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This article describes a neural model of the anatomy, neurophysiology, and functions of
intrinsic and extrinsic theta rhythms in the brains of multiple species. Topics include
how theta rhythms were discovered; how theta rhythms organize brain information
processing into temporal series of spatial patterns; how distinct theta rhythms occur
within area CA1 of the hippocampus and between the septum and area CA3 of
the hippocampus; what functions theta rhythms carry out in different brain regions,
notably CA1-supported functions like learning, recognition, and memory that involve
visual, cognitive, and emotional processes; how spatial navigation, adaptively timed
learning, and category learning interact with hippocampal theta rhythms; how parallel
cortical streams through the lateral entorhinal cortex (LEC) and the medial entorhinal
cortex (MEC) represent the end-points of the What cortical stream for perception and
cognition and the Where cortical stream for spatial representation and action; how the
neuromodulator acetylcholine interacts with the septo-hippocampal theta rhythm and
modulates category learning; what functions are carried out by other brain rhythms,
such as gamma and beta oscillations; and how gamma and beta oscillations interact
with theta rhythms. Multiple experimental facts about theta rhythms are unified and
functionally explained by this theoretical synthesis.

Keywords: hippocampus, entorhinal cortex, learning, grid cell, place cell, spatial navigation, adaptively timed
learning, Adaptive Resonance Theory

1. INTRODUCTION: HIPPOCAMPAL LEARNING, THETA
RHYTHM, AND CHOLINERGIC MODULATION

The topic of hippocampal theta rhythms combines several basic themes about how our brains work.
These themes include, in varying degrees of generality:

• How theta rhythms were discovered;
• How theta rhythms organize brain information processing

into temporal series of spatial patterns;
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• How distinct theta rhythms occur within area CA1 of the
hippocampus and between the septum and area CA3 of the
hippocampus;

• What functions theta rhythms carry out in different brain
regions, notably CA1-supported functions like learning,
recognition, and memory that involve visual, cognitive, and
emotional processes;

• How spatial navigation, adaptively timed learning, and
category learning interact with hippocampal theta rhythms;

• How parallel cortical streams through the lateral entorhinal
cortex (LEC) and the medial entorhinal cortex (MEC)
represent the end-points of the What cortical stream for
perception and cognition, and the Where cortical stream
for spatial representation and action;

• How the neuromodulator acetylcholine interacts with the
septo-hippocampal theta rhythm and modulates category
learning;

• What functions are carried out by other brain rhythms,
such as gamma and beta oscillations; and

• How gamma and beta oscillations interact with theta
rhythms.

Before discussing theta rhythms per se, I will set the stage by
discussing some of the main anatomical, neurophysiological, and
functional properties of the hippocampus with which it interacts.

1.1. Hippocampal Place Cells
Brain circuits within the hippocampus (HC) interact with the
MEC to regulate spatial learning and memory (Morris et al., 1982;
Davis et al., 1992; Parron and Save, 2004). Particular cell types
within these brain regions arise through this learning process to
support spatial navigation. Perhaps the most important of these
cell types are the place cells which fire whenever rats, or multiple
other animals, are at particular localized regions, or “places,”
within an environment (Figure 1C; O’Keefe and Dostrovsky,
1971). Place cells can also exhibit multiple firing fields when
animals navigate in large spaces (Fenton et al., 2008; Henriksen
et al., 2010; Park et al., 2011). Different place cells fire at different
locations in an environment, so that the ensemble of all place
cells enables an animal to localize itself in an environment, and
to navigate through it.

The classical article of O’Keefe and Dostrovsky (1971)
reported that place cells receive two kinds of inputs: one
conveying information about the sensory context experienced
from a given place, and the other from a navigational, or
path integration, system that tracks relative positions in the
world by integrating self-movement angular and linear velocity
estimates for instantaneous rotation and translation, respectively.
An important open problem is to explain how sensory context
and path integration information are combined in the control
of navigation (Etienne et al., 1996; Gothard et al., 1996; Chen
et al., 2013). Path integration information is generated by an
animal’s movements, including its distance and direction relative
to a start location (Loomis et al., 1999). Path integration is the
basis of “dead reckoning” which was used by sailors for hundreds
of years to estimate the location of their ship using information

about its speed, travel time, and direction when visible landmarks
were not available.

1.2. Entorhinal Grid Cells
Entorhinal grid cells provide inputs to place cells in hippocampal
area CA3. They occur in the superficial layers of MEC and exhibit
one of the most remarkable receptive fields of any cell type in the
brain. Indeed, each grid cell can fire in multiple locations that may
form a regular hexagonal grid (Figure 1B; Hafting et al., 2005). It
is known that path integration inputs are a primary cause of these
grid cell properties (McNaughton et al., 2006).

Cells in a population of grid cells at a given dorsoventral
location in rat MEC exhibit receptive fields that are offset from
each other (Hafting et al., 2005). As the dorsolateral MEC is
traversed from its dorsal to its ventral end, grid cell receptive field
sizes increase, as does the spacing between these fields, on average
(Sargolini et al., 2006; Brun et al., 2008; Stensola et al., 2012).

1.3. Place Cells Can Represent Spaces
Which Are the Least Common Multiple of
Their Grid Cell Scales
These grid cell properties have led to the suggestion that the
receptive field of a place cell that fires at a given position may
be derived by combining grid cells with multiple spatial phases
and scales that are coactive at that position, thereby allowing
a place cell to represent a spatial scale that is much larger
than the spatial scales of the individual grid cells that input
to it (O’Keefe and Burgess, 2005; McNaughton et al., 2006;
Gorchetchnikov and Grossberg, 2007). Indeed, the GridPlaceMap
model (Figure 2) and its earlier variants explains why the spatial
scale of a place cell can be as large as the least common multiple of
the grid cell scales that drive it (Gorchetchnikov and Grossberg,
2007; Grossberg and Pilly, 2012, 2014; Mhatre et al., 2012;
Pilly and Grossberg, 2012).

For example, grid cell spatial scales of 40, 50, and 60
centimeters that input to place cells can endow the place cells
with a spatial scale of 6 m. If the converging grid cell spatial
scales are 50, 60, and 70 centimeters, then the place cell spatial
scale is 21 m. Remarkably, grid cell spatial scales that are chosen
to be 41, 53, and 59 centimeters can generate a place cell
spatial scale of 1.282 km (Gorchetchnikov and Grossberg, 2007)!
Whereas, the spatial scales of individual grid cells are too small to
control navigation in real-world spaces, the spatial scales of place
cells can do so.

1.4. Stripe Cells
Grid cells are learned within the GridPlaceMap model in
response to inputs from multiple stripe cells (Sargolini et al., 2006;
Krupic et al., 2012) each of which fires selectively in response to
movements in a given direction with its own spatial scale and
spatial phase. Each stripe cell codes the distance from a starting
position by integrating the linear velocity of the navigator. In
the GridPlaceMap model, stripe cells are organized into ring
attractors (Figure 3A). All the stripe cells in a given ring attractor
are tuned to movement along the same direction. Because they
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FIGURE 1 | Simulated responses of illustrative model (A) stripe cells, (B) grid cells, and (C) place cells in the spiking self-organizing map (SOM) model. The first
column shows the realistic trajectory of the animat (blue lines and curves) on which are superimposed spikes (red dots) of firing cells. The second and third columns
show unsmoothed and smoothed spatial rate maps of the cells, respectively. Color coding from blue (minimum) to red (maximum) firing generates each rate map
(reprinted with permission from Pilly and Grossberg, 2013).

occur at different positions in the ring attractor, different stripe
cells fire at different spatial phases (Figure 3C). An activity bump
which integrates the distance traveled moves from one stripe
cell to the next on the ring attractor as the animal moves in its
prescribed direction (Figure 3A).

The name stripe cell describes the periodic directionally
selective activations of these cells as the environment is
navigated. Because the activity bump moves around the
ring attractor as the model animal, or animat, moves in
a given direction, a sufficiently long excursion executes a

complete cycle, which activates the same stripe cell again
(Figure 3B). This distance determines the spatial scale of
that ring attractor. Parallel activations of multiple stripe cell
ring attractors, each responding selectively to a different
spatial scale and directional preference, implicitly represent
the animal’s position in the environment. Multiple stripe
cells input to a given grid cell, just as multiple grid cells
input to a given place cell (Figure 2). The GridPlaceMap
model explains how learning prunes which stripe cells can
activate particular grid cells to form their hexagonal spatial
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FIGURE 2 | The GridPlaceMap is defined by a hierarchy of self-organizing maps (SOM) whereby grid cells and place cells are learned and activated. Stripe cells Sdps

occur in the deeper layer of medial entorhinal cortex (MEC), grid cells Gjs occur in layer II of MEC, and place cells Pk occur in hippocampal area CA3. Multiple stripe
cells drive learning of individual grid cells, and multiple grid cells drive learning of individual place cells. Place cells can thereupon represent movements in large
spaces in response to internally generated linear velocity [v(t)] and angular velocity [8(t)] movements through the environment. Bigger stripe fields and spacings occur
from dorsal to ventral positions in the model (reprinted with permission from Grossberg and Pilly, 2014).

receptive fields, as it also prunes which grid cells can activate
particular place cells.

1.5. A Parsimoniously Designed
Hierarchy of Self-Organizing Maps
Defines Grid and Place Cells
The GridPlaceMap model has a remarkably parsimonious and
elegant design. Both grid cell and place cell receptive fields,
despite their radically different properties, develop by detecting,
learning, and remembering the most frequent and energetic
co-occurrences of their inputs. The same self-organizing map
(SOM) circuits automatically compute these co-occurrences to
learn grid cell and place cell receptive fields, albeit at different
levels of the learning hierarchy (Figure 2). SOMs occur in
multiple parts of the brain, where they learn perceptual, cognitive,
motor, or spatial recognition categories (Grossberg, 2021). In
the GridPlaceMap model, place cells are spatial categories. More
about how SOM models work will be described in the discussion

in Section 3.3 of how SOMs learn perceptual and cognitive
recognition categories.

All the inputs that drive grid cell learning arise from ring
attractor circuits, as noted in Section 1.4. One type of ring
attractor circuit processes linear velocity inputs that input to
stripe cells. The other ring attractor circuit processes angular
velocity inputs that input to head direction cells, which modulate
the directional selectivity of different stripe cells.

1.6. Temporal-to-Spatial: Learning a
Dorsoventral Gradient of Increasing Grid
Cells and Time Cells
Populations of stripe cells with a given spatial period that exhibit
multiple directional preferences and spatial phases initially
project with random adaptive weights to cells in the category
learning layer of a SOM (Figure 2). Learning tunes these weights
until the SOM cells become grid cells of fixed spatial scales, just
as such learned tuning responds to the emerging grid cells by
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FIGURE 3 | Linear velocity path integration. (A) Linear velocity path integration signals input to a ring attractor neural circuit that translates them into an activity bump
that moves from cell to cell along the ring. (B) Firing rate map of an illustrative stripe cell with a spacing of 35 cm whose firing fields respond to translational
movement with a component along either 135o or −45o. (C) Activities of stripe cells of five different spatial phases (see colors) as a function of displacement from
the origin along their preferred direction. (D) Real rat trajectory from Sargolini et al. (2006) of ∼10 min in a 100 cm × 100 cm environment that was used to train the
model. The red segment depicts the straight path prefixed to the original trajectory to ensure the animat starts from the midpoint of the environment (reprinted with
permission from Pilly and Grossberg, 2012).

creating SOM cells at the next processing stage with place cell
receptive fields.

In vivo, grid cells and place cells of increasing spatial scale are
found along a dorsoventral gradient. The GridPlaceMap model
explains how stripe cells of different spatial scales learn to activate
different locations along the dorsoventral axis in layer II of MEC,
thereby triggering learning of grid cells with increasing spatial
scales. The selection of different grid cell spatial scales on the
dorsoventral gradient is driven by a gradient in the rates at
which cells respond along the dorsoventral gradient, from fast to
slow. Cells that respond more quickly are active for shorter time
intervals than cells that respond more slowly.

A longer duration of sampling enables each grid cell to sample
stripe cells over a larger spatial scale. The duration of sampling
thus covaries with the spatial scale of the learned grid cells.
Likewise, multiple entorhinal grid cell scales combine through
learning to give rise to a dorsoventral gradient of hippocampal
place cells, each of which can represent larger spaces than can an
individual grid cell. Due to these temporal-to-spatial conversions,
the SOM model shows how the dorsoventral gradient in response

rates develops a spectrum of grid cell scales and place cell scales.
It is thus called the Spectral Spacing model.

Remarkably, the response rate gradient for spatial learning is
computationally homologous to a rate gradient that had, 20 years
earlier, been used to explain hippocampal data about adaptively
timed learning (Grossberg and Schmajuk, 1989; Grossberg and
Merrill, 1992, 1996). The model for adaptively timed learning
was called a Spectral Timing model because its different cell
populations respond with a “spectrum” of different rates whose
activities peak at different times, and whose total population
activity can learn to peak hundreds of milliseconds after their
onset. That is why the GridPlaceMap model of grid cell learning
is called a Spectral Spacing model. The rate gradient for spatial
learning occurs in the MEC and its hippocampal projections. The
rate gradient for temporal learning occurs in the LEC and its
hippocampal projections.

One of the most striking properties of the Spectral Timing
model is its Weber Law property whereby cells in the spectrum
that respond at larger times also respond with longer durations.
This prediction was strongly confirmed by the discovery, 20
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years after it was made, of time cells in the hippocampus by
MacDonald et al. (2011). Indeed, MacDonald et al. (2011) write:
“. . .the mean peak firing rate for each time cell occurred at
sequential moments, and the overlap among firing periods from
even these small ensembles of time cells bridges the entire delay.
Notably, the spread of the firing period for each neuron increased
with the peak firing time. . .” (p. 3). Their “small ensembles of
time cells” are the cells in the spectrum, and the “spread of the
firing period. . .increased with the peak firing time” is the Weber
Law property. For a recent synthesis of hippocampal timing
processes, see Banquet et al. (2020).

In summary, parallel dorsoventral gradients in the rates
that cells respond within the entorhinal–hippocampal system
may create multiple smaller spatial and temporal scales in the
entorhinal cortex that can be fused into larger spatial and temporal
scales in the hippocampal cortex, notably scales that are large
enough to control adaptive behaviors during spatial navigation in
large enclosures. The mechanistic homology between these spatial
and temporal mechanisms suggests why they may occur side-by-
side in MEC and LEC dorsoventral gradients through entorhinal
cortex into the hippocampus.

Spatial representations in the dorsal, or Where, cortical stream
for spatial representation and action go through postrhinal cortex
and MEC on their way to hippocampal cortex, whereas object
representations in the ventral, or What, cortical stream for
perception and object recognition go through perirhinal cortex
and LEC on their way to hippocampal cortex (Hargreaves et al.,
2005; Norman and Eacott, 2005; Aminoff et al., 2007; Kerr et al.,
2007; Eichenbaum and Lipton, 2008; van Strien et al., 2009;
LaChance et al., 2019; Nilssen et al., 2019; Sethumadhavan et al.,
2020), where they are merged.

1.7. Episodic Learning and Memory
These parallel and homologous spatial and temporal
representations may clarify the role of hippocampus in
supporting episodic learning and memory (Tulving, 1972;
Tulving and Thomson, 1973), since each episode in memory
consists of specific spatio-temporal combinations of cues,
imagery, and behaviors.

Episodic learning combines information about particular
sequences of object and spatial information. The importance of
sequential processing during both episodic learning and spatial
navigation have led Buzsáki (2005, p. 831) to suggest that
“Learning of sequentially presented or inspected random items in
an episodic task is formally identical to the coding of sequential
places in a linear (1-dimensional) route” and, moreover,
that “formation of episodes and neuronal representations of
1-dimensional routes require a temporal metric that we identify
with the theta period.” Buzsáki and Moser (2013, p. 130) have
similarly suggested the hypothesis that “mechanisms of memory
and planning have evolved from mechanisms of navigation in
the physical world and hypothesize that the neuronal algorithms
underlying navigation in real and mental space are fundamentally
the same. We review experimental data in support of this
hypothesis and discuss how specific firing patterns and oscillatory
dynamics in the entorhinal cortex and hippocampus can support
both navigation and memory.”

The brain processes that underly the proposed homology
between navigation and memory have been modeled in a series
of studies over the years. One extensive set of psychophysical
experiments about the storage and learning of sequential
information has studied how context-sensitive searches are
carried out for desired objects in scenes, under the rubric of
contextual cueing. For example, when we are in our kitchen
and see a refrigerator and a stove at particular positions, we
then expect to see our sink at a prescribed different position.
The psychophysical literature about contextual cueing describes
how sequentially experienced objects and positions contribute
to such expectations, and guide efficient searches to discover
and act upon desired goal objects (e.g., Chun and Jiang,
1998; Olson and Chun, 2002; Brockmole et al., 2006; Jiang
et al., 2006). The contextual cueing literature hereby provides
a well-organized database for studying the learning of episodic
memories, using brain regions that are also implicated in the
learning of navigational trajectories.

The ARTSCENE Search model (Huang and Grossberg, 2010)
simulates how sequences of experienced spatial locations and
objects are temporarily stored in spatial and object working
memories, before they trigger learning of spatial and object
sequence categories, or list chunks, which in turn learn spatial and
object priming signals whereby to predict and control what events
to expect and act upon in that sequential context. These processes
are modeled using interactions between the perirhinal and
parahippocampal cortices, prefrontal cortex, temporal cortex,
and parietal cortex to simulate key psychophysical data from
contextual cueing experiments that are reviewed and simulated in
Huang and Grossberg (2010). The ARTSCENE Search, Spectral
Spacing, and START models (see Section 5.1) may in the future be
fused to provide a foundation on which to build a more complete
theory of episodic learning and memory.

1.8. Shared mGluR Dynamics of Spectral
Timing in Hippocampus, Cerebellum,
and Basal Ganglia?
To the present, spectral timing processes, with similar biophysics
and circuitry, have been modeled in the hippocampus,
cerebellum, and basal ganglia (Fiala et al., 1996; Brown et al.,
1999, 2004). The proposed mechanism of spectral timing in the
cerebellum has been supported by biophysical data concerning
the calcium dynamics of the metabotropic glutamate receptor
(mGluR) system that enables spectral timing to bridge temporal
delays of hundreds of milliseconds (Fiala et al., 1996). The most
parsimonious prediction is that a similar mechanism holds in all
cases of spectral timing throughout the brain.

1.9. Linking Theta Rhythm to Grid Cells
and Place Cells
The above brief review of grid cell and place cell properties has
been given because brain rhythms, including the theta rhythm,
are not disembodied abstract oscillators. Rather they modulate
particular brain processes. It is known, for example, that a theta
rhythm plays a key role in modulating the normal processing
of entorhinal grid cells and hippocampal place cells. In this

Frontiers in Systems Neuroscience | www.frontiersin.org 6 April 2021 | Volume 15 | Article 665052

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-665052 April 22, 2021 Time: 14:55 # 7

Grossberg Intrinsic and Extrinsic Hippocampal Theta

regard, Stensola et al. (2012, p. 72) have shown that grid cells
along the dorsoventral axis “cluster into a small number of
layer-spanning anatomically overlapping modules with distinct
scale, orientation, asymmetry and theta-frequency modulation.”
These grid cell modules are distributed across wide regions
along the dorsoventral axis with substantial overlaps among the
different clusters.

There is also an intrinsic theta rhythm generated
endogenously within the hippocampus (Vanderwolf, 1988;
Smythe et al., 1992; Bland and Colom, 1993), in addition to
an extrinsic theta rhythm that is transmitted to hippocampal
projections from the medial septal (MS) area in the basal
forebrain, and that generates and maintains a theta rhythm
in the hippocampal and parahippocampal areas (Vertes and
Kocsis, 1997) via reciprocal interactions among GABAergic
interneurons (Tóth et al., 1993; Wang, 2002). This theta rhythm
can be reduced by inactivating the MS, which also disorganizes
the hexagonal spatial firing patterns of grid cells (Brandon et al.,
2011; Koenig et al., 2011). During MS inactivation, affected grid
cells tend to code the rat’s head direction, in keeping with how
inputs from head direction cells form stripe cell, and thus grid
cell, receptive fields (Figure 1). These and other properties of the
intrinsic and extrinsic theta rhythm will be explained below.

2. DISCOVERY OF THETA RHYTHM AND
BASIC PROPERTIES

2.1. Behaviors During Which Theta
Rhythm Occurs
Winson (1974) provides an excellent account of when theta
rhythms were first reported. Walter and Walter (1949) reported
a theta rhythm in the frequency range of 3–7 cycles per second
in their EEG scalp recordings of human subjects. Green and
Arduini (1954) reported an “arousal reaction” in this frequency
range within the hippocampus of the rabbit in response to
natural sensory stimulation or electrical stimulation. Behavioral
correlates of the theta rhythm were later recorded in several
species (Bennett, 1971; Winson, 1972) including the rat, where
a theta rhythm is found only if the animal carries out voluntary
movements like exploration, as well as during paradoxical sleep
(Vanderwolf, 1969).

Whishaw and Vanderwolf (1973) extended the list of behaviors
that occur during a theta rhythm, and the species in which
they occur. As they noted on p. 461, “slow electrical activity
was recorded from the dorsal hippocampus in rats during
running in a motor-driven wheel, swimming, conditioned
avoidance (running, jumping), lever pressing for food and
sleep, and in cats during walking in a treadmill, eating and
lapping milk. Large-amplitude clear rhythmical slow activity
(RSA) was recorded from the hippocampus proper and smaller
amplitude RSA and fast activity was recorded from the dentate
gyrus-CA 4 area. . .Increases in RSA frequency and amplitude
during paradoxical sleep were associated with muscular twitches,
suggesting that forebrain motor mechanisms were activated. The
results are interpreted in support of the idea that RSA is related
to higher level control of voluntary movement.”

The authors noted additionally on p. 477 that “previous
reports on the relation between hippocampal RSA and behavior
were also confirmed. In the experiments with rats it was found
that RSA was present in the pyramidal cell layer in all situations
at all times when the animals walked, ran, jumped, etc. (voluntary
movement), but that RSA was absent if the animals chewed food,
washed their faces, etc. (automatic movement). The results also
indicated that the mere repetition of the same motor act does not
lead to a disappearance of hippocampal RSA, when such activity
was initially present.”

The article by Winson (1978) reported, for example, on p. 160
that “rats learned, using distal room cues, to run to a goal on an
elevated circular track starting from any position on the track.
The goal was one of eight equidistant, recessed cups set around
the track, the goal cup being distinguished from the others solely
by its position in the room. After learning, electrolytic lesions
were made in the medial septal nucleus eliminating hippocampal
theta rhythm. . .Rats without theta rhythm were no longer
able to perform the spatial task. . .” These results showed how
contextual visual cues could interact with a learned hippocampal
spatial map to efficiently guide reinforced navigational behavior.
They also showed that an important source of the extrinsic
theta rhythm that supports such learned spatial behavior is
the medial septum.

2.2. Intrinsic Theta Rhythm and
Cholinergically Modulated Extrinsic
Theta Rhythm
Several articles also reported that the septal projection that
drives the extrinsic theta rhythm is modulated by acetylcholine
(e.g., Stewart and Fox, 1990; Huerta and Lisman, 1993). Huerta
and Lisman (1993) also noted on p. 723 that “theta rhythm
occurs during periods of learning. . .during these oscillations,
synapses are in a state of heightened plasticity [that] is
sensitive to the timing of incoming stimuli with respect
to the oscillatory activity. . .” In contrast to septally driven
theta rhythms, intrinsic theta rhythms may be generated
entirely within the CA1 region of the hippocampus where
their atropine-resistance shows that their theta generators
are not dependent upon acetylcholine (Kramis et al., 1975;
Goutagny et al., 2009).

The subsequent discussion will situate the above facts within
a larger modeling context that mechanistically and functionally
explains them and many others.

3. SEPTO-HIPPOCAMPAL THETA
RHYTHM, VIGILANCE CONTROL, AND
GRID AND PLACE CELL CATEGORY
LEARNING

The following facts and theoretical results clarify how cholinergic
signals from the medial septum to the hippocampus influence
the extrinsic theta rhythm. One measure of this effect is how
disruption of the theta rhythm, or cholinergic modulation, or
both influence the learned hexagonal spatial firing patterns of
entorhinal grid cells.
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FIGURE 4 | Data showing effects of medial septum (MS) inactivation on grid cells and network theta oscillations in medial entorhinal cortex (MEC). (A) Examples of
disruption of the hexagonal grid structure of two grid cells (Brandon et al., 2011). (B) Temporal reduction in the power and frequency of network theta oscillations
(Koenig et al., 2011). (C) Temporary reduction in the gridness score, mean firing rate, and spatial stability of grid cells (Koenig et al., 2011) (data reprinted with
permission from Brandon et al., 2011 and Koenig et al., 2011).

Experiments that reduce the theta rhythm by inactivating the
septum cause a correlated reduction in the hexagonal spatial
firing patterns of grid cells (Brandon et al., 2011; Koenig et al.,
2011). Figure 4 shows how septal inactivation causes the collapse
of grid cell receptive fields, followed by their recovery after
septal inactivation wears off. While the septum is inactivated,
grid cells tend to code the rat’s head direction (Figure 4A, sixth
row, middle curve).

Does inactivation of the septum lead to grid cell
disorganization because the theta rhythm collapses, or because
cholinergic modulation of grid cells collapses, or both? Some
authors, particularly those who have espoused that oscillatory
interference causes grid cell receptive fields, have concluded
from these data that “spatial coding by grid cells requires theta
oscillations” and “support a role of neuronal oscillations in
the coding of spatial information” (Brandon et al., 2011). In
other words, these authors proposed that their data support
a mechanism of oscillatory interference in the creation of
hexagonal grid fields.

3.1. Acetylcholine Modulates Vigilance
Control of Cognitive, Motor, and Spatial
Category Learning
Pilly and Grossberg (2013) proposed an alternative mechanistic
explanation and presented data and other theoretical concepts

that undermine an explanation based upon oscillatory
interference. Their explanation emphasizes that signals from the
septum to entorhinal grid cells typically release acetylcholine,
and that acetylcholine modulates the learning of recognition
categories via a process of vigilance control (Carpenter and
Grossberg, 1987a; Grossberg and Versace, 2008). The data about
collapse of grid cells due to septal inactivation are explained as a
collapse of vigilance control that is needed to learn hippocampal
spatial categories, with or without a theta rhythm. Vigilance
control also modulates the learning of cognitive and motor
categories, as discussed below. ART is also contrasted with
continuous attractor and SOM grid cell models in Grossberg and
Pilly (2014).

3.2. How Reduction of Cholinergic Input
to Grid Cells Causes Their Collapse
In the case of the entorhinal-hippocampal system, the
inactivation of the medial septum eliminates, or greatly
reduces, the cholinergic input to grid cells (Mitchell et al., 1982).
This reduction increases the conductances of leak potassium and
slow and medium after-hyperpolarization channels (Madison
et al., 1987; Müller et al., 1988; Klink and Alonso, 1997; Lape
and Nistri, 2000). The rate of membrane depolarization is hereby
slowed, leading to greater spike frequency adaptation and longer
refractory periods. Grid cell firing and spatial periodicity are
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FIGURE 5 | Data and computer simulation of effects of septal inactivation on grid cells. (A) Each row shows data and different data-derived measures of grid cell
responsiveness, starting from the left with the baseline response to the middle column with maximal inhibition (Data reprinted with permission from Brandon et al.,
2011). (B) Data showing the temporary reduction in the gridness scores during septal inactivation, followed by recovery (Data reprinted with permission from Koenig
et al., 2011). (C) Simulation of gridness collapse due to reduction in cell response rates that mimic reduced cholinergic transmission. (D) Simulations of gridness
score reduction by reducing cell response rates. (E) Simulations of gridness score reduction by changing leak conductance [simulations in (C–E) reprinted with
permission from Grossberg and Pilly, 2014].

hereby greatly impaired because a controlled duration of grid cell
sampling of stripe cell inputs is needed to learn, and maintain,
grid cells with any given spatial scale.

Model simulations in Figure 5 support these conclusions
by showing spatial disorganization of grid fields as well as
reductions in firing rate and spatial stability (Figure 5C) when
septal inactivation is caused either by a temporary reduction in
cell response rates (Figure 5D) or a temporary increase in leak

conductances (Figure 5E). A head direction bias remains after
the duration of path integration sampling is disorganized due to
the remaining head direction inputs from stripe cells to grid cells
in the GridPlace Map model of Figure 6.

Newman et al. (2014) summarized experimental evidence
that are consistent with this explanation by demonstrating
that “administration of the muscarinic antagonist scopolamine
flattens the typically positive correlation between running speed
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FIGURE 6 | The entorhi nal-hippocampal system has properties of an Adaptive Resonance Theory, or ART, spatial category learning system. Hippocampal place
cells learn spatial recognition categories in this system. Learned grid cell and place cell receptive fields are dynamically stabilized by top-down feedback that obeys
the ART Matching Rule from CA1 place cells to entorhinal cortex (adapted with permission from Mhatre et al., 2012).

and entorhinal theta frequency in rats. . .spatial tuning of grid
cells was reduced following scopolamine administration. The
tuning of head direction cells, in contrast, was not reduced
by scopolamine” (p. 643). The authors go on to write “This
is the first report to demonstrate a link between cholinergic
function and grid cell tuning.” It also supports the prediction
by Pilly and Grossberg (2013) of the existence of this link,
and how it works.

Figure 6 also includes a top-down feedback pathway that
dynamically stabilizes the learning of grid cells and place cells
using an attentive matching process that obeys the ART Matching
Rule, which will be described in the next section. The need
for this feedback loop is clarified by the fact that place cells
can develop in minutes, and some of them can retain their
stability for months (Thompson and Best, 1990; Wilson and
McNaughton, 1993; Muller, 1996; Ziv et al., 2013). However,
a SOM does not have this property because learned SOM
categories can undergo catastrophic forgetting. In the case of
grid cells and place cells, this means, for example, that the grid
cell receptive fields could drift through time. As noted below,
Adaptive Resonance Theory, or ART, was introduced to explain
how learned categories across the brain can dynamically stabilize
their memories for many years.

3.3. Dynamically Stabilizing Learned
Cognitive and Spatial Categories Using
the ART Matching Rule
Vigilance control is an important process in regulating the
concreteness or abstractness of the categories that can be learned
by an ART model (Figure 7), whether these categories are
cognitive, spatial, or motor. ART regulates how spatial patterns
of activity, or short-term memory (STM) traces, across a network
of cells respond on a fast time scale to external and internal
inputs, as they interact with adaptive weights, or long-term
memory (LTM) traces, to learn recognition categories without
experiencing catastrophic forgetting.

The learning of recognition categories in ART builds upon the
laws of a Self-Organizing Map, or SOM (Grossberg, 1976a, 1978,
1980; Kohonen, 1984), in which LTM traces multiply, or gate,
bottom-up signals from a feature level F1 to a category level F2
before the gated signals compete to choose and store in STM the
cell activity, or small number of cell activities, that received the
largest inputs (Figure 7A). These active F2 cells drive learning in
the LTM traces that abut them, thereby tuning the LTM traces and
causing the winning F2 cells to become recognition categories that
respond selectively to sets of similar feature patterns across F1.
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FIGURE 7 | (A) The ART hypothesis testing and category learning cycle begins when an input pattern I is stored across feature detectors at level F1 as an activity
pattern X, which is shown in yellow. For simplicity, arrays of connections between processing stages are represented by a single connection. While X is getting
instated in F1, I also send excitatory signals via parallel pathways to the orienting system (the triangle with gain parameter ρ inside it). The gain parameter ρ is the
vigilance parameter. As activity pattern X is instated in F1, it activates two output signal pathways: A bottom-up excitatory input pattern S to category level F2, and
inhibitory inputs ρI to the orienting system. There are as many excitatory inputs as inhibitory inputs to the orienting system, because inputs I activate pattern X. The
net input to the orienting system is ρ/I/ – /X/, where // denotes the size of each total input. This net input is not positive because ρ ≤ 1, so the orienting system
remains quiet. Before activating a category in F2, bottom-up signals S are multiplied by learned adaptive weights (in the hemispherical synapses) to generate the
input pattern T to category level F2. Inputs T are contrast-enhanced and normalized within F2 by a recurrent shunting on-center off-surround network that activates
and stores a small number of cells within F2 that receive the largest inputs. The chosen cells represent category Y that codes feature pattern at F1. (B) Category Y
generates top-down signals U that are multiplied by adaptive weights to form a prototype, critical feature pattern, or expectation V of what learned feature pattern to
attend at F1. Expectation V delivers an excitatory modulatory signal to F1 cells in its on-center, while inhibiting F1 cells in its off-surround. Together, these signals
embody the ART Matching Rule for object attention. The ART Matching Rule circuit ensures that category learning does not suffer from catastrophic forgetting. (C) If
V mismatches I at F1, then the ART Matching Rule chooses a new STM activity pattern X* (the yellow pattern) at cells where the bottom-up and top-down patterns
match. Mismatched features (white area) are inhibited. If the pattern X* of attended features across F1 represents a big enough mismatch to activate the orienting
system (that is, if ρ/I/ – /X/ > 0), then a novelty-sensitive nonspecific arousal burst is activated there (cf. the N200 in Figure 10), which resets, or inhibits, the
currently active category Y and drives hypothesis testing and memory search until another category is chosen (D) that supports a good enough match to keep the
orienting system quiet while category learning occurs. If, however, in (B) a good enough match occurs between I and V to keep the orienting system quiet, then it
reactivates the pattern Y at F2 which, in turn, reactivates X* at F1. Positive feedback loop hereby dynamically links, or binds, X* with Y. In both of these latter cases, a
feature-category resonance focuses attention on the active critical feature pattern while learning it in both the bottom-up adaptive filter and top-down learned
expectation (adapted with permission from Carpenter and Grossberg, 1987a).

ART models how top-down attentive matching (Figure 7B)
dynamically stabilizes the learning by LTM traces both within
bottom-up adaptive filters from level F1 to F2 and within top-
down learned expectations from level F2 to F1, as described more
fully below and in the caption of Figure 7.

The modulatory on-center of a top-down expectation learns
a prototype that focuses attention upon the spatial pattern of
critical features that controls predictive success. When such an
expectation is read out in the absence of a bottom-up input
pattern, the modulatory on-center of the ART Matching Rule

can prime, or sensitize, feature-selective cells in the on-center,
without firing them to suprathreshold activity levels. Bottom-
up input patterns that match the on-center well enough are
needed to fire on-center cells to suprathreshold activation levels,
and to thereby begin the process of focusing attention upon
the matched subset of critical features that are in the learned
prototype of the expectation. While this matching process takes
hold, the off-surround can fully suppress the cells that it inhibits,
thereby preventing irrelevant cues from being learned and, along
with it, catastrophic forgetting. Carpenter and Grossberg (1987a)
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proved mathematically that the ART Matching Rule is necessary
to dynamically stabilize the memories of learned categories.

The bottom-up adaptive filters and recurrent competition that
control learning of grid cells and place cells in Figure 2 are
also SOMs, albeit SOMs that drive spatial category learning.
As I noted above, within the GridPlaceMap model, the laws
and parameters of each SOM in its network hierarchy are the
same. The fact that grid cells and place cells learn such different
receptive field properties is due to their different inputs: Arrays of
stripe cells drive the learning of grid cells, while place cell learning
is driven by inputs from arrays of emerging grid cells, even before
their receptive fields are fully formed, leading to the beautiful
receptive fields in Figures 1B,C. As in cognitive ART models, the
top-down expectations in Figure 6 also obey the ART Matching
Rule of Figure 7B in order to dynamically stabilize learned grid
cell and place cell receptive field properties.

3.4. Cholinergically Modulated Vigilance
Control in Cognitive Category Learning
and Maintenance
In the cognitive domain, vigilance control is realized by
identified neurons in laminar cortical circuits that have been
modeled by the Synchronous Matching ART, or SMART, model
refinement of ART (Grossberg and Versace, 2008; Palma et al.,
2012a,b; Grossberg et al., 2016). The SMART model is realized
by spiking neurons that obey neurophysiologically measured
parameters which interact within the detailed laminar cortical
and subcortical circuits in Figure 8 in response to bottom-up
(BU) inputs. SMART explains how vigilance may be altered
by acetylcholine release when the nucleus basalis of Meynert
is activated via the nonspecific thalamus (Figure 9; van der
Werf et al., 2002). The nonspecific thalamus is itself activated by
corticothalamic mismatches that occur within a specific thalamic
nucleus during an ART hypothesis testing and learning cycle
(Figures 7, 8).

Figure 9 also summarizes how activation of the nucleus
basalis of Meynert broadcasts cholinergic signals to layer 5
cells. The released acetylcholine inhibits afterhyperpolarization
(AHP) currents, thereby increasing cell excitability and
increasing vigilance.

The SMART model further develops a series of ART category
learning and recognition models that have been developed
over the years to include and explain increasingly detailed
and system-wide thalamocortical and corticocortical interactions
(e.g., Grossberg, 1976a,b, 2003, 2013a, 2017a,b, 2020, 2021;
Carpenter and Grossberg, 1987a,b; Carpenter et al., 1989,
1991a,b, 1992; Grossberg et al., 1997a; Ames and Grossberg, 2008;
Grossberg and Versace, 2008; Grossberg and Huang, 2009; Cao
et al., 2011; Chang et al., 2014).

As illustrated in Figure 10 (left panel), in all ART models,
including SMART, a good enough top-down match with a
bottom-up feature pattern triggers a feature-category resonance
that drives learning of a new recognition category, or refinement
of an already established one, as well as conscious recognition of
the object that the category codes (Grossberg, 2017b). Both ART
and SMART explain and simulate how sensory and cognitive

information processing may be broken into cycles of match and
mismatch (Figures 7, 10), or resonance and reset, which will be
seen below to correspond to cycles of faster gamma oscillations
(40–60 Hz) and slower beta oscillations (16–20 Hz); see Buffalo
et al. (2011) and Terporten et al. (2019). When theta rhythms (4–
12 Hz) organize these cycles through time, then theta-modulated
gamma oscillations and beta oscillations are the natural result.

3.5. Breakdowns in Vigilance Control of
ART Dynamics Clarifies Mental Disorders
Within SMART, increased layer 5 excitability to predictive
mismatches due to acetylcholine release may cause reset of a
currently active category via the layer 5-to-6I-to-4 circuit that
realizes part of the model’s ART Matching Rule (Figure 8).
Such a reset can occur even if top-down feedback sufficiently
matched a bottom-up input to avoid reset just moments before.
An acetylcholine increment hereby drives a search for finer
recognition categories, even when bottom-up and top-down
signals have a pretty good match based on similarity alone.

How perceptual and cognitive vigilance control is modulated
by the nucleus basalis of Meynert and acetylcholine has wide-
ranging implications. For example, breakdowns of vigilance
control that undermine the ART Matching Rule circuit via layer
5 can, depending on whether phasic or tonic vigilance control, or
both, are affected, cause symptoms of Alzheimer’s disease, autism,
amnesia, and disrupted slow wave sleep (Grossberg, 2017a).

3.6. Gamma and Beta Oscillations
Covary With PN and N200 Event-Related
Potentials
ART and its variants such as SMART are supported by
neurophysiological data on multiple organizational levels. For
example, when a match is good enough to generate a feature-
category resonance in SMART, it is supported by fast gamma
oscillations, whereas a big enough mismatch triggers slower
beta oscillations (Grossberg and Versace, 2008; Grossberg, 2009).
Grossberg (2013a) reviews neurophysiological experiments that
support this prediction, whether during different effects of
attention on different layers in the primary visual cortex
(Buffalo et al., 2011), spatial attention shifts in frontal eye
fields (Buschman and Miller, 2007), or learning of new place
cells in the hippocampus (Berke et al., 2008). Synchrony is
a characteristic feature of the cells that participate in gamma
frequency oscillations (Freeman, 1975; Eckhorn et al., 1988; Gray
and Singer, 1989; Pollen, 1999; Engel et al., 2001; Buschman
and Miller, 2007; Gregoriou et al., 2009), whether during
preattentive perceptual grouping or attentive category learning
and recognition (Grossberg, 1980; Grossberg and Somers, 1991;
Maldonado et al., 2000; Yazdanbakhsh and Grossberg, 2004).

On a coarser level of neurophysiological measurement, a
Processing Negativity, or PN, event-related potential or ERP
(Näätänen et al., 1978) can be recorded by scalp electrodes
during the match of a bottom-up feature pattern with a top-down
learned expectation that triggers a gamma oscillation (Hermann
and Knight, 2001). In contrast, a big enough mismatch can
activate the ART orienting system to drive hypothesis testing
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FIGURE 8 | The Synchronous Matching ART, or SMART, model describes how spiking neurons in a laminar cortical hierarchy interact with specific and nonspecific
thalamic nuclei to learn perceptual or cognitive categories (reprinted with permission from Grossberg and Versace, 2008).

and memory search for a new, or better matching, category
(Figure 7C), leading to a good enough match to again drive
category learning. Such an activation of the orienting system is
accompanied by a beta oscillation (Haenschel et al., 2000) and an
N200 ERP (Näätänen et al., 1982). As summarized in Figure 10,
the PN and N200 ERPs exhibit computationally complementary
properties (Grossberg, 2000, 2017b).

3.7. What Happens to Place Cells When
Grid Cells Collapse?
Many additional facts and explanations of how the extrinsic
theta rhythm and vigilance control work in cognitive, motor,
and spatial processing regions are found in Grossberg (2021). As
just one example, if a septal lesion eliminates the extrinsic theta
rhythm and causes grid cells to become disorganized, some place
cells may remain intact. Since place cells are the hippocampal
spatial categories that can represent spaces large enough to
control spatial navigation, then why are grid cells needed at all?
When grid cells collapse, place cells cannot represent the large
spaces that are the least common multiple of the grid cell scales
that previously input to them. These are, however, the place
cells that enable us to navigate in many of the spaces that are
ecologically important for our survival.

In addition, if grid cells collapse, then the feedback loop in
Figure 6 that dynamically stabilizes both grid cell and place cell
receptive fields is broken, leading to unstable representations
of space at even the level of place cells. Indeed, Kentros et al.

(2004) noted that “conditions that maximize place field stability
greatly increase orientation to novel cues. This suggests that
storage and retrieval of place cells is modulated by a top-down
cognitive process resembling attention and that place cells are
neural correlates of spatial memory.” The role of top-down
attentive feedback in stabilizing place cell receptive fields is also
supported by results of Morris and Frey (1997), who reported
that hippocampal plasticity reflects an “automatic recording
of attended experience.” The importance of learning in these
changes is shown by the fact that NMDA receptors mediate long-
lasting hippocampal place field memory in novel environments
(Kentros et al., 1998).

Some place cells develop before grid cells do. They could be
learned directly from stripe cells, say via the direct pathway from
entorhinal cortex to CA1 (Figure 6). This fact may clarify how rat
pups behave before they are around two-and-one-half weeks old.
Until then, rat pups tend to stay in or near their nests. Exploration
of larger spaces occurs around the same time when grid cells
rapidly develop (Langston et al., 2010; Wills et al., 2010, 2012;
Muessig et al., 2015), and drive learning of place cells capable of
controlling navigation in these larger spaces.

3.8. Disinhibition of the Septal Theta
Rhythm via the Basal Ganglia
The basal ganglia play a key role in gating on or off perceptual,
cognitive, emotional, and motor processes, thereby helping to
coordinate them to achieve desired behavioral goals. Significant
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FIGURE 9 | A big enough thalamocortical and corticocortical mismatch activates the nonspecific thalamic nucleus, which in turn activates the nucleus basalis of
Meynert. The nucleus basalis then and releases acetylcholine (ACh) into deeper layers, notably layer 5, of multiple cortical areas. ACh release increases vigilance by
reducing afterhyperpolarization (AHP) currents (reprinted with permission from Grossberg and Versace, 2008).

progress has been made in developing neural models of how
the basal ganglia work and realize these properties (e.g., Brown
et al., 1999, 2004; Grossberg, 2016; Grossberg and Kishnan, 2018).
Typically, turning on the basal ganglia substantia nigra pars
reticulata, or SNr, inhibits a tonically active inhibitory pathway,
thereby disinhibiting the cellular targets of that inhibition and
enabling the disinhibited neural pathways to fire. A classical
example is how disinhibition of the deeper layers of the superior
colliculus by the basal ganglia, or direct electrical simulation,
enables a saccadic eye movement of prescribed direction and
length to be released to a desired target location (Schiller and
Stryker, 1972; Hikosaka and Wurtz, 1985; McIlwain, 1986; Munoz
and Wurtz, 1995a,b; Munoz et al., 2000; Watanabe and Munoz,
2010), a process that has also been extensively modeled (Grossberg
et al., 1997b; Gancarz and Grossberg, 1998; Brown et al., 2004).

In the case of the septo-hippocampal theta rhythm, a volitional
signal from the basal ganglia disinhibits an endogenous oscillator
that drives this theta rhythm from cells outside the hippocampus
(Silkis, 2008). Available data do not seem sufficient to derive an
anatomically detailed model of the microcircuit of this oscillator.
Instead, to clarify how this may happen in principle, I will
summarize a type of minimal oscillator that is built from classical
neurobiological components, such as cells whose potentials
obey the membrane equations of neurophysiology—also called

shunting interactions—as they interact within a recurrent on-
center off-surround anatomy.

This kind of network has been used throughout the brain
to carry out multiple functions, including functions where
oscillatory dynamics may not occur some of the time, but
do oscillate at other times. In particular, networks that do
not oscillate with some parameter settings do oscillate when
these parameters are changed, notably the rate with which
inhibitory interneurons respond. For example, when recurrent
on-center off-surround networks include inhibitory off-surround
interneurons that react more slowly than their on-center cells,
then they tend to oscillate when they also receive a sufficiently
large volitional signal, also called a GO signal. This kind of
result was first mathematically proved and simulated in Ellias and
Grossberg (1975). It has been modeled in scores of articles since
by many authors.

Specializations of this oscillator have been used to model
a number of basal-ganglia disinhibited oscillatory dynamics,
including the control of mammalian movement gaits (Pribe et al.,
1997). Figure 11A describes a model central pattern generator,
or CPG, that is capable of generating multiple gaits using a pair
of recurrent on-center off-surround networks, one to control the
forelimbs and the other to control the hindlimbs of a quadruped
animal. The cells in the CPG obey shunting interactions. The
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FIGURE 10 | The Processing Negativity, or PN, event-related potential obeys computationally complementary laws to the N200 event-related potential (see the text
for details; reprinted with permission from Grossberg, 2017b).

gaits are activated by a volitional GO signal that sends signals
to both the forelimb and the hindlimb circuits. This excitatory
GO signal represents a simple way to model basal ganglia
disinhibition. The need for a signal with this functionality was
clear in modeling studies decades before detailed models of the
basal ganglia were developed.

In the CPG of Figure 11A, increasing the GO signal increases
the frequency of the gait, and also leads to bifurcations into
different gaits that are stable at higher speeds. Excitatory
neurons are denoted by open disks. Inhibitory interneurons
are denoted by black disks. Self-inhibitory inhibition is labeled
by parameter D0, inhibition between forelimbs and between
hindlimbs is labeled by D1, inhibition between matched forelimbs
and hindlimbs is labeled by D2, and inhibition between
crossed forelimbs and hindlimbs is labeled by D3. Figure 11B
summarizes computer simulations of four gaits (walk, trot, pace,
and gallop) that arise due to different GO signal levels as an
emergent property of network interactions. Variations of the
model also generate the primary human gaits (walk, run) and
elephant gaits (amble, walk).

The above type of circuit clarifies how increasing basal ganglia
disinhibition of the septum can increase the theta rhythm
frequency. It also clarifies how basal ganglia disinhibition of
gait-controlling circuits in other parts of the brain (Takakusaki,

2017) can increase running speed. Many experiments have
been done over the years to clarify how theta rhythms, in
concert with closely related respiratory rhythms (Cao et al.,
2012), can regulate the energizing, coordination, and learning
of multiple actions, beyond the classically reported correlations
between theta-modulated sniffing and whisking (Komisaruk,
1970; Macrides and Chorover, 1972; Semba and Komisaruk,
1984; Ranade et al., 2013) to a wide range of other brain regions
and learned behaviors (Landfield et al., 1972; Macrides et al.,
1982; DeCoteau et al., 2007; Kaplan et al., 2012; Kleinfeld et al.,
2014, 2016; Grion et al., 2016; Rojas-Líbano et al., 2018).

3.9. The Olfactory Code as a Temporal
Series of Spatial Patterns at a Theta
Oscillatory Rate
Early experiments on theta-modulated sniffing were carried out
by Walter Freeman. In these early classical experiments, Freeman
(1975) discovered a resonance phenomenon by performing
parallel electrode experiments on the cat prepyriform cortex.
When a cat, or rabbit, smells an expected scent, its cortical
potentials are amplified until a synchronized oscillation of
activity is elicited across the cortical tissue. The oscillation
organizes the cortical activity into a temporal sequence of spatial
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FIGURE 11 | (A) Multiple movement gaits are generated by suitably connected recurrent shunting on-center off-surround networks when they are activated by a
volitional GO signal of variable size. Abbreviations in (B): LH, left hind; LF, left front; RH, right hind; RF, right front (see the text for details; reprinted with permission
from Pribe et al., 1997).

patterns. The spatial patterns of activity across cortical cells
carry the olfactory code. The temporal series of spatial patterns
drives the spatial patterns from the sensory periphery into higher
sensory and cortical areas while continuing to bind the signals
together in a spatial pattern code.

The concept that a distributed spatial pattern of activation
across a network of cells constitutes a sensory neural code,
whether or not it was energized by oscillatory dynamics, was
supported even then by experiments from several labs (Pfaffman,
1955; Erickson, 1963; Freeman, 1972; Somjen, 1972). By contrast,
when the cat or rabbit smells an unexpected scent, then cortical
activity is markedly suppressed. Freeman traced differences in
cortical activity after expected vs. unexpected scents to gain
changes within the cortical tissue. Grossberg (1973, 1976a,b)
showed how such gain changes, due to shunting dynamics, could
also explain the tendency for the most active populations to
phase-lead less active populations.

Freeman (1975) also reported the experiments of Dumenko
(1968, 1970) on dogs who were trained to perform a conditioned
response to both visual and auditory stimuli, leading to a high
correlation between the EEGs of their visual and auditory cortices
in the theta range 5–7 Hz.

These neurophysiological studies supported theorems about
biological neural networks showing that the functional unit

of fast neural information processing is a distributed spatial
pattern of activity, or STM traces, across a network, and that
the functional unit of learning is a distributed spatial pattern of
adaptive weights, or LTM traces, across the network (Grossberg,
1968a,b, 1969, 1970, 1971, 1980), whether the energetic carrier of
these patterns converges to an equilibrium point or rhythmically
oscillates through time.

3.10. Toward Comprehensive Neural
Architectures
It remains to develop a comprehensive neural model of how
the entorhinal-hippocampal circuits that are described above
work together with other brain regions to release, learn, gain-
control, and coordinate sequences of goal-oriented naturalistic
behaviors. Some neural architectures, such as the SOVEREIGN
family of architectures (Gnadt and Grossberg, 2008; Grossberg,
2019), model how a brain can incrementally learn planned action
sequences to navigate toward a rewarded goal, and can do so
while being modulated by basal ganglia gating. The SOVEREIGN
model’s ability to do so was tested in a 3D virtual reality maze that
the animat learned to navigate in order to acquire a reward.

The SOVEREIGN2 architecture embodies interactions
between more of the brain processes whose interactions are
needed to realize biological intelligence. These processes have
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previously been modeled in multiple articles over the past 40
years. The Abstract of Grossberg (2019) summarizes these
processes:

“Key new perceptual, cognitive, cognitive-emotional, and
navigational processes require feedback networks which regulate
resonant brain states that support conscious experiences of
seeing, feeling, and knowing. Also included are computationally
complementary processes of the mammalian neocortical What
and Where processing streams, and homologous mechanisms for
spatial navigation and arm movement control. These include:
Unpredictably moving targets are tracked using coordinated
smooth pursuit and saccadic movements. Estimates of target
and present position are computed in the Where stream,
and can activate approach movements. Motion cues can elicit
orienting movements to bring new targets into view. Cumulative
movement estimates are derived from visual and vestibular
cues. Arbitrary navigational routes are incrementally learned
as a labeled graph of angles turned and distances traveled
between turns. Noisy and incomplete visual sensor data are
transformed into representations of visual form and motion.
Invariant recognition categories are learned in the What
stream. Sequences of invariant object categories are stored in
a cognitive working memory, whereas sequences of movement
positions and directions are stored in a spatial working
memory. Stored sequences trigger learning of cognitive and
spatial/motor sequence categories or plans, also called list chunks,
which control planned decisions and movements toward valued
goal objects. Predictively successful list chunk combinations
are selectively enhanced or suppressed via reinforcement
learning and incentive motivational learning. Expected vs.
unexpected event disconfirmations regulate these enhancement
and suppressive processes. Adaptively timed learning enables
attention and action to match task constraints. Social cognitive
joint attention enables imitation learning of skills by learners who
observe teachers from different spatial vantage points.”

However, neither SOVEREIGN nor SOVEREIGN2 describes
how all of these processes are coordinated by theta and
respiratory rhythms. This should be a major goal of future
research that builds upon this foundation.

4. INTRINSIC THETA RHYTHM
DISSOCIATES LEARNED READ-OUT
AND READ-IN

Part of this research would need to include the existence, neural
mechanism, and functional roles of an intrinsic source of a
theta rhythm which, unlike the septally mediated theta rhythm,
is atropine-resistant and arises entirely within the hippocampal
CA1 region (Kramis et al., 1975; Goutagny et al., 2009). Intrinsic
and extrinsic theta oscillations can interact in complex ways (e.g.,
Montgomery et al., 2009) as part of the tri-synaptic hippocampal
organization of CA1, CA3, and the dentate gyrus (Figure 6;
Amaral and Witter, 1989; Amaral, 1993; Knierim, 2015).

Hippocampal area CA1 helps to support functions other
than spatial navigation, including learning, recognition, and
memory that involve visual, cognitive, and emotional functions

(e.g., Zola-Morgan et al., 1986; Rempel-Clower et al., 1996;
Leutgeb et al., 2004; Manns et al., 2007; Dong et al., 2009).
As noted in Section 1.6, LEC seems to process cue-related
information, including its adaptive timing in behavior, whereas
MEC processes the kind of spatial information that is computed
by grid cells and place cells. Both kinds of information may
be processed through CA1, albeit in different cortical layers
(Soltesz and Losonczy, 2018).

Such a sharing of processing resources is understandable
from the perspective that “these areas, which receive multimodal
inputs from various sensory and motor regions, represent the
end-points of the what and where streams of visual processing,
which are then integrated at the hippocampus” (Saleem, 2019,
p. 73). For example, visual cues are used for visual object
recognition, as well as to define landmarks with which to guide
spatial navigation. Likewise, the commands for navigating in a
fixed direction and distance to reach a desired goal object using
object vector cells (Deshmukh and Knierim, 2011; Saleem, 2019),
and for reaching a nearby object without navigational movement
using motor difference vectors, both involve similar computations,
albeit in different parts of the brain (e.g., Georgopoulos et al.,
1981, 1982; Bullock and Grossberg, 1988; Gnadt and Grossberg,
2008). This extension of the classical What and Where cortical
“two stream hypothesis” (Mishkin, 1982; Mishkin et al., 1983;
Goodale et al., 1991; Goodale and Milner, 1992) has been further
developed and refined by several authors (e.g., Hoang et al., 2018;
Nilssen et al., 2019).

Below the discussion of CA1 will begin with an analysis of how
an intrinsic theta rhythm enables large numbers of converging
signals to be processed and tuned by learning on the dendrites of
their target cells.

4.1. Preventing Saturation of Learned
Synapses by Dissociating Read-Out and
Read-In
I suggest that the intrinsic theta rhythm is an emergent property
within the hippocampus of how our brains solve a general
learning problem: If many learning trials continue throughout
life, then what prevents the learned adaptive weights at synapses
from saturating; that is, from hitting their maximal values and
becoming unable to learn new associative contingencies in the
future? A basic neural circuit called a REcurrent Associative
Dipole, or READ, circuit (Figure 12) is able to regulate cognitive-
emotional learning in response to rewards and punishments
throughout the lifespan without saturating the adaptive weights
that input to its opponent affective representations (Grossberg,
1972, 1975, 1982a, 1984; Grossberg and Schmajuk, 1987; Dranias
et al., 2008; Gnadt and Grossberg, 2008; Grossberg et al., 2008),
such as fear vs. relief.

The READ circuit does this by carrying out a process that
I call dissociation of associative read-out from read-in, which
leads in a natural way to a theta rhythm, as explained below.
Many other brain systems realize this dissociation, including
within the CA1 region of the hippocampus, to solve a general
learning problem that I will describe after noting some important
features of the READ circuit. Hasselmo (2005) has described
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FIGURE 12 | A recurrent associative dipole, or READ, circuit is a recurrent shunting opponent processing network with habituative transmitter gates. The large
closed disks represent opponent ON and OFF cells. The vertical rectangular bars that abut from them represent dendritic trees. Excitatory network pathways end in
arrows. Inhibitory pathways end in closed disks. Habituative pathways end in squares. A nonspecific arousal input I equally excites the ON and OFF cells. A phasic
input J activates only the ON cell in this circuit, but different phasic inputs can in general activate ON and OFF cells. Sensory cues Si sample the dendrites with LTM
traces wi1 and wi2 and thereby become conditioned reinforcers when their abutting dendrite is activated by a back-propagating action potential (upward red arrow).
Read-out from a conditioned reinforcer travels down the dendrite to the corresponding cell body (downward red arrow) (see the text for details; adapted with
permission from Grossberg and Schmajuk, 1987).

neurobiological data that are consistent with such a dissociation
and his model of it.

4.2. Uniform Activity Patterns Are
Suppressed by a Recurrent On-Center
Off-Surround Network
The problem is that read-out of a previously learned adaptive
weight, such as wi1 or wi2 in Figure 12, to a target cell should not
always trigger new learning—that is, read-in—by that adaptive
weight, even if it succeeds in activating its target cell. Correlation
learning per se is not sufficient. To understand why automatic
read-in would cause a serious problem, consider the total activity
pattern across all the cells of a network, not just the activity of a
single cell. Multiple inputs can converge on each cell across such
a network from multiple cue-activated stimuli, such as the signals
Si in Figure 12. Each input can be active at different times and
with different magnitudes to each cell in the network.

Consider what happens when all the inputs that converge
upon the network’s cells sum up to create approximately equal
total inputs to all the cells; that is, a uniform input pattern
perturbs the network. If this state of affairs persists for a

while, then all activities the network’s cells will also become
approximately equal. Such a uniform pattern of activities carries
no information because it does not prefer any particular feature
combination that is represented by a subset of these cells to
any other. A uniform activity pattern thus represents functional
“noise.” It should not drive new learning, because if it did,
then previous learning could quickly be washed away by new
learning of “noise.” In order to avoid this disaster, associative
read-out cannot always force new associative read-in. Somehow
the “noise” must be suppressed, so that only the information in
non-uniform feature patterns can be learned.

4.3. Competition Chooses Cells That
Trigger Back-Propagating Teaching
Signals
A READ circuit accomplishes noise suppression by letting
contrast-enhancing competition—embodied by a recurrent on-
center off-surround network—occur across the network in
response to each input pattern (Figure 12), before the population
that wins the competitive choice generates a teaching signal that
drives new learning. If all the inputs are approximately equal,
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FIGURE 13 | Illustration of how the ON and OFF cells in a READ circuit or, more generally, the category learning cells in a SOM, interact with cue-activated adaptive
signals on their dendritic trees. Each dendritic tree possesses dendritic spines upon which a large number of cue-activated adaptive signals can converge. When a
cell is active, it can generate retrograde, or back-propagating, action potentials that act as teaching signals for the adaptive weights, or long-term memory (LTM)
traces, of currently active cue-activated pathways at its dendritic spines (reprinted with permission from Grossberg, 2021).

then the uniform activity pattern that they cause is suppressed
by the competition, no teaching signal will be emitted, and
no new learning occurs. If some inputs are sufficiently bigger
than others, then their activities will be contrast-enhanced,
normalized, and stored by the recurrent on-center off-surround
network, while the smaller activities are suppressed by the
competition. A teaching signal will be emitted only by cells
whose activities win the competition. Only the winning cells will
therefore be able to drive learning of the incoming input pattern.

How does a winning activity trigger a teaching signal?
In the READ circuit, the winning cells remain active long
enough to trigger back-propagating action potentials in their
dendrites (Figures 12, 13), while they maintain their activities via
the recurrent on-center off-surround interactions. These back-
propagating action potentials serve as teaching signals that are
associated with simultaneously active input signals to the chosen
dendrites (Grossberg, 1975, 1982a; Markram et al., 1995, 1997;
Magee and Johnston, 1997). If, for example, signal S3 in Figure 12
is active when the dendrite of cell C1 is active (upward pointing
red arrow), then the LTM trace w31 will learn that association,
while the LTM trace w32 decreases because its abutting dendrite
is then inactive.

Because the READ circuit is a recurrent on-center off-
surround network whose cells obey shunting dynamics
(Grossberg, 2013b), the competition computes teaching signals
that are normalized net activities in which the smaller activity
is inhibited to zero and the larger activity is sensitive to the
ratio of the inputs. The LTM traces can continue to learn these
normalized net values throughout life, without ever saturating.

4.4. A Rhythm Enables Associative
Read-In and Read-Out Without a
Noise-Learning Catastrophe
An electrical signal cannot go both down a dendrite and up it at
the same time. Read-out from a previously learned LTM weight
occurs when a signal goes down a dendrite to its basal cell. Read-
in of a new LTM weight value occurs when a teaching signal
goes up the dendrite from its basal cell. A single cue-activated
signal Si that persists for hundreds of milliseconds or seconds
needs to be able to read-out its previously learned LTM weight
and to read-in any new information with which it is associated.
A cyclic rhythm of signaling down and up the sampled dendrites
enables a sustained input signal to experience both associative
read-in and read-out on its abutting dendrites, without incurring
a noise-learning catastrophe. Such a dendritic rhythm is the price
of avoiding noise-driven catastrophic forgetting of previously
learned featural differences.

In summary, the following cyclic processes are needed to
dissociate associative read-out from read-in:

1. Read-out of cue-activated LTM-gated signals, as from the
conditionable signals Siwij with adaptive weights wij, j = 1,2,
in the READ circuit in Figure 12;

2. contrast-enhancing competition via the recurrent on-
center off-surround feedback loop in Figure 12;

3. read-in of the contrast-enhanced and normalized activities
into the adaptive weights wij in Figure 12; and

4. repeat.
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FIGURE 14 | Activation and learning dynamics on the dendritic spines of cells in a READ circuit or SOM. Green arrows depict currently active excitatory signals. Red
arrows depict currently active inhibitory signals. The sizes of the arrows depict the relative strength of their signals (see the text for details; reprinted with permission
from Grossberg, 2021).

4.5. SOM Theta Rhythm Dissociates
Read-Out From Read-In With
Back-Propagating Teaching Signals
Such a recurring read-out/choice/read-in cycle is assumed to
also occur in self-organizing maps, or SOMs, during perceptual,
cognitive, and spatial category learning (e.g., Figure 7A), not
just in opponent READ circuits during reinforcement learning.
A theta rhythm results in all these cases.

Figure 14 summarizes how this cycle is proposed to occur in
greater detail. Figure 14A shows two competing SOM category
cells that each receive multiple inputs via their dendritic trees,
which are drawn above the cell bodies. Dendritic trees greatly
expand the total surface area where large numbers of inputs from
multiple sources can send signals that converge upon a single
cell (Rall, 1959, 1962, 1995). Both entorhinal grid cells (Schmidt-
Hieber et al., 2017) and hippocampal place cells (Sheffield and
Dombeck, 2015) have dendritic trees. In the hippocampus, these
inputs arrive from the feature detectors of the SOM spatial
category learning cells, whether from stripe cells to developing
grid cells, or from developing grid cells to developing place
cells (Figure 2).

In Figure 14A, the left cell receives a bigger total input than
the right cell (thick vs. thin green arrows). The left cell can
therefore inhibit the right cell more than conversely (thick vs.
thin red arrows in Figure 14B) while its activity is contrast-
enhanced by its recurrent on-center (curved green arrow). The
left cell can hereby win the competition with the right cell and

shut it off. As this is happening, the winning left cell also generates
a back-propagating action potential through its dendritic tree
(upward green arrow in Figure 14C; see also Figure 12). This
back-propagating action potential is a teaching signal that drives
associative learning in the LTM traces of pathways that are
currently inputting to that dendritic tree. These dynamics repeat
themselves through time as different input patterns choose
different winning category cells.

Buzsáki (2002) summarizes many facts about the theta rhythm
that are consistent with the above explanation. Buzsáki notes,
in particular, that “theta oscillation may provide a mechanism
for bringing together in time afferent-induced depolarization of
pyramidal cell dendrites and dendritic invasion of fast spikes, the
key elements for the induction of synaptic plasticity” (p. 325).
His discussion describes many useful biophysical facts about this
kind of learning, but not in terms of the basic design problem
of how it prevents the catastrophic forgetting due to massive
learning of noise that would have occurred without dissociation
of associative read-out from read-in.

4.6. Gated Dipole Fields
The cyclic nature of this process can now be better understood
mechanistically. As noted above, the first reason for cyclic
learning is that an electrical signal cannot go both down a
dendrite (Figure 14A) and up it (Figure 14C) at the same time.
This property requires a rhythmic alternation between the down-
state of read-out of previously learned memories, and the up-state
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of read-in of new, or memory-refining, inputs. But how is this
functional property achieved mechanistically?

The proposed answer, briefly stated, is by designing the
competition that interpolates intervals of read-out and read-
in as a gated dipole field (Grossberg, 1972, 1982a,b, 1984).
A gated dipole field is simply a recurrent shunting on-
center off-surround network whose recurrent feedback signals,
notably its positive on-center feedback signals, habituate in
an activity-dependent way, as illustrated by the habituative
positive feedback signals (square synapses) in Figure 12. This
activity-dependent habituation gradually weakens the signal
that it gates through time. This simple refinement endows a
gated dipole field with remarkable properties that are proved
mathematically in the above articles, and which clarify why
this network design occurs in multiple parts of the brain.
Grossberg (2013b) more fully describes concepts and equations
for recurrent shunting on-center off-surround networks and
activity-dependent habituation.

In ART category learning circuits (Figure 7), a gated dipole
field controls the recurrent competition between recognition
categories at level F2 of the network. This recurrent competition
chooses the category that receives the largest total input from
the currently active bottom-up feature pattern (Figure 7A).
When the chosen category is activated, it reads-out a top-
down learned expectation. A sufficiently big mismatch between
the currently active bottom-up feature pattern and top-down
learned expectation pattern (Figure 7B) can activate the orienting
system (Figure 7C). Such activation causes a burst of nonspecific
arousal that is delivered equally to all the category learning and
recognition cells at level F2, in keeping with the heuristic idea that
“novel events are arousing.”

Such a nonspecific novelty burst selectively resets the currently
active category at F2, leading to a memory search, or hypothesis
testing, that ends by choosing a better matching category.
But how does a nonspecific input selectively do anything? The
answer is that the positive feedback signal in the on-center
of the gated dipole weakens through time due to activity-
dependent habituation. As a result, a nonspecific arousal burst
can reset the currently active, but habituating cell, and thereby
allow a better-matching category to get activated from among
unhabituated category cells.

4.7. Gated Dipole Fields Control
Perseveration, Normalization, Choice,
Search, and Theta Rhythm
The same property of activity-dependent habituation that resets
a currently active category in response to a nonspecific arousal
burst is also responsible for preventing preservation of category
activation when there is no reset. Said in another way, without
activity-dependent habituation or competitive reset, the STM
storage of activity by a recurrent on-center off-surround network
could last indefinitely.

Activity-dependent habituation limits perseveration of the on-
center activity in every gated dipole field. As one quantitatively
simulated example, psychophysical data about visual persistence
have been quantitatively simulated by a gated dipole network
(Francis et al., 1994; Francis and Grossberg, 1996a,b). As the

on-center habituates, the recurrent off-surround is disinhibited,
and inhibits the previously active on-center cell. As the inhibited
on-center recovers from habituation, its driving input can fire
it again, after which the cycle repeats itself for as long as the
input remains on.

Remarkable parsimony of design is realized by a gated dipole
field because this single type of network normalizes total network
activity, chooses winning category cells, limits perseveration,
drives memory search, and supports a theta rhythm.

4.8. Why Phase Precession of the Theta
Rhythm?
Using back-propagating action potentials as teaching signals also
helps to explain intriguing parametric properties of the theta
rhythm, such as the famous phase precession whereby action
potentials occur on progressively earlier phases of the theta cycle
as a rat traverses the place field of the recorded unit (O’Keefe
and Recce, 1993; Skaggs et al., 1996). Phase precession in the
GridPlaceMap model follows from two interacting properties:

First, each SOM category cell is activated through time via a
receptive field whose input connections increase in strength as
an animal navigates closer to the center of the receptive field.
A Gaussian receptive field is a classical example.

Second, the category cells interact via shunting dynamics. As
a result, larger inputs are integrated more quickly through time.
Cells are thus activated earlier in each theta cycle as the center of
the cell’s receptive field is approached.

In summary, key properties of phase precession occur in
the GridPlaceMap model because its category cells interact via
shunting recurrent on-center off-surround networks whose cells
receive inputs from receptive fields whose connections increase in
strength as the animal approaches each cell’s preferred position.

In addition to grid cells and place cells, several other types
of cells have been reported that help to create a representation
of space that animals use while they navigate. One such cell
type is called a border cell because it fires when an animal
is at or near the border of an enclosure. Solstad et al. (2008,
p. 1865) reported that border cells are found throughout the
MEC, as well as the parasubiculum, and “may be instrumental
in planning trajectories and anchoring grid fields and place fields
to a geometric reference frame.” I will defer a discussion and
analysis of how border cells may form and work to another place
and time.

4.9. Theta-Modulated Gamma Rhythms
Another interesting and functionally important emergent
property of the model presented here is the existence of
theta-modulated gamma rhythms, whose existence follows
immediately from the occurrence in SMART (Grossberg and
Versace, 2008) of gamma oscillations in a match state that
are modulated by an underlying theta rhythm. Compatible
data are reported by Sirota et al. (2008, p. 683) who
noted: “A significant fraction of putative pyramidal cells
and interneurons as well as localized gamma oscillations
in all recorded neocortical areas were phase biased by the
hippocampal theta rhythm. We hypothesize that temporal
coordination of neocortical gamma oscillators by hippocampal
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FIGURE 15 | The neurotrophic START, or nSTART, model. Multiple types of learning and neurotrophic mechanisms of memory consolidation cooperate in these
circuits to generate adaptively timed responses. Connections from sensory cortex to orbitofrontal cortex support category learning. Reciprocal connections from
orbitofrontal cortex to sensory cortex support attention. Habituative transmitter gates modulate excitatory conductances at all processing stages. Connections from
sensory cortex to amygdala connections support conditioned reinforcer learning. Connections from amygdala to orbitofrontal cortex support incentive motivation
learning. Hippocampal adaptive timing and brain-derived neurotrophic factor (BDNF) bridge temporal delays between CS offset and US onset during trace
conditioning acquisition. BDNF also supports long-term memory (LTM) consolidation within sensory cortex to hippocampal pathways and from hippocampal to
orbitofrontal pathways. The pontine nuclei serve as a final common pathway for reading-out conditioned responses. Cerebellar dynamics are not simulated in
nSTART. arrowhead = excitatory synapse; hemidisk = adaptive weight; square = habituative transmitter gate (reprinted with permission from Grossberg, 2021).

theta is a mechanism by which information contained in
spatially widespread neocortical assemblies can be synchronously
transferred to the associative networks of the hippocampus.”
These cortical areas include the primary somatosensory area
and the prefrontal cortex. “These data suggest that theta
oscillation entrainment provides a mechanism by which activity
in spatially widespread neocortical and hippocampal networks
can be temporally coordinated. . .during either exploration or
REM sleep” (p. 693) (see also Montgomery et al., 2009; Fujisawa
and Buzsáki, 2011; Ito et al., 2018).

This conclusion carries the classical proposal of Freeman
(1975) about the role of theta in organizing sensory information
processing into temporal series of spatial patterns into the
more modern context of theta-modulated gamma and beta
oscillations occurring during periods of match and mismatch,
or resonance and reset. Colgin (2015) has additionally described
how such a theta-gamma coupling arises during a wide range
of other behavioral paradigms, including word recognition,
delayed non-match-to-place, and visual processing by cortical
areas V1 and V2.

5. ADAPTIVELY TIMED REGULATION OF
CATEGORY LEARNING: THETA, GAMMA,
AND BETA OSCILLATIONS

The current article reviews, unifies, and extends neural modeling
concepts that clarify how and why both extrinsic and intrinsic
theta rhythms occur. Earlier modeling articles proposed how
the hippocampus interacts with multiple brain regions to carry
out various cognitive, emotional, and adaptive timing processes,
and how these processes interact together during learning
experiences. Some of these models have been discussed above,
including the Adaptive Resonance Theory, or ART, models
for cognitive, motor, and spatial category learning and the
SOVEREIGN models for incrementally learning planned action
sequences to navigate toward rewarded goals. SOVEREIGN2
summarizes a much larger number of brain processes that have
been modeled over the years. These processes have yet to be
synthesized within a mathematically rigorous comprehensive
neural architecture.
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5.1. Two Distinct, but Interacting,
Hippocampal Mechanisms of Memory
Consolidation
The START, or Spectrally Timed ART, model and its
neurotrophically modulated refinement, nSTART (Figure 15;
Grossberg and Merrill, 1992, 1996; Franklin and Grossberg,
2017), deserve special mention because they clarify how the
hippocampus can coordinate ART category learning and
memory consolidation with the adaptively timed learning,
performance, and memory consolidation that are regulated by
the LEC and the hippocampus to which it projects, all the while
modulated by a theta rhythm.

The first mechanism of memory consolidation uses the ART
hypothesis testing and category learning cycle (Figure 7) in the
form of a cycle of resonance and reset. As explained above,
the orienting system is activated by a sufficiently bad mismatch
between the bottom-up sensory input pattern that activates
the feature level F1 and the top-down learned expectation that
is read-out from category level F2. This mismatch reduces
inhibition of the orienting system, as in Figure 7B, which
begins a memory search for a better matching category by
triggering a nonspecific arousal burst to F2, as in Figure 7C. The
hippocampus is part of this novelty-sensitive orienting system.
As objects and events become familiar due to the learning cycle,
they can directly access and resonate with their best matching
category without any memory search. The familiar object or event
has hereby learned a self-stabilizing memory, which illustrates a
form of dynamically maintained memory consolidation.

As simulated by the SMART model (Grossberg and Versace,
2008), the cycle of resonance and reset is embodied by a cycle of
gamma oscillations and beta oscillations. As noted in Section 3.4,
although theta oscillations have not yet been quantitatively
simulated during this gamma-beta cycle, the manner in which a
theta rhythm organizes sequences of brain states leads naturally
to the existence of theta-modulated gamma rhythms that are
interrupted by intervals of beta rhythm during hypothesis testing
and memory search.

Carpenter and Grossberg (1993) and Grossberg (2013a)
have proposed how these memory consolidation properties can
qualitatively explain data about medial temporal amnesia when
the model hippocampus is ablated, thereby eliminating memory
search before consolidation can occur. Such an ablation leads to
properties of unlimited anterograde amnesia, limited retrograde
amnesia, perseveration, difficulties in orienting to novel cues, a
failure of recombinant context-sensitive processing, and different
degrees of learning by amnesic and normal individuals on easy vs.
demanding categorization tasks. Lesions in CA1 during transient
global amnesia are correlated with a corresponding deterioration
of the theta rhythm (Park et al., 2016).

In nSTART, neuromodulation by Brain Derived Neurotrophic
Factor, or BDNF, sustains cortico-cortical resonances that
strengthen partial learning based on previous sensory inputs.
Here both the hippocampus and the cerebellum participate in
adaptively timed learning (Grossberg and Merrill, 1996). The
hippocampus maintains adaptively timed incentive motivational
signals between active cells in the sensory cortex and the

prefrontal cortex, notably orbitofrontal cortex, when visual
categories are being learned. The adaptively timed hippocampal
support enables thalamocortical and corticocortial category
learning (see horizontal pathway from sensory cortex to
prefrontal cortex in Figure 15) to occur between events that are
separated in time.

Such temporal separation occurs during trace conditioning
when a conditioned stimulus (CS), such as a light or tone,
shuts off hundreds of milliseconds before a rewarding or
punishing unconditioned stimulus (US), such as a shock or
food, turns on. This requires that a CS-activated memory trace
be sustained during the inter-stimulus interval in order to
learn an adaptively timed association between CS and US that
enables the CS to elicit a CR. As these categories are learned,
the hippocampus maintains inhibition of the orienting system
(not shown), so that motivated attention can be maintained
throughout the adaptively timed category learning interval. The
prefrontal cortex can also, at the same time, learn to activate
adaptively timed actions via the cerebellum. When category
learning and performance is complete, the hippocampus is
disengaged, memory consolidation has occurred, and the CS
alone can elicit an adaptively timed conditioned response (CR).
Franklin and Grossberg (2017) review data properties that
nSTART simulates when consolidation is prevented. Different
properties of early vs. late hippocampal lesions are challenging to
explain because no training occurs after conditioning and before
hippocampal ablation.

Data about theta modulation have been reported in autistic
individuals (Lushchekina et al., 2014). The imbalanced START,
or iSTART model (Grossberg, 2017a) shows how, if START
becomes imbalanced in particular ways, then autistic symptoms
arise (Grossberg and Seidman, 2006). iSTART proposes that
various individuals with autism have their vigilance stuck at
an abnormally high value due to abnormal cholinergic activity,
leading to abnormal orienting and memory search, learning
of hyperspecific recognition categories, and a narrow focus of
attention. Abnormal iSTART orienting causes abnormal beta
oscillations, which have been reported (Buard et al., 2018;
de Vega et al., 2019). The breakdown of a fluent response
to changing environmental challenges by autistic individuals
would be expected to alter their theta rhythms. Indeed, lower
levels of theta spectral power and mean coherence then occur
(Lushchekina et al., 2014).

6. CONCLUDING REMARKS

This article summarizes neural models of cortico-hippocampo-
cerebellar dynamics and of the gamma, beta, and theta
rhythms that underlie these dynamics during both normal and
abnormal conditions.
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