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Abstract
Background: A single institution retrospective analysis of 124 non-small cell
lung carcinoma (NSCLC) patients was performed to identify whether disease-free
survival (DFS) achieves incremental values when radiomic and genomic data are
combined with clinical information.
Methods: Using the least absolute shrinkage and selection operator (LASSO)
Cox regression method, radiomic and genetic features were reduced in number
for selection of the most useful prognostic feature. We created four models using
only baseline clinical data, clinical data with selected genetic features, clinical
data with selected radiomic features, and clinical data with selected genetic and
radiomic features together. Multivariate Cox proportional hazards analysis was
performed to determine predictors of DFS. Receiver operating characteristic
(ROC) calculation was made to compare the discriminative performance for DFS
prediction by four constructed models at the five-year time point.
Results: On precontrast scan, improved discrimination performance was
obtained in a merging of selected radiomics and genetics (AUC = 0.8638), com-
pared with clinical data only (AUC = 0.7990), selected genetic features
(AUC = 0.8497), and selected radiomic features (AUC = 0.8355). On post-
contrast scan, discrimination performance was improved (AUC = 0.8672) com-
pared with the clinical variables (AUC = 0.7913), and selected genetic features
(AUC = 0.8376) and selected radiomic features (AUC = 0.8399) were considered.
Conclusions: The combination of selected radiomic and genomic features
improved stratification of NSCLC patients upon survival. Thus, integrating clini-
copathologic model with radiomic and genomic features may lead to improved
prognostic accuracy compared to conventional clinicopathological data alone.
Key pointsSignificant findings of the study: Receiver operating characteristic
(ROC) calculation was made to compare the discriminative performance for
disease-free survival (DFS). The discriminative performance for DFS was better
when combining radiomic and genetic features compared to clinical data only,
selected genetic features, and selected radiomic features.
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What this study adds: The combination of selected radiomic and genomic
features improved stratification of NSCLC patients upon survival. Thus, integrating a
clinicopathological model with radiomic and genomic features may lead to improved
prognostic accuracy compared to conventional clinicopathological data alone.

Introduction

Lung cancer is the leading cause of cancer-related mortality
worldwide, with non-small cell lung carcinoma (NSCLC)
accounting for 85% of cases.1 However, the widespread
survival time that exists even after complete resection of
NSCLC at the same stage indicates the vital importance of
personalized medicine.2, 3 Improvements in survival esti-
mation have largely been made as a result of advances in
biological and genomic technologies that enable the inte-
gration of survival-related biological or genetic signatures.4,
5 However, the difficulty of obtaining comprehensive infor-
mation on heterogeneous tumors is a limitation of such
invasive methods.6, 7 Notwithstanding, enabled by the pos-
sibilities of large-scale high-throughput next-generation
sequencing (NGS) technologies along with the computa-
tional resources and tools to store, process and analyze the
data, more powerful methods for the characterization of
individual patients and tumor types became available.8

While substantial progress like NGS has been made in
genetic information, new areas of attention have been created
in the medical imaging field. Radiomics is a field of medical
study that aims to extract a large amount of quantitative fea-
tures from medical images using data-characterization
algorithms.9–12 Radiomics enables noninvasive profiling of
tumor heterogeneity by extracting high-throughput quantita-
tive descriptors from routinely gained computed tomography
(CT) studies.9, 10, 13 Recent advances in radiomics have pro-
vided insights into personalized medicine in oncologic prac-
tice in the areas of tumor detection, subtype classification, and
response assessment to treatment.13–15

Despite recent developments in Genomics, there is still
a need for surgical procurement of tissue. Radiographic
imaging is routine in clinical practice, but is currently
based on histopathology. If specific imaging traits and
gene expression patterns that can predict underlying cel-
lular pathophysiology can be correlated with each other
through radiomics, radiologic data can be used as a
molecular surrogate marker to monitor diagnosis, prog-
nosis, and possibly gene-expression-associated treatment
response of various human cancers.16

The aim of this study was to analyze disease-free survival
(DFS) in patients with NSCLC through radiomic signature and
to compare the results of radiomics with those of traditional
staging systems or genetic analysis to determine if an incre-
mental value could be obtained when they are combined.

Methods

Patient population

The Institutional Review Board approved this retrospective
study which was exempt from the need to acquire informed
consent. From May 2002 to January 2015, 171 patients with
NSCLC had a surgical resection and agreed to genetic analysis
of the specimen in our institution. After the review of medical
records including imaging and pathologic studies, a total of
124 patients were included in this study (Fig 1). The exclusion
of 47 patients was because genetically analyzed specimens had
not been obtained from the lung (n = 20), patient was lost to
follow-up (n = 17), insufficient image sequence for analysis
(n = 5), tumor too small to texture analysis (n = 3) and meta-
static pulmonary nodules (n = 2). In our study, radiomics were
all obtained by three-dimensional (3D) texture analysis, so it
required at least three axial scan slices. Therefore, three cases
whose axial scans were only one and two slices were included in
the exclusion criteria.
Research data collected through electronic medical

records and clinical characteristics at the time of the diag-
nostic work-up were evaluated. Age, sex, smoking status,
and American Joint Committee on Cancer (AJCC) stage
were recorded. Pathology include histologic type and grade
were recorded.

Follow-up

The end point of this study was DFS, which was defined as
the time from the surgical resection date until either the date
of relapse (event), which refers to tumor recurrence within.
or immediately adjacent to, the treated field, mediastinal
relapse, distant relapse, or death, or until the date that the
patient was last known to be free of relapse (censored). The
minimum follow-up period to ascertain DFS was 18 months
after surgical resection; while the maximum follow-up time
was 175 months (median, 36 months). Following our institu-
tion’s follow-up protocol, the patient was followed-up postop-
eratively by chest CT every 6–12 months for the first two
years and annually thereafter.

Imaging and texture analysis

Chest CT scan was used to assess the imaging characteris-
tics of each lesion. Dedicated chest CT images were
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obtained with several multidetector CTs including eight-,
16-, or 64-detector row CT scanners. Among 124 patients,
116 CT examinations consisted of pre- and post-contrast
scan, while eight CT examinations consisted of post-
contrast scan only. CT images were obtained with the fol-
lowing parameters: detector collimation was 1.25 or
0.625 mm, the tube peak potential energies ranged from
80 to 140 kVp, tube current ranged from 150 to 200 mA,
and reconstruction interval ranged from 1 to 2.5 mm. All
patients underwent chest CT at full inspiration through
breath hold to minimize the effect of the tumor motion
due to breathing. Chest CT scanning was obtained
90 seconds after the administration of contrast material. A
total of 1.5 mL/kg (bodyweight) iomeron 300 (iomeprol,
300 mg iodine/mL; Bracco; Milan, Italy) was injected at an
infusion rate of 3 mL/second using a power injector (MCT
Plus; Medrad; Pittsburgh, PA, USA). All CT images were
displayed at standard mediastinal (window width, 400 HU;
window level, 20 HU) and lung (window width, 1500 HU;
window level, −700 HU) window settings. In-plane resolu-
tion varied from 0.49 to 0.88 mm with a mean and stan-
dard deviation (SD) of 0.7 and 0.07, respectively. The
mean slice thickness of images was 2.33 (range: 1–5 mm)
and the SD was 0.98. Chest CT data were interfaced

directly with a picture archiving and communication sys-
tem (PACS) (Path-Speed or Centricity 2.0; GE Healthcare,
Mt. Prospect, IL, USA), which displayed all image data on
two monitors (1536 × 2048 matrix, eight-bit viewable gray-
scale, 60-foot-lambert luminescence).
For quantitative CT analyses, our in-house software was

used for lesion segmentation. Tumors were segmented by
drawing a region of interest (ROI) with a semiautomatic
approach using a MRIcro (version 1.40, Chris Rorden,
University of Nottingham, UK) that traced the edge of the
tumor to include the largest area along all axial slice CT
images until the entire tumor was covered, containing the
lesion displayed in the lung window setting.
Segmentations were performed on precontrast CT scans

(n = 116) and post-contrast CT scans (n = 124) each. Two
radiologists carried out additional manual corrections to
eliminate bronchovascular bundles and ground glass opac-
ity boundary. After the nodule had been segmented, radio-
mic features were automatically calculated and extracted.
We calculated a total of 161 features of raw imaging over

the given ROI using a combination of open-source
(Pyradiomics) and in-house MATLAB code (MATLAB
2017b, Mathworks Inc., MA, USA). Our MATLAB code
was used for features that were not calculated in

Figure 1 Flow diagram of the patient cohort.
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pyradiomics.13 The features could be classified into four
categories of histogram-based, shape-based, gray level co-
occurrence matrix (GLCM)-based, and intensity size zone
matrix (ISZM)-based. All of the features were verified for
stability by image biomarker standardization initiative
(IBSI).13, 17 A detailed definition of the features adopted is
given in Table S1. The workflow of radiomic feature
extraction is illustrated in Figure 2.

Genetic analysis

We obtained genomic variant information by using Can-
cerSCAN, a targeted sequencing platform designed by
Samsung Medical Center. This customized platform pro-
vides the researchers and clinicians the flexibility to include
selected genes in the literature required. Single nucleotide
variation (SNV), small indels, copy number variation, and
gene fusion were detected using both existing18 and custom
algorithms.19 Samples were typically sequenced without
paired normal tissue. Genomic deoxyribonucleic acid
(DNA) was extracted from formalin-fixed, paraffin-
embedded (FFPE) tissue or fresh tissue using a QIAamp
DNA mini kit (Qiagen, Valencia, CA, USA) and Promega
Maxwell 16 CSC DNA FFPE kit or QIAamp DNA after

the pathologist’s diagnosis and tumor content were exam-
ined. DNA concentration and purity were determined
using a Nanodrop 8000 UV-Vis spectrometer (Thermo
Scientific, Waltham, MA, USA) and a Qubit 2.0 fluores-
cence meter (Life Technologies, Grand Island, NY, USA).
The degree of DNA degradation was measured using a
200 TapeStation Instrument (Agilent Technologies, Santa
Clara, Calif., USA) and real-time PCR (Agilent Technolo-
gies, Santa Clara, CA, USA). Genomic DNA was shared
using Covaris S220 (Covaris, Woburn, Massachusetts,
USA). We used SureSelect-XT Reagent Kit, HSQ (Agilent
Technologies, Santa Clara, CA, USA) to capture the target
and create a bidirectional sequencing library using
barcodes. After checking the quality of the library,
sequencing was performed on a HiSeq 2500 with a 100 bp
reading (Illumina, San Diego, California, USA). When
sequencing is complete, the analytics workflow has started
automatically. Pair-ended reads were aligned to the human
reference genome (hg19) using BWA-MEM (v.0.7.5).
SAMTOOLS (v0.1.18), GATK (v3.1–1), and Picard (v1.93)
were used for reading alignment, local realignment and
duplicate read removal, respectively. The baseline quality
score was recalibrated using the GATK BaseRecalibrator
based on known single nucleotide polymorphisms (SNPs)
and indels of dbSNP138. SNV was identified using a

Figure 2 Workflow of extracting radiomic features. (a) A lung tumor is scanned in multiple slices. (b) Experienced radiologists contour the tumor
areas on all CT slices. (c) Features are extracted from within the defined tumor contours on the CT images. (d) Feature selection by the LASSO Cox
regression method. (e) Receiver operating characteristic (ROC) analysis with area under the curve (AUC) calculation was conducted to compare the
discrimination performance for the prediction of DFS. ( ) Clinical, ( ) Clinical + SGI, ( ) Clinical + radiomics, ( ) Clinical + radiomics + SGI.
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combination of the two algorithms MuTect20 (v1.1.4) and
LoFreq21 (v0.6.1). We applied a custom-designed filtering
step based on a regression model trained on the low vari-
ant allele frequency (VAF) variance of the normal sample
to improve its accuracy.22 Pindel was used to search inser-
tions and deletions.23 To calculate copy number variations,
the read depth per exon was divided by the estimated nor-
mal reads per exon using in-house references. Gene fusion
of the target site was identified using an in-house algo-
rithm. A detailed analysis workflow has been described in
a previous report.22 An open SNP database such as the
Exome Aggregation Consortium (EXID),,19 Korean Refer-
ence Genome (KRG), and Korean Variant Archive
(KOVA)24 was used to differentiate somatic mutations
from germline mutations. VAF of at least 0.1% in any of
the SNP databases were considered as germ-line variants.
For the remaining variants, a manually constructed inter-
nal database containing variants frequently found in the
entire cohort was used for additional variant filtering. The
variant was annotated by ANNOVAR.25

Mutation data was condensed into multiple binary
values for each gene to represent functional effects. (i) Loss
of function (LoF) mutation: Damaging mutations including
frame-shift insertions and deletions and stop gain mutations;
(ii) S1 mutation: Mutations that have been implicated in can-
cer development or therapy; (iii) missense (MS) mutation:
Mutations in the coding region causing amino acid change
other than S1 mutations; (iv) amplification (Amp): Gene
amplifications with estimated copies ≥4; (v) deletion (Del):
One or two copy gene deletions; and (vi) gene fusion
(Fusion): Gene fusions inferred from the sequenced DNA
reads that were specially designed to detect gene fusions in
the CancerSCAN platform. Only driver gene fusions were
included.

Statistical analysis

Continuous variables were presented as means and stan-
dard deviations and categorical variables as numbers and
percentages.
We created four models using only clinical data, clinical

data with selected genetic features, clinical data with
selected radiomic features, and clinical data with selected
genetic and radiomic features together. We performed least
absolute shrinkage and selection operator (LASSO) to
remove redundancy within the radiomic and genetic infor-
mation by selecting the most prognostic characteristics in
radiomic and genetic analysis.18, 26 LASSO is a method of
selecting a few suitable features using L1-norm regulariza-
tion and the method is frequently used for the feature
selection in radiomics.27, 28 We performed multivariate
Cox proportional hazards analysis to determine predictors
of DFS. The variables investigated included demographics,

pathological characteristics, and selected radiomic and
genetic features.
Next, leave-one-out cross validation tests were per-

formed to test the validity of our prediction model. We
divided the data set into equal subgroups where the num-
ber of folds was equal to the number of instances in the
data set. Subsequently, to compare the discrimination per-
formance for DFS prediction by four constructed models
at the five-year time point, the receiver operating charac-
teristic (ROC) analysis with area under the curve (AUC)
calculation was performed. Statistical analyzes were per-
formed using SAS v9.4 (SAS Institute Inc., Cary, NC) and
R 3.4.0 (Vienna, Austria; http://www.R-project.org/). P-
values less than 0.05 indicated statistical significance.
Using 39 randomly selected patients, the reliability and

reproducibility of tumor segmentation and feature extrac-
tion was attained by comparing the intraclass correlation
coefficient (ICC)29 values between both radiologists.

Results

Patient group characteristics

Table 1 shows baseline clinicopathologic data such as age,
sex, smoking status, AJCC stage, histologic type and histo-
logic grade. A model using only clinical factors was
designed with these variables. A total of 62 women (50%)
and 62 (50%) men (median age, 56.6 years) were enrolled.
We analyzed a total of 124 measurable lesions from
124 patients. There were 77 (62.1%) patients who were
never-smokers, and 47 (37.9%) were ever-smokers. Among
124 lesions, 114 (91.9%) were adenocarcinomas, five were
squamous cell carcinomas, two were pleomorphic carci-
noma, two were large cell neuroendocrine carcinoma, and
one was adenosquamous cell carcinoma. As of the last
follow-up, 59 patients (34.4%) had experienced a con-
firmed disease relapse. The mean DFS was 27.66 months,
and the median DFS was 23 months.

Feature selection and diagnostic
performance of constructed models

Using the LASSO method, radiomic and genetic features were
reduced in number. On precontrast CT scan, two radiomic
features (IMC1_val_out and IMC1_val_delta_sub2) and six
genetic features (ALK_Fusion, ATRX_Amp, MET_MS,
MLH1_MS, MTOR_MS, and STK11_MS) were selected. On
post-contrast CT scan, 12 radiomic features (Kurtosis_val_in,
mean_delta, Skewness_delta, Sphericity_val, Contrast_
glcm_val_delta_sub2, Entropy_glcm_val_in, Energy_glcm_val_
delta_sub2, IMC1_val_delta, Max_probability_val_in_sub2,
Max_probability_val_out_sub2, Variance_glcm_val_delta, and
Variance_glcm_val_delta_sub2) and seven genetic features
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(ALK_Fusion, ATRX_Amp, MET_MS, MLH1_MS, MTOR_
MS, NF1_LoF, and STK11_MS) were selected. Radiomic and
genetic features obtained from pre- and post-contrast scans
were arranged and are shown in Tables S1 and S2.
Tables 2 and 3 summarize the survival prognosis perfor-

mance of the three models. Using radiometric data in a
precontrast CT scan, when selected radiomic and genetic fea-
tures were integrated with clinical variables, the discrimination
performance improved (AUC = 0.8638) compared with con-
sideration of only clinical variables (AUC = 0.7990), selected
genomic features incorporated with clinicopathological data
(AUC = 0.8497), and selected radiomic features incorporated
with clinicopathological data (AUC = 0.8355). When selected
radiographic and genetic features were integrated with clinical
variables using radiomic data on post-contrast CT scan,
the discrimination performance improved (AUC = 0.8672)
compared with consideration of only clinical variables

(AUC = 0.7913), selected genomic features incorporated with
clinicopathological data (AUC = 0.8376), and selected radio-
mic features incorporated with clinicopathological data
(AUC = 0.8599).

Reliability and reproducibility of tumor
segmentation and feature extraction

The ICC values ranged from 0.484 to 1.000 with a mean

value of 0.929, representing a higher reliability level of
agreement.

Discussion

Recently, several researchers have succeeded in extracting
radiomic features in the oncology field by computing enor-
mous amounts of quantitative variables from conventional
medical images.30–32 Although previous studies have
reported the prognostic value of some radiomic or genomic
features, the question remains whether these new radiomic
and genomic features have any incremental value above
the current clinicopathologic model. Identifying the predic-
tive power and clinical relevance of the numerous radiomic
and genomic features for lung cancer survival remains an
important issue.33, 34

In this study, we compared four models to evaluate
selected radiomic and genomic feature increments along
with clinicopathologic data using: (i) only clinicopathologi-
cal data; (ii) selected genomic features incorporated with
clinicopathological data; (iii) selected radiomic features
incorporated with clinicopathological data; and (iv) selected
radiomic and genomic features incorporated with clinico-
pathological data. The merging of selected radiomic and
genomic features improved stratification in lung cancer
patients upon survival. Thus, our results show that integra-
tion of the current clinicopathologic model with radiomic
and genomic features may lead to improved prognostic
accuracy compared to conventional clinicopathological data
alone.
We employed a cancer panel sequencing platform to

explore relationships between cancer genomic features and
radiomic characteristics. There have been many debates on

Table 1 Patient group characteristics

Characteristics No. of patients (n = 124)

Age at diagnosis (year) 56.6 � 11.9
Sex
Female 62 (50)
Male 62 (50)

Smoking history
Never 77 (62.1)
Ever 47 (37.9)

Pathology
Adenocarcinoma 114 (91.9)
Squamous cell carcinoma 5 (4.0)
Pleomorphic carcinoma 2 (1.6)
Large cell neuroendocrine carcinoma 2 (1.6)
Adenosquamous cell carcinoma 1 (0.7)

Histologic grade
Well-differentiated 3 (2.4)
Moderately-differentiated 89 (71.8)
Poorly-differentiated 32 (25.8)

AJCC stage at diagnosis
I 53 (42.7)
II 25 (20.2)
III 35 (28.2)
IV 11 (8.9)

Follow-up time (months)
Median (quartile) 36 � (28.6–58.9)
Maximum 175

Table 2 Diagnostic performances of models using clinical/genetic/
radiomic data on precontrast CT

Model AUC P-value

Clinical data only 0.7990 Reference
Clinical + genetic data 0.8497 0.1923
Clinical + radiomic data 0.8355 0.2793
Clinical + genetic + radiomic data 0.8638 0.0523

Table 3 Diagnostic performances of models using clinical/genetic/
radiomic data on post-contrast CT

Model AUC P-value

Clinical data only 0.7913 Reference
Clinical + genetic data 0.8376 0.1929
Clinical + radiomic data 0.8599 0.1994
Clinical + genetic + radiomic data 0.8672 0.2092
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using whole-genome sequencing (WGS) versus whole-
exome sequencing (WES) versus gene panels.35, 36 For clin-
ical sequencing, we previously reported that many hotspot
variants have a low VAF variant,22 which make it difficult
to detect variants from a clinical sample at a standard cov-
erage of WGS or WES platform (100–200x). The Can-
cerSCAN panel sequencing platform aims at 1000x
coverage to detect low VAF variants such as 2% VAF. This
capability enables the detection of variants that only a
small subclone contains, even in a low purity tumor sam-
ple. Thus our data represents near complete variant pro-
files in the panel genes, which other studies who employed
WGS or WES would have missed.
Most lung adenocarcinoma genomic expression appears

as a mixed-subtype such as polyclonal composition of two
or more different pathologic subtypes.37, 38 Recent NGS
and bioinformatic studies have studied different types of
tumor heterogeneity including intratumor heterogeneity in
which heterogeneity between tumor cells exists due to the
presence of multiple subclones within the tumor in addi-
tion to interpatient or intertumor heterogeneity.39, 40 Based
on this concept, recently published large databases charac-
terizing the molecular features of human tumors are
attempting to change the determination of each cancer
type from the conventional histopathological classification
to a new classification based on genetic identity.41–44 Such
changes could better explain the symptoms of partial
tumor response to treatment, the emergence of drug-
resistant malignant cells, or the dissemination of metastatic
cells with the emergence of genomically distinct minor
subclones of malignant cells more practically.45–47 Several
observations have demonstrated that the presence of minor
subclones affects tumor progression.48–50

However, performing multiple tumor biopsies to pre-
cisely determine the clonal composition of a tumor is not a
simple or practical solution in the context of clinical
research. In addition, the results obtained with a single
tumor-biopsy sample may also underestimate the overall
genomic landscape. The error rate of cancer histopathology
can be as high as 23%, and it is estimated that even the
most clinically relevant solid tumors become very heteroge-
neous at phenotypic, physiologic, and genomic levels over
time.11 Phylogenetic reconstruction has been reported to
show a branching evolutionary tumor growth in which
almost 70% of all somatic mutations were not detected
across all tumor regions.51 In comparison, the medical
image has the advantage of a quantified comprehensive
macroscopic picture in estimating the entire tumor plus
surrounding tissue relatively safely and less inconveniently
for patients.
Radiogenomics focuses on defining relationships between

radiomic phenotypes and genomic information to intercon-
nect macroscopic imaging and subcellular characteristics to

as oncologic diagnosis changes from traditional tissue-based
approaches to molecular stratification.52 Although it is still
poorly understood, many studies have attempted to find
radiographic tumor phenotypes using radiomics and to find
correlations with specific genetic expressions, and some have
been successful.53–55 Radiomics may function as comple-
mentary “virtual biopsy” information that can be monitored
more frequently than the invasive method during an entire
course of cancer treatment, but it will still be difficult to
completely replace conventional biopsy, which allows more
detailed genomic analysis.
Of the 14 radiomics selected in our study, 10 were

GLCM-based features, one was shape, and three were
histogram-based features, and we conclude that the results
reflect intratumoral heterogeneity well. GLCM texture fea-
tures contains information about the positions of pixels
having similar gray level values. They describe the high-
order statistical spatial distributions of the voxel intensities
characterizing heterogeneity with spatial information
within a tumor or ROI. Therefore, GLCM features
extracted from the raw image can act as an effective texture
descriptor to reflect lesion heterogeneity. Representative
features extracted from GLCM included correlation, clus-
ter, contrast, energy, and entropy.
In addition, in our study, the features that were finally

selected through LASSO were generally partial ROI associ-
ated features (in, out, and subsampled) than features
related to whole ROI. In a study conducted on breast can-
cer, Wu et al.56 reported that the subregional radiomic
analysis method had an advantage in quantifying the
tumor subregion which was more correlated with the
tumor growth or aggressiveness. Similarly, in our research,
most of the radiomic features finally selected were partial
ROI related features correlated with subregion microenvi-
ronment, and we can assume that these features were
accompanied with risk group stratification.
We focused on CT-derived radiomic features in this

study. CT is the most popular and routinely performed
modality in the lung cancer field, and CT-derived radiomic
features are practical for clinical application. We included
both precontrast-enhanced CT scan and enhanced CT scan
in this study. Theoretically, precontrast-enhanced CT-
derived features are indicative of cellularity of the tumor
and contrast-enhanced CT-derived features are indicative
of vascularity of the tumor, reflecting both characteristics
may represent tumor heterogeneity and complexity more
accurately. As we utilized both precontrast scan CT-
derived features and post-contrast CT scan-derived fea-
tures, it broadens the applicability of our study, given the
different imaging protocols of each hospital.
Despite the advantages of the radiomic approach to lung

cancer prognostication, our study had some limitations.
First, there was a small number of subjects included in our
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study, and they were collected from a single institute. The
second limitation is that our study was retrospectively per-
formed and based on previously acquired gene-expression
data. Therefore, our findings will need to be further char-
acterized and validated in future studies by patient groups
receiving the same treatment to generate gene-expression
data prospectively.
Our results indicate that integrating the current clinico-

pathologic model with selected radiomic and genomic fea-
tures may lead to improved prognostic accuracy compared
to conventional clinicopathologic data alone.
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