cancers

Review

Role of the Holoenzyme PP1-SPN in the Dephosphorylation of
the RB Family of Tumor Suppressors During Cell Cycle

Eva M. Verdugo-Sivianes

check for

updates
Citation: Verdugo-Sivianes, EM.;
Carnero, A. Role of the Holoenzyme
PP1-SPN in the Dephosphorylation of
the RB Family of Tumor Suppressors
During Cell Cycle. Cancers 2021, 13,
2226. https://doi.org/10.3390/
cancers13092226

Academic Editors: Paola Indovina,
Francesca Pentimalli and

Antonio Giordano

Received: 30 March 2021
Accepted: 3 May 2021
Published: 6 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1,2

and Amancio Carnero 1/2*

Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de
Investigaciones Cientificas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
everdugo-ibis@us.es

2 CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain

*  Correspondence: acarnero-ibis@us.es; Tel.: +34-955-92-31-11

Simple Summary: Cell cycle progression is highly regulated by modulating the phosphorylation
status of retinoblastoma (RB) family proteins. This process is controlled by a balance in the action
of kinases, such as the complexes formed by cyclin-dependent kinases (CDKs) and cyclins, and
phosphatases, mainly the protein phosphatase 1 (PP1). However, while the phosphorylation of the RB
family has been largely studied, its dephosphorylation is less known. Recently, the PP1-Spinophilin
(SPN) holoenzyme has been described as the main phosphatase responsible for the dephosphorylation
of RB proteins during the GO/G1 transition and at the end of G1. Here, we describe the regulation of
the phosphorylation status of RB family proteins, giving importance not only to their inactivation by
phosphorylation but also to their dephosphorylation to restore the cell cycle.

Abstract: Cell cycle progression is highly regulated by modulating the phosphorylation status of
the retinoblastoma protein (pRB) and the other two members of the RB family, p107 and p130. This
process is controlled by a balance in the action of kinases, such as the complexes formed by cyclin-
dependent kinases (CDKs) and cyclins, and phosphatases, mainly the protein phosphatase 1 (PP1).
However, while the phosphorylation of the RB family has been largely studied, its dephosphorylation
is less known. Phosphatases are holoenzymes formed by a catalytic subunit and a regulatory protein
with substrate specificity. Recently, the PP1-Spinophilin (SPN) holoenzyme has been described as the
main phosphatase responsible for the dephosphorylation of RB proteins during the G0/Gl1 transition
and at the end of G1. Moreover, SPN has been described as a tumor suppressor dependent on PP1 in
lung and breast tumors, where it promotes tumorigenesis by increasing the cancer stem cell pool.
Therefore, a connection between the cell cycle and stem cell biology has also been proposed via
SPN/PP1/RB proteins.

Keywords: RB family proteins; pocket proteins; cell cycle; phosphatase PP1; spinophilin; PPP1R9B;
cancer; tumorigenesis

1. Introduction

During tumor development, cells undergo a series of genetic and/or epigenetic
alterations, which gives them selective advantages over the environment, generating
cancer cells. Many processes are involved in tumorigenesis, and one of the most important
is the deregulation of the cell cycle. Therefore, cancer cells have undergone mutations
deregulating the cell cycle that make them grow uncontrollably [1,2].

Cell cycle progression from one phase of the cycle to another is highly regulated
through protein phosphorylation. In the G1 phase, there is a special checkpoint called
restriction or R point at which the cell decides if it is ready to enter the cell cycle. The R
point is controlled by the phosphorylation status of the retinoblastoma protein (pRB), a
tumor suppressor protein whose main function is to inhibit cell cycle progression in G1
by binding E2F transcription factors and, thus, repressing E2F-target genes necessary to
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advance the cell cycle. Thus, until the pRB is phosphorylated and inhibited, cells cannot
pass the R point and enter the cell cycle. Therefore, the G1/S transition is one of the most
important checkpoints in the cell cycle [3-8]. Phosphorylation of the pRB inhibits its cell
cycle restraining function by releasing E2F transcription factors. This phosphorylation is
catalyzed by the complexes formed by cyclin-dependent kinases (CDKs) and cyclins. CDKs
are serine-threonine kinases regulated by cyclins, proteins with cyclical expression whose
levels increase and decrease drastically throughout the cell cycle, periodically activating
CDKs [4,5,7-17]. The activity of CDKs/cyclins complexes can also be inhibited by the action
of cyclin-dependent inhibitors, which can be divided into two families: the CIP/KIP family,
composed of p21¢TP1, p27KIPL and p57KIP2 which inhibit most of CDKs/cyclin complexes;
and the INK4 family, formed by p16/NK4A p15INK4B 518INKAC 5d p19INKAD which inhibit
G1 CDKs, especially CDK4 and CDKG6 [4,5,8,15,17,18]. However, the dephosphorylation of
the pRB to restore the cell cycle, which is mainly mediated by the protein phosphatase 1
(PP1), is also very important and much more overlooked.

In this review, we describe the regulation of the phosphorylation status of the pRB
and the other members of the RB family of tumor suppressors to emphasize not only their
inactivation by phosphorylation but also their dephosphorylation to restore the cell cycle,
two mechanisms that are frequently altered during tumorigenesis.

2. RB Family Proteins

The proteins of the pRB family or RB proteins are pRB itself, p107 (RBL1) and p130
(RBL2), three very similar proteins that share some biochemical properties and some func-
tions [7,19-21]. These proteins are also known as pocket proteins because they have a
domain -the pocket- capable of binding to different proteins and transcription factors. This
pocket is composed of a smaller pocket, with two well-organized subdomains (A and
B) separated by a less structured spacer region and the C-terminal region [4,17,18,22-25].
Specifically, the A/B subdomains bind to proteins containing the LXCXE motif, where “X”
could be any amino acid. The PP1 phosphatase presents a variant of the motif (LXSXE) capa-
ble of binding to the pRB, while the E2F factors do not present this motif since their binding
requires the entire pocket, including the C-terminal domain (Figure 1a) [4,7,17,18,22,26,27].
In addition, the pRB presents in this C-terminal region a special coupling site for E2F1 and
a binding region for CDK2/cyclin A, CDK2/cyclin E, and PP1, while other CDKs bind to
the N-terminus [7]. At least 16 phosphorylation residues are present in the pRB, all serine
and threonine [15,17,28]. Phosphorylation of the pRB breaks the binding with different
proteins; however, no kinase is capable of phosphorylating all of the pRB residues at the
same time. The complete inactivation of the pRB requires sequential phosphorylation by
different CDK/cyclin complexes, and depending on the residues that are phosphorylated,
different proteins will dissociate sequentially, regulating the cycle-dependent genes dif-
ferentially [4,18,26]. The structures of p107 and p130 are very similar to that of the pRB,
but they are more related to each other (~50%) than to the pRB (20-30%). This is because
their spacer region is larger and both present an insertion in the B subdomain of the small
pocket and a region of homology at the N-terminus that allows them to act as inhibitors of
CDKs (Figure 1a) [19,20,29-33]. Therefore, the pocket domain allows the association of RB
proteins with many different proteins and transcription factors, some of them common and
others specific to each protein so that, although there is not complete redundancy, there are
some compensation mechanisms [20,21,23,27,34].

This family of proteins constitutes one of the major regulators of the cell cycle. They
act by inhibiting transactivation mediated by activating E2F factors as well as forming
complexes with E2F repressor factors to repress transcription and inhibit G1/S transi-
tion [35]. E2F levels vary throughout the cycle: while E2F1, E2F2, and E2F3 levels increase
during the G1/S transition to induce proliferation, E2F4 and E2F5 are mostly expressed
in resting cells [19]. However, the subset of E2F-dependent genes that each protein in the
RB family regulates is different since each one interacts with different E2F factors: the pRB
sequesters the activating factors E2F1-4, while p107 and p130 bind to repressor factors
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E2F4-5, although in the absence of E2F4, factors E2F1 and E2F3 can bind to p107 and p130
to compensate for their function [5,18-20,32,33,36,37]. E2F4 and E2F5 factors are expressed
throughout the cycle, but during G0/G1, they bind p130 and p107 in the nucleus to form a
repressor complex. In turn, the pRB sequesters E2F1, E2F2, and E2F3 to prevent binding to
the corresponding promoters. At the end of G1, all the pocket proteins are phosphorylated
and dissociate from the E2F factors so that E2F4-5 translocate to the cytoplasm and E2F1-3
bind to different promoters (Figure 1b) [35]. p130 (or p107) also mediates the repression
of cell cycle genes as part of the DREAM (dimerization partner (DP), RB-like, E2F and
multi-vulval class B (MuvB)) complex during quiescence [38]. Therefore, like the pRB, the
activity of p107 and p130 is regulated during the cell cycle by controlling their state of phos-
phorylation in serine and threonine residues by the action of CDK/cyclin complexes in the
middle/end of G1. When these proteins are dephosphorylated, they act as transcriptional
repressors, while when they are phosphorylated, they are inactivated and dissociate from
the E2Fs, allowing the transcription of genes involved in the cell cycle [19-21,35].
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Figure 1. RB family proteins or pocket proteins. (A) Scheme of the structure of the three proteins
of the RB family showing the different domains and motifs and the most relevant phosphorylated
residues (highlighted in pink) with their respective kinases/phosphatases. (B) Interaction and
regulation mechanisms of the pocket proteins with the different E2F transcription factors. Figure
adapted from [19-21,39].

RB family proteins bind to numerous proteins, so they have other cellular functions
beyond the control of the cell cycle. More than 200 proteins that interact with the pRB
have been described, such as E2F transcription factors, cyclin D, MDM2, p53, and PP1,
as well as other transcription factors and proteins related to differentiation, cell lineage
identity, stemness invasion, apoptosis, senescence, angiogenesis, immune response and
metabolism [4,17,18,22,23,28,40-43]. The pRB is an important tumor suppressor, and it
is frequently inactivated, directly or indirectly, in many human tumors, promoting tu-
morigenesis [3-8,41,42,44]. Although p107 is hardly mutated in human tumors, and mice
with mutations in p107 do not develop spontaneous tumors [30], the overexpression of
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hypophosphorylated p107 can induce G1 to stop in some cell types [32,36]. p130 is also
not frequently mutated in cancer, but its levels are extremely low in some tumors due
to its role in quiescence and differentiation [19]. Therefore, beyond genetic redundancy,
the pRB could have some tumor suppressor functions that are not shared with p107 and
p130[5,7,20,23,34,39,42,45,46].

Phosphorylation of Pocket Proteins

One of the most important substrates of the CDKs/cyclins is the pRB [5,47]. The
PRB is phosphorylated only on serine and threonine residues, and its phosphorylation
state varies throughout the cycle. In addition, the pRB is synthesized de novo throughout
the cycle. During GO and at the beginning of G1, the pRB is hypophosphorylated and
active, repressing the cell cycle through its interaction with E2F factors. Then, the pRB is
progressively phosphorylated from the middle of G1 to M phase (mitosis) by different
CDKs/cyclin complexes, becoming inactive and releasing E2F factors so that the genes
involved in cell cycle progression can be expressed. Finally, the pRB is dephosphorylated
by the PP1 phosphatase at the end of mitosis to return to its hypophosphorylated and
active state during G0/G1 [3-6,8-10,12,14,15,17,18,20,21,25,35].

Complete inactivation of the pRB requires sequential phosphorylation by different
CDKs/cyclin complexes. Initially, the pRB is phosphorylated by CDK4/6/cyclin D in
the middle of G1, but this phosphorylation is partial and is not sufficient to release the
E2F factors. For this to happen, the action of CDK2/cyclin E at the G1/S transition is
necessary. However, only when the pRB has been phosphorylated by CDK4/cyclin D can
it be phosphorylated by CDK2/cyclin E in the next phase so that cells cannot pass the R
point if the pRB is not phosphorylated by both complexes. When the E2F transcription
factors are released, certain cycle-dependent genes can be expressed, such as cyclin A,
whose expression is delayed until the S phase. Phosphorylation of the pRB is maintained
thanks to CDK2/cyclin A during the entry into S phase and until G2 when CDK1/cyclin A
participates. Finally, CDK1/cyclin B phosphorylates and maintains this state during the
mitosis phase (Figure 2) [4-7,10,12-18,20,21,47-49].
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Figure 2. Phosphorylation/dephosphorylation of the pRB during cell cycle. Scheme of the regulation
of the phosphorylation status of the pRB by different CDKs/cyclin and by PP1 during the different
cell cycle phases. Figure adapted from [4,11,21].
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The pocket proteins collaborate in the control of the cell cycle since the pRB is ex-
pressed in both quiescent and proliferating cells, p130 is expressed mainly in quiescent
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cells, and p107 in proliferating cells [19,20,27,29,31,35]. The pRB levels hardly change
throughout the cell cycle since its activity is controlled exclusively by the state of phos-
phorylation, but p107 and p130 fluctuate in the opposite way throughout the cell cycle
(Figure 3a) [19,21,27,31,37,50].
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Figure 3. Pocket proteins collaborate in the control of the cell cycle. (A) Expression levels of the three proteins of the pocket

family during the different phases of the cell cycle. (B) Scheme of the regulation of the phosphorylation and expression of
p107 and p130 during GO, G1, and S phases. Figure adapted from [19-21,39].

All pocket proteins are apparently phosphorylated by CDK4/cyclin D, CDK2/cyclin
E, and CDK2/cyclin A in the middle of the G1 to S phase [20,36,50-52]. p107 is hypophos-
phorylated and expressed at low levels when cells are differentiated or at rest during GO,
but when cells are proliferating, p107 is phosphorylated and increases its levels from the
middle of the G1 to S phase [30]. However, the phosphorylation state of p107 does not
affect its levels [31]. p107 is mostly phosphorylated by CDK4/cyclin D, which inactivates
it by dissociating the complex with E2F4 from the middle to the end of G1. CDK2/cyclin
E and CDK2/cyclin A are also involved in the phosphorylation of p107 during the end
of G1 and in the S phase, respectively, although they do not participate in its inactivation
or in the dissociation of E2F4 [32,36]. Therefore, the p107/E2F4 complexes increase when
leaving GO, then they dissociate and re-form at the end of G1 and especially during the
S phase, in which the levels of p107 are very high [30,32]. In addition, although p107 is
phosphorylated during G1, newly synthesized unphosphorylated p107 is also found in
complex with E2F (Figure 3b) [32].

In the case of p130, three different phosphorylated forms (forms 1, 2, and 3), depending
on their electrophoretic mobilities, have been described. Indeed, unlike the other RB family
members, which are dephosphorylated in cell-cycle arrested cells, p130 is phosphorylated
(forms 1 and 2) even in these cells [51,53]. When cells are at rest at the beginning of
G1, the expression of p130 is very high, forming a complex with E2F4 to repress genes
related to the cell cycle, mainly in their phosphorylated forms 1 and 2, which allow the
stabilization and accumulation of p130 [19,21,27,31,37,50,51]. Phosphorylation of p130
begins at GO/G1 to reach its hyperphosphorylated form 3, which makes p130 a less stable
protein to be degraded by the proteasome. Its levels fall drastically when cells are in the
S phase. This degradation is induced by the phosphorylation of p130 by CDK4 in serine
672 [20,34,37,53,54]. When p130 is phosphorylated in the middle of G1, E2F4 is released,
and E2F-dependent genes such as p107 and E2F1-2 are expressed, and the pRB/E2F1 and
p107/E2F4 complexes are formed, the former being the complex more abundant in the
middle and at the end of G1 (Figure 3b) [31,34]. Thus, as the G1 progresses, the levels of
p130 decrease and those of p107 increase, which replaces p130, forming a complex with
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E2F4, mainly at the end of G1 and in the S phase [20,31-34]. Both E2F4 and the newly
synthesized E2F1 activate the transcription of p107, so p107 is under the control of the
pRB through an E2F-dependent transcriptional regulation, whereas p130 is not [20,31,55].
Furthermore, p130 needs to be phosphorylated by CDK4 and CDK?2 to dissociate from
E2F4, while p107 only needs CDK4 to break its bond with E2F4 [56].

On the other hand, when cells leave the cell cycle to enter quiescence, p130 accu-
mulates, and p107 decreases, favoring the formation of the p130/E2F4 complexes and
displacing both p107 and the pRB [20,31]. The accumulation of p130 could regulate the
cell’s decision to exit the cell cycle before cells pass the R point [20,27]. However, during
quiescence, the pRB is also complexed with E2F, so p130 and the pRB could have similar
functions in this process [20,22,27,31,32,34,39]. Cell cycle progression by G1 must be con-
sidered differently depending on whether the cells come from GO0, so there will be a large
number of p130/E2F4 complexes or from a previous cycle, as there will be more pRB/E2F
complexes [20,31-34]. Thus, the regulation mechanisms are different depending on the
state of the cells, since when they leave quiescence, they must synthesize some of the cell
cycle regulators [20,37].

Therefore, RB proteins cooperate to control the cell cycle in GO/G1, preventing the
transcription of E2F-dependent genes [18,20,27,39,52]. Moreover, p107 and p130 repress
other E2F-dependent genes than those repressed by the pRB [27,56], so although these
proteins complement and compensate each other in certain cellular contexts, their function
is not totally redundant [27].

3. Protein Phosphatase 1 (PP1)

Protein phosphorylation is the major mechanism for regulating cellular functions
since more than 70% of eukaryotic proteins are regulated by phosphorylation, mainly at
serine and threonine residues [57,58]. This process is controlled by a balance in the action
of kinases and phosphatases; however, while there are more than 400 genes that code
for serine-threonine kinases, there are fewer than 40 genes that code for serine-threonine
phosphatases. This is because phosphatases are enzymes formed by a catalytic subunit
capable of interacting with numerous regulatory proteins to form different complexes
(holoenzymes) with different locations and substrate specificities [4,12,57,58]. The largest
subfamily of serine-threonine phosphatases is the phosphoprotein phosphatases (PPP),
responsible for 95% of the phosphatase activity in cells. The most studied are PP1, PP2A
and PP2B, but one-third of the dephosphorylation events in eukaryotic cells are only carried
out by PP1 [4,12,57,59-65].

PP1is an enzyme involved in the regulation of many cellular processes, such as protein
synthesis, transcription, apoptosis, and cell cycle progression [57,61,65,66]. In mammals,
three genes (PPP1CA, PPP1CB, and PPP1CC) encode four isoforms of the catalytic subunit
of PP1: PP1w, PP1§3, PP1y1, and PP1y2. These four isoforms are expressed in all tissues and
compartments, although PP1y2 is only expressed in testes [10,57,58,64,67-71]. In addition,
all isoforms are found in the nucleus, but PP13 and PP1y present a special accumulation in
the nucleolus [57]. The sequence of the three isoforms is highly conserved: 93% between
PP1y1 and PP1y2 and 85% between PP1p and PP1y2, although the N-terminal and the
C-terminal present greater differences [10,57,58,64,67-70].

PP1 is involved in a large number of functions; however, it does not have substrate
specificity by itself, and it needs to interact with multiple regulatory proteins. Thus, the
catalytic subunit of PP1 (PPP1C) can bind and form different holoenzymes with multiple
regulatory proteins (PPP1R), also known as regulatory interactors of protein phosphatase
1 (RIPPOs). RIPPOs direct PP1 towards specific substrates to perform specific functions,
preventing the dephosphorylation of substrates by occupying the PP1 binding site or
promoting the dephosphorylation by directing PP1 to specific cell locations. Additionally,
some RIPPOs can be PP1 substrates [57,58,64,71-75]. Currently, approximately 200 reg-
ulatory proteins of PP1 are known, and most of them do not show similarity in their se-
quence [57,62,64,65,74]. Approximately 90% of PP1-interacting proteins bind to it through
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the PP1 binding motif RVXF, which generally consists of the consensus sequence: (K/R)
(R/K) (V/I) (x) (F/W) where “x” can be any residue except F, I, M, Y, D or P [58,66,72,74].
However, this interaction is unique to each regulatory protein, so that mutations in the
RVxF motif would prevent the binding of the regulatory protein to PP1 but would not
affect the binding of the substrate or the formation of other holoenzymes [66]. In addition
to the RVxF motif, there are other binding motifs that not only stabilize the binding to PP1
but also modulate its activity and specificity [57,58,64,72-74].

PP1 is the protein phosphatase responsible for dephosphorylating and activating
the pRB from the exit of mitosis to the middle of G1 [3,12,18,39,67,76—78]. The interaction
between the pRB and PP1 occurs through the PP1 binding motif, with a high affinity
and is direct, without the need for regulatory proteins. However, these proteins serve as
regulators of the pRB-specific PP1 activity and are context/tissue-dependent, since PP1
alone cannot regulate the pRB [21,39,70]. PP1 forms a complex with both the hypophospho-
rylated and hyperphosphorylated pRB; however, if the pRB is phosphorylated at certain
residues, it cannot bind PP1, so PP1 needs the help of a regulatory protein to gain access
to the pRB to dephosphorylate it. Indeed, the preferred sites for PP1 to dephosphorylate
the pRB are T356 and S807/811. After dephosphorylation, PP1 remains bound to the hy-
pophosphorylated pRB forming a complex that lasts until entry into G1, preventing its
phosphorylation [4,14,67,76,77,79]. In addition, PP1 and the CDK/cyclin complexes share
the binding site to the pRB, so there is a competition for the substrate between the kinase
and the phosphatase activities [70]. On the other hand, p107 and p130 also present the PP1
binding motif. The interaction between these two proteins and PP1 has been described in
double hybrid assays and by co-immunoprecipitation [70,80]. However, this interaction
seems to be much weaker and lasts less time than that between the pRB and PP1 [21,50].

The regulation of PP1 is complex and is controlled by both phosphorylation by differ-
ent kinases and the action of inhibitors and regulatory proteins that modulate its substrate
specificity and activity [3-5,67,71,79,81,82]. On the one hand, PP1 is phosphorylated and
inactivated during the cell cycle by CDK2/cyclin E, CDK2/cyclin A, CDK1/cyclin A and
CDK1/cyclin B to avoid pRB dephosphorylation. Specifically, the phosphorylation of
PP1 at the T320 residue plays an important role in the G1/S transition and during mito-
sis [3,71,83,84]. On the other hand, CDK1/cyclin B phosphorylates and inactivates PP1
with the help of the PP1 Inhibitor-2 (12) during the onset and the middle of mitosis [4,85].
At the exit of mitosis, PP1 is activated by destroying the CDK1/cyclin B complex and by
PP1 autodephosphorylation at residue T320 [14,18,57,76,83,85], which is inhibited during
mitosis by the binding of Inhibitor-1 (I1) to PP1 [57,85].

The three isoforms of the catalytic subunit of PP1 bind the pRB similarly since the
interaction region is conserved. In addition, all of them have the ability to dephosphorylate
the pRB but present different activities in the different phases of the cycle [3,21,70,86]. Dur-
ing G1 and in the G1/S transition, PP1« is the main isoform that controls the pRB [61,79].
When cells enter mitosis, all isoforms are phosphorylated and inactivated since there is
an increase in the phosphorylation of the PP1x protein at serine residues and PP1f and
PP1y1 proteins at threonine residues. Finally, at the end of the mitosis phase, PP1x and
PP1f activity increases while PP1y1 remains phosphorylated and with low activity [81,82].
Indeed, PP1f is the most active isoform during mitosis, but its activity does not persist
during G1 [18,21,70,81,82,86]. Therefore, the dephosphorylation of the pRB is regulated
in a sequential and temporal manner, and the three isoforms of the catalytic subunit of
PP1 bind to different regulatory proteins to form different holoenzymes with different
preferences for phosphorylation sites, similar to pRB phosphorylation by CDK/cyclin com-
plexes [5,18,21,86]. In fact, different holoenzymes of PP1 may form during the cell cycle to
control the dephosphorylation of the pRB since the three isoforms of the catalytic subunit
of PP1 present different activities in the different phases of the cell cycle [3-5,67,79,81].

In this regard, the study of PP1 regulatory proteins involved in the cell cycle is
essential since mutations in the catalytic subunit of PP1 or in the regulatory proteins that
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prevent binding to the pRB will promote phosphorylation of the pRB and, eventually, cell
transformation [4,14,76,77,79].

4. SPN, a PP1 Regulatory Protein

Spinophilin (SPN), also known as PPP1R9B and NEURABIN-2, is a PP1 regulatory pro-
tein widely expressed in many tissues such as the brain, lung, testes, colon, breast, among
others [87-97]. SPN presents in its structure a PP1 binding domain, but the SPN-PP1 inter-
action occurs not only through the RVxF motif but also by forming multiple interactions
with different regions of PP1, including part of the C-terminus of PP1 [72,88,90,91,98,99].
Indeed, the structure of SPN suggests that it is a multifunctional protein that functions as a
scaffold protein by recruiting many different proteins into different cell signaling pathways
and promoting protein-protein interaction [88,90,91,98]. SPN has been shown to be located
in the cytoplasm and in the plasma membrane of cells but could also be expressed in the
nucleus [91,100]. We recently demonstrated that SPN co-localizes with PP1x and PP1y in
the nucleus and in the cytoplasm of cells [80].

One of the main functions of SPN is to help PP1 dephosphorylate the pRB [28,80,93].
SPN interacts with PP1x and PP1y but not with PP1f [69,80]. In addition, SPN interacts
specifically with both total and phosphorylated pRB (P-pRB) in Ser807 /811, two of the pre-
ferred PP1 dephosphorylation sites [10,80]. SPN is also able to bind and dephosphorylate
phosphorylated p107 (P-p107) in Ser975, a homologous residue to Ser807/811 in P-pRB, and
phosphorylated p130 (P-p130) in Ser672, an important residue implicated in the stability
of p130 during the cell cycle and a possible dephosphorylation site of PP1 [20,34,53,54,80].
Therefore, the PP1-SPN holoenzyme is not exclusive to the pRB but acts over all the pocket
family proteins, although another phosphatase could dephosphorylate P-p107 and P-p130
in other contexts [80].

Cell cycle assays, in which cells were synchronized at GO through serum deprivation
or at the end of G1 after mimosine treatment, demonstrated that the PP1-SPN holoenzyme
regulates the dephosphorylation of pocket proteins during the G0/Gl1 transition and at
the end of G1. However, cell cycle assays in which cells were synchronized at the G2/M
transition after nocodazole treatment showed that this holoenzyme does not act during
mitosis when PP1f is the most active isoform and does not interact with SPN. Therefore,
the PP1-SPN holoenzyme is formed by SPN and either PP1 or PP1y and is involved in
the dephosphorylation of pocket proteins exclusively during the GO/G1 transition and
at the end of G1, but not during the G2/M transition or the mitosis phase [80]. Instead,
PP1f could bind to a different PP1 regulatory protein at the exit of mitosis, but this other
regulatory protein remains unidentified (Figure 4a) [4,14,67]. It has been reported that
phosphatase nuclear targeting subunit (PNUTS) is a PP1 inhibitory protein with an impor-
tant role in controlling PP1 activity during mitosis by inhibiting pRB dephosphorylation.
However, PNUTS is only associated with a small proportion of PP1, and other proteins
beyond PNUTS and SPN must regulate PP1 during the cell cycle [80,101]. PNUTS is a
context-dependent PP1 regulatory protein, and the role of SPN in PP1 regulation and
pocket protein dephosphorylation might also be dependent on the context, regarding either
the cell cycle phase or the subcellular localization [80]. In addition, the pRB could function
as a substrate or as a regulatory protein for PP1 since different subpopulations of the
PRB perform different functions depending on the type of phosphorylation [77]. Different
holoenzymes could be involved in the sequential control of pocket protein dephosphoryla-
tion during cell cycle progression, and each holoenzyme might have a distinct specificity
for different phosphorylated residues, similar to CDK/cyclin complexes; therefore, initial
dephosphorylation would be necessary to induce a conformational change before any other
holoenzyme gains access to the different residues. In addition, whether the dephosphoryla-
tion of pocket proteins by PP1 in mitosis and in G1 occurs through a single mechanism or
if different substrates are recognized by different holoenzymes must be determined [18,80].
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Figure 4. The holoenzyme PP1-SPN. (A) Scheme of the dephosphorylation of RB proteins (named here RB to refer to the
three pocket proteins at the same time) during G1 by the holoenzyme PP1o/y-SPN. The dephosphorylation of RB proteins
might be regulated by PP1§3 in complex with an unknown regulatory protein during the end of mitosis. (B) Scheme of the

mechanism of the holoenzyme PP1-SPN in tumorigenesis, comparing a normal situation (upper) and a tumoral situation in
which SPN is lost/mutated, and p53 is mutated (bottom). Only when p53 is mutated, the loss/mutation of SPN can induce
cell proliferation and tumor progression, evading the neutralizing response of p53. Figure adapted from [80,89,90].

On the other hand, SPN is phosphorylated by different protein kinases: protein kinase
A (PKA) phosphorylates SPN in 597 and 5177, calcium/calmodulin-dependent protein
kinase II (CaMKII) phosphorylates SPN in 5100 and 5116, cyclin-dependent protein kinase-
5 (CDKY5) in S17 and mitogen-activated protein kinase-1 (MAPK1 or ERK?2) in 515 and
5205 [91,102-104], some of them also phosphorylate PP1. Indeed, phosphorylation of
PP1 at Thr311/320 by CDKS5 enhances its association with SPN, but phosphorylation of
SPN by CDKS at Serl7 is not responsible for the increased interaction between PP1 and
SPN [105]. Although this enhanced interaction induced by CDK5 could add another layer
of complexity to the regulation of RB proteins dephosphorylation during the cell cycle, it
should be studied in depth to extract any conclusion.

In addition, SPN forms a different complex with PP1 and DCX, a microtubule-
associated protein that binds to tubulin and actin. DCX is phosphorylated by CDK5, which
prevents its binding to microtubules, and dephosphorylated by PP1 through interaction
with SPN so that this axis regulates the maintenance of microtubules [106-108].

Therefore, the holoenzyme PP1-SPN performs different functions in the cell both in
the nucleus and in the cytoplasm, depending on the association with different proteins.

5. SPN as a Tumor Suppressor Dependent on PP1 and pRB

The locus of SPN is located on chromosome 17 at the 17q21.33 position, a chromosomal
region frequently associated with microsatellite instability and loss of heterozygosity
and a high density of well-known tumor suppressor genes such as BRCAI. This loss of
heterozygosity in the 17q21 region has been reported in different tumors, such as breast,
ovarian, lung, prostate, colorectal, gastric, renal, and lung cancer [90,109-115]. Several
studies suggested the existence of a new tumor suppressor gene located in the 17q21
region, and eventually, SPN was identified as this new gene [109]. Currently, SPN has been
described as a tumor suppressor gene in the context of different human tumors, such as
renal carcinomas, lung adenocarcinomas, ovarian carcinoma, chronic myeloid leukemia,
gastric and colorectal cancer, head and neck carcinoma, hepatocellular carcinoma, and
breast cancer [90,93-95,116,117].

Various studies in lung cancer have corroborated that SPN has a prognostic and
predictive value in this type of tumor since the downregulation of this gene together with
P53 mutations are associated with worse survival. In addition, a correlation between the
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decrease in SPN levels and low levels of the three catalytic subunits of PP1 was observed,
and this combination was associated with a worse prognosis in squamous cell carcinoma.
Loss of SPN has also shown a decrease in PP1 expression and activity in the brain tissue of
SPN-knockout mice [118,119]. The SPN/PPP1C ratio could serve as a response biomarker
due to its prognostic and predictive value in lung cancer. Indeed, a direct correlation was
observed between the SPN/PPP1C ratio and the response to different drugs commonly
used in the clinic, such as oxaliplatin and bortezomib; therefore, the SPN/PPP1C ratio
could also be used as a therapy response marker in those types of tumors [96].

In breast cancer, SPN plays an important role as a tumor suppressor. In vivo studies
using Spn-knockout mice reported that the absence of SPN decreased the life expectancy of
mice and increased the number of spontaneous tumors such as lymphomas. Spn~/~ mice
also presented an increased cell proliferation of certain tissues, such as the breast ducts, and
both Spn*/~ and Spn~/~ mice showed more ramifications in this tissue. Indeed, Spn~—/~
mice did not express SPN in the mammary ducts [92,120]. Mouse embryonic fibroblasts
generated from Spn~/~ mice showed lower levels of PP1a and decreased PP1 activity,
which in turn produced higher levels of phosphorylated pRB and increased p53 activity [89].
Additionally, the combination of the loss of SPN and p53 using p53-knockout mice induced
preneoplastic lesions in the mammary glands, suggesting that the loss of SPN increases the
P53 response similarly to oncogene-induced senescence. Thus, once spontaneous tumors
appear, and p53 is lost, the loss of SPN increases their aggressiveness [90,92].

The loss of SPN has been reported in 15% of breast tumors, correlating with a higher
histological grade, a less differentiated phenotype, and worse survival. In fact, both SPN
and p53 are lost in triple-negative tumors, and this combination makes tumors more
aggressive [121]. The downregulation of SPN in breast cancer cell lines increases some
tumorigenic properties of the cells, such as the ability to proliferate or to form colonies,
and some cancer stem cell properties, such as the formation of tumorspheres and the
expression of stem cell genes. This effect depends on PP1 activity since the downregulation
of PP1ac mimics the effect of the downregulation of SPN [93,97]. Therefore, in tumor cells,
the loss of SPN induces a proliferative response by reducing PPl levels and increasing
hyperphosphorylated and inactive pRB levels, which in turn activate p53 and neutralize
the proliferative response. However, the loss or mutation of SPN is frequently associated
with p53 mutations; therefore, in the absence of p53, the loss or mutation of SPN levels
produces an increase in cell proliferation, and the tumorigenic properties of the cells are
enhanced (Figure 4b) [80,89,90].

In addition, the downregulation of SPN also induces an increase in the stemness
properties of the cells, such as the expression of some cancer stem cell markers (NANOG,
OCT4, SOX2, and KLF4) and enrichment in CD44+/CD24- cells, cancer-initiating cells in
breast tumors with stem cell properties [93,122]. Therefore, the loss of SPN in breast cancer
induces an increase in the cancer stem cell pool, which worsens the response of those
tumors to chemotherapy [80,93,97,123].

On the other hand, thirty-nine mutations in the region of interaction between SPN and
PP1 have been identified [80]. The mutation of SPN, SPN-A566V, has an oncogenic effect
since the expression of this mutation in breast cancer cell lines induces an increase in the
tumorigenic and stemness properties of the cells depending on p53 mutations [80]. SPN-
A566V affects the PP1 phosphatase activity of the holoenzyme, especially over the pocket
proteins. Indeed, SPN-A566V did not interrupt the SPN-pRB interaction but decreased
the capacity of the holoenzyme PP1-SPN to dephosphorylate P-pRB. The mutation of
SPN affects the interaction between SPN and p107 and p130, and decrease the capacity
of the holoenzyme PP1-SPN to dephosphorylate them [80]. Cells that overexpress SPN-
A566V have high levels of the P-pRB, P-p107, and partially P-p130 during the GO/G1
transition and at the end of G1, which could mean that they have a shorter G1 phase in
order to proliferate more rapidly. This mutation also induced an increase in the cancer
stem cell pool and the expression of NANOG, OCT4, and SOX2 [80]. Recently, the pRB
was reported to be directly involved in the transcriptional regulation of the pluripotency
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genes OCT4 and SOX2 [124]. When the pRB is dephosphorylated and active, the OCT4 and
SOX2 promoters are inhibited [125]; thus, the P-pRB may promote OCT4/SOX2 expression
in SPN-A566V cells, which in turn induces NANOG [126,127]. At the same time, OCT4
regulates the self-renewal and differentiation of embryonic stem cells and controls the
cell cycle by increasing CDK/cyclin levels during the G1 phase and by preventing pRB
dephosphorylation by PP1 [125,128,129]. Therefore, a connection between the cell cycle
and stem cell biology was also proposed via SPN/PP1/pocket proteins, but further studies
are needed to clarify whether the PP1-SPN holoenzyme plays any role in the OCT4/pRB
self-regulatory circuit [80].

6. Conclusions

The pocket family of tumor suppressors constitutes one of the major regulators of
the cell cycle through the interaction with E2F transcription factors. The regulation of
the phosphorylation status of pocket proteins is controlled by a balance in the action of
CDK/cyclins and different holoenzymes of PP1, like the recently characterized holoenzyme
PP1-SPN, which is implicated in the dephosphorylation of RB proteins exclusively during
the GO/Gl1 transition and at the end of G1. However, the dephosphorylation of pocket
proteins is still not well understood, and further studies focusing on this mechanism are
needed to improve the knowledge in this field. The development of specific inhibitors
or activators that affect the interaction between PP1 and a regulatory protein and/or
the regulation of a specific holoenzyme of PP1 could have great potential for cell cycle
regulation and, consequently, for the treatment of numerous diseases such as cancer.
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