3 genes.
The WFIKKN2 gene has been previously reported to be associated with growth and skeletal
muscle [36,37], but there is no report on the effect of variation in WFIKKN2 or LUC7L3 on
the lactation performance in cattle.

Functional genes associated with FY at the EARLY stage of lactation were UBB, PIGL,
TRPV2, CENPV, ZMAT4, ZNF33B, and ZNF37A. Buzanskas et al. [38] reported that ZMAT4
participates in the apoptotic, biological, developmental, and metabolic processes and is
associated with reproductive performance in cattle. It has been reported that ZMAT4 is
associated with milk yield at the beginning of lactation, milking speed, and temperament
in dairy cattle [39,40]. Previous studies showed that ELMO and TRPV2 are associated with
resistance to mastitis in dairy cattle [41,42].

Functional genes associated with PY in the EARLY stage of lactation were ATF6 and
ELMO1, while MYOF was associated with PY at the PEAK stage of lactation. Galliou et al. [43]
reported that ATF6 is associated with the number of inseminations per conception and first
service conception in Holstein dairy cows. This study showed that candidate genes found
for PY participate in the regulation of transcription from the RNA polymerase II promoter
in response to stress, which can be considered as a mechanism to relieve the stress caused
by a negative energy balance in the EARLY stage of lactation.

7. Conclusions

Candidate genes identified for considered traits showed contrasting results between
the EARLY and PEAK stages of lactation. This suggests that differential sets of candidate
genes underlie the phenotypic expression of the analyzed traits in different stages of
lactation. Because few animals were used, the findings of this study need to be interpreted
with caution; furthermore, further reverse transcription quantitative real-time PCR (RT-
qPCR) studies are needed to validate our findings in independent populations.
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