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Noninvasive circulating tumor DNA (ctDNA) can be used to predict

breast cancer recurrence and prognosis. In this study, we detected 226 and

114 somatic variants in tumor DNA from 70 primary breast cancer (PBC)

patients (98.59%) and ctDNA from 48 patients (67.61%), respectively.

Gene frequencies of tumor DNA and ctDNA significantly correlated

(R2 = 0.9532, P < 0.0001), and tumor-derived variants were detectable in

the blood of 43 patients. ctDNA was more often detected in locally

advanced/metastatic and nonluminal patients. Multivariate analysis

revealed that individual N stage (P < 0.001) and hormone receptor (HR)

status (P = 0.001) could independently predict the detectability of tumor-

derived mutations in blood. The maximal variant allele frequency of

ctDNA was significantly higher in patients with stage IV/M1 (P = 0.0136)

and stage T3/T4 (P = 0.0085) cancers. Finally, clonal variants in tumor

DNA were more easily traced in ctDNA than subclonal variants (84.62%

vs 48.75%). In conclusion, ctDNA fragments concordant with tumor DNA

can be consistently detected in the majority of tested PBC patients, which

may enable noninvasive genomic profiling of PBC, particularly for patients

with advanced-stage tumors and positive HR status.

1. Introduction

Breast cancer is the most commonly diagnosed cancer

in women worldwide and is the leading cause of can-

cer-related deaths in both developed and developing

countries (Torre et al., 2015). Recently, clinical treat-

ment of primary breast cancer (PBC) has been

advanced by tissue-based and large-scale genomic pro-

filing, although the results of these techniques are lim-

ited by sampling bias and tumor heterogeneity

(Zardavas et al., 2015). Moreover, tissue biopsies can-

not fully monitor the dynamic changes in tumor bur-

den, and circulating biomarkers currently used,

including carcinoembryonic antigen (CEA) and cancer

antigen 15-3 (CA15-3), have low sensitivity in some

patient populations (Wu et al., 2014). Thus, novel

biomarkers that can be assayed noninvasively provide

real-time monitoring of tumor burden and sensitively

reflect tumor molecular characteristics are urgently

needed for effective clinical cancer treatment.
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One potential biomarker is circulating tumor DNA

(ctDNA), which is derived from necrosis, apoptosis,

and secretions of tumor cells and can be detected in

peripheral blood. Importantly, the detectability of

ctDNA diverse solid tumors has been validated (Sch-

warzenbach et al., 2011), including that of PBC (Gar-

cia-Murillas et al., 2015; Higgins et al., 2012; Olsson

et al., 2015; Schiavon et al., 2015). However, detection

of ctDNA mutations is difficult in some patients, espe-

cially those with early-stage cancer (Bettegowda et al.,

2014). Furthermore, data regarding the influence of

clinical factors on ctDNA detection are limited, and

the correlation between mutations in tumor DNA and

ctDNA is still unknown.

In this study, we thoroughly characterized the rela-

tionship between mutations in tumor DNA and

ctDNA and analyzed how ctDNA profiling is affected

by various clinical factors. We collected paired tumor

tissue and peripheral blood samples from 71 recently

diagnosed PBC patients and applied panel-based next-

generation sequencing (NGS) to evaluate the genomic

variants in all specimens. We made novel comparisons

of mutation prevalence between tumor DNA and

ctDNA and collected detailed clinical information to

explore the potential factors affecting the detectability

of circulating tumor-derived genetic variations.

2. Materials and methods

2.1. Clinical cohort

In this prospective cohort study, 71 patients recently

diagnosed with PBC at Peking Union Medical College

Hospital from May 2016 to November 2016 were

enrolled (ClinicalTrials.gov Identifier: NCT02797652).

Clinicopathological data regarding demography and

tumor histopathological results, such as TNM staging

and immunohistochemical information, were collected

from each patient. TNM staging was defined according

to the American Joint Committee on Cancer TNM

staging system for breast cancer (Singletary et al.,

2002). Patient HER2 status was initially evaluated by

immunohistochemical staining (Ventana 4B5 antibody

and BenchMark XT; Roche, Basel, Switzerland). In

patients with 2+ status, fluorescence in situ hybridiza-

tion was performed to further determine the expression

of HER2 (Vysis probe; Abbott, Chicago, IL, USA).

All procedures were executed by at least two experi-

enced pathologists who adhered to the American Soci-

ety of Clinical Oncology/College of American

Pathologists’ clinical practice guidelines (Wolff et al.,

2013). The molecular subtype of each tumor was

defined using immunohistochemical parameters as

previously described (Goldhirsch et al., 2013). Three

healthy individuals were also recruited as control par-

ticipants to test the accuracy of our sequencing plat-

form for ctDNA profiling. This study was approved

by the ethical committee at Peking Union Medical

College Hospital. All participants provided informed

written consent before undergoing any study-related

procedures. This study was performed in accordance

with the Declaration of Helsinki.

2.2. Sample collection and DNA extraction

Before treatment, tumor tissue samples of each

patient were prospectively obtained via coarse needle

aspiration, and immunohistochemical analysis was

used to quantify expression of hormone receptor

(HR), HER2, and Ki67. Fewer than 4 days after tis-

sue sampling, peripheral blood samples of at least

10 mL were also collected in Streck tubes from all

patients and healthy controls. Within 3 days of collec-

tion, peripheral blood was separated by centrifugation

at 1600 g for 10 min, transferred to microcentrifuge

tubes, and centrifuged again at 16 000 g for 10 min

to remove cell debris. Tissues, plasma, and peripheral

blood lymphocytes (PBLs) were stored at �80 °C
prior to DNA extraction. Genomic DNA was

extracted from tumor tissue (tumor DNA) and PBL

(germline DNA) using a QIAamp DNA Mini Kit and

QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Ger-

many), respectively. Circulating cell-free DNA

(cfDNA) was extracted from plasma using the

QIAamp Circulating Nucleic Acid Kit (Qiagen).

DNA concentration was estimated using a Qubit fluo-

rometer and a Qubit dsDNA high sensitivity (HS)

Assay Kit (Invitrogen, Carlsbad, CA, USA). cfDNA

fragment length was assessed using an Agilent 2100

Bioanalyzer and the DNA HS kit (Agilent Technolo-

gies, Santa Clara, CA, USA).

2.3. Library preparation

Tumor and germline DNA were sheared into 200- to

250-bp fragments using a Covaris S2 instrument

(Woburn, MA, USA), and indexed NGS libraries were

prepared using the DNA Library Preparation Kit for

Illumina (New England Biolabs, Ipswich, MA, USA).

For cfDNA, after end-repairing and A-tailing reac-

tions, targeted adapters with unique identifiers (UIDs)

were ligated to both ends of double-stranded cfDNA

fragments, followed by PCR to generate sufficient

numbers of fragments prior to hybridization. Addi-

tional detailed information regarding library prepara-

tion was described by Lv et al. (2017).
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2.4. Target region capture and next-generation

sequencing

All libraries were hybridized to custom-designed

biotinylated oligonucleotide probes (IDT, Coralville,

IA, USA) covering 1.09 Mbp of the genome. The

captured genomic regions included the most common

driver genes of solid tumors (Kandoth et al., 2013).

We chose their entire exome regions to construct the

basic panel. Next, genomic regions related relevant to

the effects of chemotherapy, targeted drugs, and

immunotherapy per available clinical and preclinical

research were added to the panel. Finally, high-

frequency mutant regions recorded in the Catalogue of

Somatic Mutations in Cancer (COSMIC, http://cancer.

sanger.ac.uk/cosmic) and The Cancer Genome Atlas

(TCGA, https://cancergenome.nih.gov/) were involved.

All included genes are shown in Table S1. DNA

sequencing was performed using an Illumina 2 9 75-

bp paired-end sequencing strategy on the HiSeq

Sequencing System (Illumina, San Diego, CA, USA),

which generated 1, 2, or 15 Gb of data from germline

DNA, tumor DNA, or cfDNA, respectively. Addi-

tional detailed information regarding target region

capture and NGS was described by Lv et al. (2017).

2.5. Raw data processing

After removing raw reads containing adaptor seque-

nces, those with more than 50% low-quality base

reads, or those with more than 50% N bases, together

with their mate pair, reads were mapped to the refer-

ence human genome (hg19) using the Burrows-Wheeler

Aligner (http://bio-bwa.sourceforge.net/) with default

parameters. Duplicate reads were identified and

marked with Picard’s Mark Duplicates tool (https://sof

tware.broadinstitute.org/gatk/documentation/tooldocs/

4.0.3.0/picard_sam_markduplicates_MarkDuplicates.php)

for tumor and germline DNA data and were clustered

according to UID and position of the template frag-

ments for cfDNA data. Errors introduced by PCR or

sequencing were corrected according to clustered

reads. Local realignment and base quality recalibration

were performed using The Gene Analysis Toolkit

(https://www.broadinstitute.org/gatk/).

2.6. Somatic mutation calling of tumor DNA

Somatic single-nucleotide variations (SNVs) were

called using the MuTect2 algorithm (https://software.

broadinstitute.org/gatk/documentation/tooldocs/3.8-0/

org_broadinstitute_gatk_tools_walkers_cancer_m2_Mu

Tect2.php). Candidate mutations were filtered if (a)

more than 10 reads with insertions/deletions in an 11-

bp window were centered; (b) the matched germline

DNA control sample carried ≥ 3% or ≥ 2% alternate

allele reads, and the sum of quality scores was above

80; (c) the candidate was found in DBSNP (version 138,

https://www.ncbi.nlm.nih.gov/SNP/) but not listed in

the COSMIC database; (d) the candidate was sup-

ported by fewer than five high-quality reads (base

quality ≥ 30, mapping quality ≥ 30); or (e) the allele

frequency was < 1%. Insertions or deletions of small

fragments (indels) were called using MuTect2 with

default parameters. Variants detected in matched con-

trol samples with three or more reads indicating indels

at the same location or in the 40-bp flanking regions

of experimental samples or residing near regions with

low complexity or short tandem repeats were removed.

Remaining mutations were considered validated

somatic variants.

2.7. Enrich rare mutation sequencing (ER-Seq) of

ctDNA

For somatic SNVs/indels of ctDNA, the accuracy of

low-frequency mutations was further confirmed by

high-quality support reads with both forward and

reverse strand read pairs clustered by UID and filtra-

tion through the control group (germline mutations),

as well as screening for ‘background noise’ false-posi-

tive ctDNA mutations. The enrich rare mutation

sequencing (ER-Seq) strategy combines the following

features: (a) unique sequencing adapters and bidirec-

tional error correction; (b) a capture panel that covers

over 95% of tumor-related mutations from common

cancers; and (c) background noise database filtering

(Lv et al., 2017). As a result, ER-Seq compensates for

errors introduced by PCR and/or sequencing and

enables efficient and precise detection of rare muta-

tions in blood samples. For example, the minimal alle-

lic fraction reliably detectable in ctDNA is 0.5%.

2.8. Somatic copy-number variation (CNV) calling

The CONTRA algorithm (http://contra-cnv.sourcef

orge.net) was used to detect copy-number variants

(CNVs) in tumor DNA and cfDNA.

2.9. Enrichment and clonality analyses

For enrichment analysis of mutated genes, the Gene

Ontology (GO; http://www.geneontology.org/) and

Kyoto Encyclopedia of Genes and Genomes (KEGG;

http://www.genome.jp/kegg/pathway.html) tools were

applied for various data subsets. To classify variants
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identified in tissue as clonal or subclonal mutations,

the cancer cell fraction (CCF) was defined using

mutant variant allele frequency (VAF) (Roth et al.,

2014). Mutations with maximal CCF and CCF ≥ 75%

of maximum were classified as clonal; all others were

classified as subclonal.

2.10. Statistical analysis

A chi-squared test was performed using SPSS 22.0

(IBM, Armonk, NY, USA) to compare the mutation

rates of PIK3CA between HR-positive and HR-nega-

tive patients, as well as the detection rate of ctDNA

between patients with different TNM stages and

molecular subtypes. Pearson correlation analysis was

performed using GRAPHPAD PRISM 6 (GraphPad Soft-

ware, La Jolla, CA, USA) to assess the relevance of

mutated gene frequencies between tumor DNA and

ctDNA. To analyze the correlation between different

clinical features and the positive detection rate of

ctDNA, univariate analysis (UVA) and multivariate

analysis (MVA) were performed using SPSS 22.0. The

relationship between maximal VAF (MVAF) and dif-

ferent clinical features was assessed by one-way

ANOVA with SPSS 22.0. A P value < 0.05 indicated

statistical significance.

3. Results

3.1. Patient characteristics and sequencing

quality control

A summary of PBC patient characteristics is found in

Table 1. Patients were diverse in both diagnostic age

and disease parameters. For example, the median diag-

nostic age of patients was 47 years (range, 27–
78 years); 11 (15.49%) patients were younger than

35 years, 42 (59.16%) were between 35 and 55 years,

and the remaining 18 (25.35%) were older than

56 years. Over half patients (53.52%) were TNM stage

III, and the proportions of patients with stages I, II,

and IV were 11.27%, 25.35%, and 9.86%, respectively.

Twelve patients (16.90%) had either a maximal tumor

diameter > 5 cm (T3 stage) or chest wall and skin

invasion (T4 stage), while lymph node metastasis

occurred in 52 patients (73.24%, N1–N3 stage). Fifty-

two (73.24%) patients were HR-positive, and 28

(39.44%) overexpressed HER2. The Ki67 levels of 60

(84.51%) patients were higher than 14%. The propor-

tions of patients with molecular subtypes of Luminal

A, Luminal B, HER2 overexpression, and triple-nega-

tive breast cancer (TNBC) were 4.23%, 67.61%,

12.68%, and 14.08%, respectively.

Cell-free DNA was successfully extracted from all

patients and healthy individuals. The average concen-

tration of cfDNA was 7.23 ng�mL�1 (range, 2.74–
20.09 ng�mL�1, Table S2). The length of cfDNA frag-

ments primarily ranged from 170 to 185 bp, although

another minor peak was centered at ~ 322 bp

(Fig. S1). The average coverage depths without

duplicate reads for sequenced tumor DNA and

cfDNA were 785.639 (range, 425.259 to 1519.929)

and 1006.889 (range, 280.619 to 1669.079), respec-

tively, and the fractions of target region coverage

were all above 99% (Fig. S2, Table S2). For control

blood samples, the average sequencing depth was

1012.829 (range, 960.079 to 1042.279), and their

coverage fractions were also above 99% (Fig. S2,

Table S2). The sequencing parameters demonstrated

no discrepancy between control and experimental

blood samples.

Table 1. Clinical characteristics of study patients with PBC.

Characteristics Total (n = 71)

Diagnostic age (years)

Median (range) 49 (27–78)

Stage (%)

I 8 (11.27)

II 18 (25.35)

III 38 (53.52)

IV 7 (9.86)

T stage (%)

T1 26 (36.62)

T2 33 (46.48)

T3 9 (12.68)

T4 3 (4.23)

N stage (%)

N0 19 (26.76)

N1 12 (16.90)

N2 20 (28.17)

N3 20 (28.17)

HR status (%)

Positive 52 (73.24)

Negative 19 (26.76)

HER2 overexpression (%)

Positive 28 (39.44)

Negative 42 (59.15)

Unknown 1 (1.41)

Ki67 levels (%)

High (> 14%) 60 (84.51)

Low (≤ 14%) 11 (15.49)

Molecular subtypes (%)

Luminal A 3 (4.23)

Luminal B 48 (67.61)

HER2 overexpression 9 (12.68)

TNBC 10 (14.08)

Unknown 1 (1.41)
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3.2. Mutation prevalence in tumor DNA and

ctDNA

We detected 226 SNVs, as well as indels in 70 tumors

(98.59%) with a median of 2.5 per sample (range, 1–
15). We observed no mutations in control blood, indi-

cating the satisfactory specificity of our ctDNA

sequencing platform. In comparison, sequencing of

experimental blood samples revealed that 48 (67.61%)

patients collectively had 114 SNVs and indels with a

median of two per sample (range, 1–7). In tumor

DNA, genes with the most recurrent somatic muta-

tions were TP53 (47.14%), PIK3CA (40.00%), and

AKT1 (7.14%), while the most frequently mutated

genes of ctDNA were TP53 (41.67%), PIK3CA

(27.08%), and DNMT3A (8.33%; Fig. 1A, Fig. S3).

Notably, the mutation rate of PIK3CA in tumor DNA

and/or ctDNA of HR-positive patients was 48.08%,

while a much lower rate was observed for HR-negative

patients (15.79%; P = 0.014; Fig. 1A).

To confirm the validity of our sequencing results, we

next compared the prevalence of SNVs and indels in

our cohort to those detected in TCGA (n = 1105), a

publicly available tissue-based database. For consis-

tency, the analysis of both cohorts was adjusted to

only include genes mutated in the ctDNA of more

than two patients. Thus, we included 16 genes from

our cohort, most of which were present in TCGA.

Interestingly, the gene mutation rates reported for the

ctDNA from our cohort were generally higher than

those in TCGA, except for PIK3CA and CDH1, possi-

bly due to the low depth of whole exon sequencing

data in TCGA (Fig. 1B).

Because tissue-based sequencing remains the most

reliable method for analyzing the molecular features of

solid tumors, we also assessed the correlation between

the prevalence of mutations in ctDNA and tumor

DNA in our cohort and found their mutation rates to

be strikingly similar (Fig. 1B). In addition, the muta-

tion rates of the 16 most frequently mutated genes in

ctDNA significantly correlated with those in tumor

DNA (R2 = 0.9235; P < 0.0001; Fig. 1C). Thus, detec-

tion of mutations in ctDNA can accurately reflect

mutation rates in tumor DNA. We also observed dif-

ferences between ctDNA and tumor DNA. For exam-

ple, the detection rate of ctDNA DNMT3A mutations

was dramatically higher than in tumor DNA (8.33%

vs 2.86%; Fig. 1C), a phenomenon that could be

attributed to clonal hematopoiesis, which intrinsically

leads to substantial noncancerous mutations in blood

circulation (Xie et al., 2014).

>Except for one patient without any tissue DNA

mutations, tumor-derived mutations could be fully

traced in cfDNA of 15 patients (21.43%) and partially

traced (26.67–80.00%) in ctDNA of 28 patients

(40.00%). For 48 patients with somatic mutations in

ctDNA, we detected 154 mutations in tumor tissue,

among which 94 mutations (61.03%) could be detected

in matched blood, whereas 60 mutations (38.97%)

were exclusively detected in tumor DNA. Additionally,

20 mutations were exclusively detected in ctDNA

(Fig. S3). To explore the biological features associated

with the different mutation subsets (e.g., tissue-specific,

blood-specific, and overlapping mutations), we per-

formed GO and KEGG enrichment analyses. We

selected the top 10 objects for further study, which

revealed that tissue-specific and overlapping mutations

possibly co-altered 17 genetic functions, including

phosphatidylinositol-mediated signaling, receptor com-

plex formation, and tyrosine kinase activity, while

blood-specific mutations exhibited fairly distinct effects

compared with the other subsets (Fig. S4). According

to KEGG analysis, ‘breast cancer’ pathway is signifi-

cantly affected by both tissue-specific and overlapping

mutations (Fig. 2A,B) but not blood-specific muta-

tions. Several enriched pathways related with drug

resistance and sensitivity, including endocrine resis-

tance, epidermal growth factor receptor tyrosine kinase

inhibitor resistance, and ErbB signaling pathways,

were highlighted with respect to overlapping mutations

(Fig. 2B). However, the affected pathways enriched in

blood-specific mutations were atypical for breast can-

cer, although some pathways were indeed meaningful

to breast cancer, such as p53 signaling pathway, endo-

crine resistance, and mTOR signaling pathway

(Fig. 2C). The pathway related with ‘human papillo-

mavirus infection’ may originate from the randomness

of mutant genes. The fact that such enriched pathway

is absent in tissue-specific and overlapping mutations

may confirm our conjecture to some extent. Together,

these data indicate that tracking tumor-derived muta-

tions in ctDNA may enable effective profiling of

tumor molecular features and management of targeted

agents for PBC patients. However, the genetic implica-

tions of blood-specific mutations relevant to PBC

remain unclear.

3.3. Clinicopathological parameters associated

with the detectability of tumor-derived

mutations in blood

Based on the above results, blood-specific mutations

were excluded in subsequent analysis, and the

association between clinicopathological features and

detectability of tumor-derived variations in blood was

evaluated. First, we performed chi-square tests to
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determine the effects of TNM staging or molecular

subtype on ctDNA detection, which showed statisti-

cally significant discrepancies between patients with

different stages (chi-square P = 0.0278) and subtypes

(chi-square P = 0.0032). In addition, ctDNA was

more often detected in locally advanced/metastatic

and nonluminal patients than others (Fig. 3). To fur-

ther clarify the effects of these clinical parameters,

individual T stage (T), nodal (N stage), metastasis (M

stage), HR, HER2, and Ki67 status, all of which

were intrinsic factors in TNM staging and molecular

subtyping, as well as diagnostic age of patients, were
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included in UVA and MVA of ctDNA detection.

UVA revealed that tumor-derived variations were

more prevalent in blood of patients with lymph node

metastasis (N1–N3) than in lymph node-negative

(N0) patients (69.23% vs 36.84%, P < 0.001; Table 2).

HR-positive patients presented with fewer tumor-

derived variations in blood than HR-negative patients

(50.00% vs 89.47%; P = 0.002; Table 2). Moreover,

MVA showed that individual N stage (P < 0.001)

and HR status (P = 0.002) could independently

predict the detection success of tumor-derived varia-

tions in blood (Table 2). Notably, the positive rate of

ctDNA in M1 patients exceeded that of M0 patients

(85.71% vs 57.81%, Table 2), although the discrep-

ancy did not reach statistical significance, possibly

due to the small number of M1 patients in our

study.

The VAF of ctDNA may represent molecular

tumor burden and thus be utilized in tumor surveil-

lance (Zhou et al., 2016). There, we also evaluated

the influence of different clinical factors on the

MVAF of ctDNA and found that MVAF was signifi-

cantly higher in metastatic patients (stages IV/M1)

than in early-stage or locally advanced patients (stage

I to III/M0; P = 0.0136, Fig. 4A). MVAF also posi-

tively correlated with advanced T stage (P = 0.0085,

Fig. 4B), but we saw no statistically significant corre-

lation between MVAF and N stage, diagnostic age,

HR or HER2 status, Ki67 level, or molecular subtype

(Fig. S5).

3.4. Effect of tumor clonality on detection of

tumor-derived variations in blood

Subsequently, we performed clonality analysis using

the PyClone strategy to identify somatic variations in

tumor DNA of the 43 patients with tumor-derived

mutations detected in blood. We also investigated dif-

ferences in the detection rates of tumor-derived muta-

tions in blood between clonal and subclonal clusters,

which revealed collectively 65 clonal mutations (me-

dian = 1; range, 1–7) and 80 subclonal mutations in

tumor DNA from 33 patients (median = 2; range, 1–
13; Fig. 5A). Clonal and subclonal mutations were

present in the ctDNA from 41 patients (95.35%) and

20 patients (46.51%), respectively (Fig. 5A). Up to

84.62% of clonal mutations could be detected in

matched ctDNA, while only 48.75% of subclonal

mutations were found in corresponding control sam-

ples (Fig. 5B), further indicating that ctDNA sequenc-

ing can capture the majority of tumor-derived clonal

mutations.

3.5. Consistency of clinically relevant alterations

between tumor DNA and ctDNA

HER2 overexpression that mostly results from CNVs

of ERBB2 notably impacts treatment choice for

patients with PBC. To determine the utility of NGS

in HER2 status evaluation, we assessed the

correlation between HER2 expression measured by
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immunohistochemistry and ERBB2 amplification esti-

mated by NGS. Clinically, 28 patients were diagnosed

with HER2 overexpression, of whom 26 (92.86%)

had detectable ERBB2 amplification in their tumor

DNA. Another three patients with ERBB2 amplifica-

tion had normal HER2 status. Excluding two patients

with ambiguous HER2 statuses, the overall consis-

tency between these parameters was 92.75%. How-

ever, only six (21.43%) patients with HER2

overexpression had detectable ERBB2 amplification in

ctDNA with an overall consistency of 68.12%.

Although the positive predictive value of ctDNA

detection was 100%, the low negative predictive value

(65.08%) limits the clinical application of CNV detec-

tion in ctDNA (Fig. 5C).

We next evaluated other clinically actionable muta-

tions. Overall, 30 SNVs in 30 patients were high-

lighted, including 25 PIK3CA coding region variations

related with anti-HER2 regimen resistance and/or

mTOR inhibitor sensitivity (Elkabets et al., 2013;

Majewski et al., 2015), four AKT1 E17K variations

targeted by AKT inhibitors (Beaver et al., 2013), and

one ESR1 D538G variation inducing resistance to aro-

matase inhibitors (Wang et al., 2016; Fig. 5D). Among

19 patients with positive ctDNA, 16 (84.21%) demon-

strated concordantly actionable SNVs in tissue and

blood (Fig. 5D).

4. Discussion

In recent years, several studies have demonstrated that

ctDNA sequencing results correlate with tumor burden

and can predict tumor prognosis in patients with
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Table 2. Univariate and multivariate analyses of clinical

characteristics influencing ctDNA detection.

Characteristics Group n

ctDNA-

positivea

n (%)

P value

UVA MVA

Diagnostic

age (years)

≤ 35 12 5 (41.67) 0.520 0.511

36–55 40 27 (67.50)

≥ 56 19 11 (57.89)

T stage T1 26 12 (46.15) 0.087 0.068

T2 33 22 (66.67)

T3 9 7 (77.78)

T4 3 2 (66.67)

N stage N0 19 7 (36.84) < 0.001b < 0.001b

N1 12 5 (41.67)

N2 20 13 (65.00)

N3 20 18 (90.00)

M stage M0 64 37 (57.81) 0.156 0.147

M1 7 6 (85.71)

HR status Positive 52 26 (50.00) 0.002b 0.002b

Negative 19 17 (89.47)

HER2 over

expression

Positive 28 18 (64.29) 0.504 0.557

Negative 41 23 (56.10)

Ki67 High 60 37 (61.67) 0.662 0.493

Low 11 6 (54.55)

actDNA was defined as positive if tumor-derived mutations could

be detected in blood.
bRepresents statistical significance.
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breast cancer (Bettegowda et al., 2014; Garcia-Murillas

et al., 2015; Olsson et al., 2015). However, most of

these studies have only focused on patients who had

undergone multiline treatments or whose cancer had

metastasized, while research related to initially

diagnosed PBC patients is still scarce. Here, we studied

a large cohort of Chinese, initially diagnosed PBC

patients to systematically assess the feasibility and reli-

ability of ctDNA genomic profiling to inform tumor

management. Results revealed that a patient’s ctDNA
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mutational profile strongly correlated with that of

tumor DNA, while some clinicopathological factors

affected the detection of tumor-derived mutations in

blood. Based on our findings, ctDNA profiling is a

promising method for determining the genomic land-

scape and potentially best clinical management plan of

PBC patients, especially those with advanced-stage

cancer or positive HR status.

In clinical practice, the most common tumor mark-

ers utilized in breast cancer diagnosis and prognosis

are CA15-3 and CEA (Martelotto et al., 2014; Molina

et al., 2010; Park et al., 2008). However, a study of

Chinese breast cancer patients indicates that CEA and

CA15-3 levels are elevated in only 7.2% and 12.3% of

these patients, respectively (Garcia-Murillas et al.,

2015). Thus, these common biomarkers may not be as

reliable or sensitive in Chinese PBC patients compared

with other populations. Alternatively, this study

revealed that the overall sensitivity of tumor-derived

mutation detection in blood was 67.61%, while the

sensitivity in 64 patients with local lesions was

57.81%. Together, these data indicate that ctDNA

detection is a feasible complementary biomarker for

both early- and advanced-stage PBC patients.

In our study cohort, most of mutated genes in either

tumor DNA or ctDNA, including TP53 and PIK3CA,

both of which play important roles in tumorigenesis

and progression (Muller and Vousden, 2013; Oren and

Rotter, 2010; Silwal-Pandit et al., 2014; Zardavas

et al., 2014), presented higher mutation frequencies

than those reported in TCGA. This discrepancy may

be partially due to the greater sensitivity of mutation

detection for the panel-based NGS approach used in

our study as compared to genomewide sequencing gen-

erally used for samples in TCGA. Recently, a study

applying PCR-based sequencing drew similar conclu-

sions (Cohen et al., 2018), verifying that advances in

sequencing technology could optimize the genomic

profiling of tumors.

Because tissue sequencing is still the ‘gold standard’

for molecular profiling of solid tumors, we evaluated

the overall concordance of somatic alterations between

tumor DNA and ctDNA. While a prior study demon-

strated unsatisfactory correspondence, two limitations

may have influenced the accuracy of these results: The

median interval between the collection of tumor tissues

and peripheral blood was 146 days, and ctDNA and

tumor DNA were each sequenced using different plat-

forms (Guardant360 and Foundation One) (Chae

et al., 2017). Alternatively, Kaisaki et al. analyzed

genomic alterations of ctDNA and primary tumors in

21 melanoma patients and showed an ideal concor-

dance between ctDNA and tumor DNA when samples

were collected before treatment, confirming that the

interval between sample of tissue and peripheral blood

affects sequencing results (Kaisaki et al., 2016). In our

study, the paired samples of tumor tissue and periph-

eral blood were collected within 4 days prior to any

treatment, and all sequencing procedures were exe-

cuted uniformly to ensure the reliability and sensitivity

of detection. Although gene frequencies showed high

concordance between tumor DNA and ctDNA, some

differences persisted, such as the high mutation rate of

DNMT3A in ctDNA. The most likely explanation for

this discrepancy is that DNMT3A mutations detected

in ctDNA are involved in hematopoietic clones with

undefined clinical implications, rather than tumor-

derived (Xie et al., 2014). In addition to DNMT3A,

mutations in genes such as JAK2 and TET2, which

are also located in hematopoietic clones, can confound

the detection of tumor-derived variants in blood (Xie

et al., 2014). However, this limitation of ctDNA

sequencing can be partially resolved by filtering

hematopoietic variations from blood monocyte

sequencing results, which we applied in our sequencing

strategy. The construction of large-scale databases

encompassing numerous ctDNA sequencing results

could further address this issue. Moreover, due to

intratumor heterogeneity, single-site tissue biopsies

may lead to incomplete genetic profiling, which could

also explain the absence of ctDNA mutations in

matched tumor DNA (Cai et al., 2017; De Mattos-

Arruda et al., 2014).

Based on GO and KEGG analyses, the genetic func-

tions possibly affected by tissue-specific and overlap-

ping mutations presented similar profiles, and both

potentially induced changes in breast cancer-related

pathways, although the enrichment profiles of blood-

specific mutations differed. Molecular biomarkers

related to drug sensitivity and resistance were detected

in blood, suggesting that tumor-derived variations in

blood may be more clinically relevant than those that

are blood-specific. Although many articles have veri-

fied the clinical applicability of tumor-derived varia-

tions in diverse tumor types (Abbosh et al., 2017;

Esposito et al., 2014; Ulz et al., 2017), our study is the

first to confirm the utility of tumor-derived variations

in blood using basic sequencing analysis. We predict

that additional biological and clinical implications of

ctDNA profiling will be revealed in further studies

with larger populations.

A previous study reported that the detectable rate of

mutant ctDNA significantly differs between patients

with metastasis (stage IV/M1) and those with localized

lesions (stages I–III/M0) (Bettegowda et al., 2014).

Similarly, in our study, almost all stage IV/M1
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patients (85.71%) carried tumor-derived mutations in

blood, whereas the proportions were only 57.81% for

patients with stages I–III/M0. We further verified that

nodal (N stage) and HR status could independently

predict the detection of tumor-derived variations in

blood. Such findings can explain the absence of

ctDNA for some patients and help improve the effi-

ciency of ctDNA profiling. Subsequently, we found

that the MVAF of ctDNA was significantly higher in

patients with metastasis, as well as advanced TNM

status, indicating that ctDNA quantity may correlate

with clinical tumor load. Longitudinal monitoring of

ctDNA is a possible strategy for therapeutic evaluation

and tumor surveillance. In addition, ctDNA tracking

has been used to assess the effects of surgery and mon-

itor the dynamic changes in tumor load during medical

treatment of breast cancer (Garcia-Murillas et al.,

2015; Olsson et al., 2015), although more efforts are

needed to further confirm the reliability and full clini-

cal benefit of ctDNA characterization.

Clonal evolution is an intrinsic process during

tumorigenesis and progression, and clonal ‘trunk’ vari-

ations that emerge relatively early contain more driver

events than subclonal branch variations. Thus, clonal

variations may exert more important clinical implica-

tions (McGranahan et al., 2015). Based on our study,

cfDNA could be mostly comprised of tumor-derived

clonal mutations, while the subclonal overlap between

matched tissue and blood is limited. Indeed, the

incomplete concordance of mutation spectrum between

matched tissue and blood is the greatest barrier to the

clinical approval of ctDNA (Merker et al., 2018). As

clonal mutations present superior allele frequencies

than subclonal mutations (McGranahan et al., 2015),

we conclude that sequencing depth for ctDNA may be

insufficient to detect whole subclonal mutations. The

anatomical site of tumor cell clones should also be

considered, as tissue comprised of cellular clones with

fewer vessels may be less likely to release mutant frag-

ments into blood circulation.

The application of anti-HER2 agents has improved

the prognosis for PBC patients. Our results revealed

that ERBB2 gene amplification highly correlated with

clinical HER2 overexpression, facilitating the decision

to administer anti-HER2 therapy via precise genomic

profiling. We also found that some patients carried

clinically actionable SNVs in PIK3CA, AKT1, and

ESR1. For patients with positive ctDNA, these SNVs

could be traced to blood with high probability, indi-

cating that liquid biopsy is potentially useful in medi-

cal management of PBC.

In conclusion, our findings highlight the feasibility

of ctDNA profiling for genetic analysis of PBC

patients. ctDNA detection can be applied in an ideal

proportion of patients, and tumor-derived functional

mutations can be traced in ctDNA. Some clinico-

pathological factors can affect the detectability of

ctDNA; thus, we should carefully determine the

applicable population and appropriate biomarkers

before clinical application of this approach. Some

limitations persist. First, the study population is

small, and larger-scale study using uniform sequenc-

ing and data analysis could further validate our

results. Second, the sensitivity of CNV detection by

ctDNA is unsatisfactory, although this issue could be

resolved by optimizing analytical procedures. Third,

the lack of practical cases involving ctDNA-based

clinical management restricts the translational inter-

pretation of this study. However, our results are still

beneficial in promoting a standardized sequencing

process and rigorous strategy for identifying PBC-

related mutations. This approach could contribute to

improved treatments and outcomes for PBC patients

and demonstrates the potential utility of liquid biop-

sies in tumor surveillance and directed therapy. A

subsequent study based on these current findings to

strengthen the translational potential of our work is

already in progress.

5. Conclusion

Mutant ctDNA fragments were detected in the major-

ity of PBC patients, most of which corresponded to

tumor-derived functional mutations, indicating the

potential diagnostic value of ctDNA. Multiple clinical

and biological factors, including TNM stage, molecu-

lar subtypes, and tumor clonality, can affect the

detectability of tumor-derived biomarkers in blood

ctDNA and should be considered when comparing

mutations across sample sources for prognostic

purposes.
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