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Moyamoya disease is an idiopathic chronically progressive cerebrovascular disease,

which causes both ischemic and hemorrhagic stroke. Genetic studies identified

RNF213/Mysterin and GUCY1A3 as disease-causing genes. They were also known

to be associated with non-moyamoya intracranial large artery disease, coronary artery

disease and pulmonary artery hypertension. This review focused on these two molecules

and their strong linker, calcineurin/NFAT signaling and caveolin to understand the

pathophysiology of moyamoya disease and related vascular diseases. They are important

regulators of lipid metabolism especially lipotoxicity, NF-κB mediated inflammation, and

nitric oxide-mediated vascular protection. Although intimal thickening with fibrosis and

damaged vascular smooth muscle cells are the distinguishing features of moyamoya

disease, origin of the fibrous tissue and the mechanism of smooth muscle cell damages

remains not fully elucidated. Endothelial cells and smooth muscle cells have long been a

focus of interest, but other vascular components such as immune cells and extracellular

matrix also need to be investigated in future studies. Molecular research on moyamoya

disease would give us a clue to understand the mechanism preserving vascular stability.

Keywords: moyamoya disease, RNF213 mutation, GUCY1A3, CAV1 (caveolin-1), calcineurein/NFAT pathway, nitric

oxide, inflammation, vascular

INTRODUCTION

Moyamoya disease (MMD) is a progressive occlusive cerebrovascular disease of unknown etiology
(1). Main treatment strategy is revascularization surgery to prevent cerebrovascular events, and
antiplatelet therapy is another treatment option that has recently been reappraised (2, 3). However,
there is no curative treatment that can prevent the progression of arterial stenosis. Understanding
the molecular biology of MMD is needed to develop a new treatment strategy and proper
biomarkers to evaluate therapeutic efficacy.

Genetics has contributed greatly to understanding the pathophysiology of MMD. In 2011,
RNF213 (also called as Mysterin) was identified as the major susceptibility gene for MMD and
p.R4810K mutation was found as a founder mutation that increases the risk of MMD by ∼300
times (4). The mutation was detected in ∼80% of patients with MMD in Japan, ∼70% in Korea
and ∼30% in China. Although the same mutation was not detected in European patients, other
mutations such as p.D4013N were found in∼10% (5). Thus, RNF213 is a major susceptibility gene
forMMDand it has been recognized as a keymolecule to understand the pathophysiology ofMMD.
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It has been reported that patients with MMD have not
only cerebrovascular lesions but also extracranial lesions
including coronary artery disease and pulmonary artery stenosis.
Importantly, these lesions have common pathological features
(6). In agreement with this finding, the p.R4810K mutation in
RNF213 gene was also shown to be associated with coronary
artery disease (7, 8), pulmonary artery hypertension (9), and renal
artery stenosis (10). GUCY1A3 mutations were first detected
in patients with quasi-MMD (syndromic MMD) with achalasia
(11), but some cases show only moyamoya arteriopathy in the
absence of achalasia (12). Of note, GUCY1A3 is also known to
be associated with coronary artery disease (13) and pulmonary
artery hypertension (14) as is the case withRNF213. BothRNF213
and GUCY1A3 are also associated with hypertension. These lines
of evidence suggest that investigation of these two genes may give
us some clues to elucidate the molecular pathogenesis of MMD
and quasi-MMD.

In this narrative review, we will discuss characteristics
of RNF213 and GUCY1A3 in terms of (1) genetics, (2)
molecular structures and functions, (3) transcriptional
regulation, (4) possible roles in vascular wall, (5) possible
roles in vascular insults, and (6) other properties. Finally,
we will propose a potential mechanism of MMD and future
research directions.

GENETICS OF RNF213 AND GUCY1A3

Susceptibility locus for MMD have been reported to reside
on 3p, 8q23, and 17q25.3. Chromosome 17q locus was first
identified by chromosome wide linkage analysis (15), and it was
narrow down to the 3.5-Mb region at 17q25.3 (16) by linkage
analysis of families with autosomal dominant inheritance with
incomplete penetrance. In this locus, RNF213 was identified
as the major susceptibility gene for MMD (4). In East Asian
patients, the p.R4810K mutation is most common, and it is also
found in 2% of the general population, which is in agreement
with low penetrance (1/100–1/200) of the gene. Intrudingly,
genotypes of RNF213 have impact on clinical features of MMD.
The p.R4810K mutation was associated with severer form of
the disease with higher frequency of bilateral involvement
and posterior circulation involvement, and the homozygous
p.R4810Kmutation was associated with early-onset of the disease
(17–19). The p.A4399T polymorphism, which is common in
Chinese patients, is associated with hemorrhagic MMD (odds
ratio = 2.8; 95% confidence interval, 1.2–6.5) (20). An intronic
variant, rs9916351, was reported to be associated with early onset
MMD in a Chinese population (21).

The p.R4810K mutation has been reported to be associated
with various vascular phenotypes. First, it was shown to be
associated with quasi-MMD (syndromic MMD) (22), moyamoya
angiopathy with a known comorbidity such as Down syndrome
or neurofibromatosis type I (NF1) (23). In addition, it was
associated with other vascular diseases including non-moyamoya
cerebral arteriopathy (24–26), coronary artery disease (7, 8) and
pulmonary artery hypertension (9, 27). The p.R4810K mutation
was also associated with hypertension in a dominant fashion (28),

while rs9916351 was associated with hypertension in a recessive
fashion (29).

Loci on 4q.32.1, 10q23.31, and Xp28 have been identified
as loci for quasi-MMD, and GUCY1A3, ACTA2, and BRCC3
was found to be a disease associated gene for each locus
(11, 30, 31). Genetic analysis of three families with autosomal
recessive mode of inheritance identified GUCY1A3 as a cause
of moyamoya angiopathy with achalasia, esophageal sphincter
muscle contraction (32). Interestingly, some patients with
moyamoya angiopathy associated with GUCY1A3 mutation
do not have achalasia (12), meaning that the patient can be
diagnosed as MMD but not quasi-MMD. In RNF213, the
p.R4810Kmutation was common to various vascular phenotypes
including MMD, coronary artery disease and pulmonary artery
hypertension, whereas different mutations were found in each
phenotype for GUCY1A3. In detail, nonsense mutation p.R349X,
p.E391KfsX, and c.1086 +1G>A splice donor site mutation
were associated with moyamoya with achalasia (11). GUCY1A3
rs1842896 polymorphism was a risk factor for large artery
arteriopathy stroke in a Southern Han Chinese population
(33). Loss of function mutation p.L163FfsX was associated
with an increased risk of myocardial infarction (13). Gain of
function mutation p.A681T was associated with a reduced risk
of pulmonary artery hypertension (14). A SNP, rs13139571, at
the GUCY1A3-GUCY1B3 locus was associated with high blood
pressure (34). Thus, different mutations or SNPs exhibit different
phenotypes, although hypertension is a common phenotype for
most mutations and polymorphisms in GUCY1A3.

MOLECULAR STRUCTURE AND
FUNCTIONS

Molecular Structure and Functions of
RNF213/Mysterin
RNF213/Mysterin is a unique protein which has both functional
AAA+ ATPase and E3 ligase. It is a large protein consisting of
5,207 amino acids with a size of 591-kDa (Figure 1). Isoform
3 which lacks exon 4 is the major isoform (NP_001243000.2)
(4), and the p.R4810K mutation (rs112735431) is assigned as
c.14429G>A. A recent cryo-EM analysis revealed the molecular
structure of RNF213 (35, 36). It consists of three structural
components including N-terminal structural motif (N-arm),
AAA+ ATPase with Walker motif A and B, and E3 ligase with
RING finger and NFX1-type zinc finger (Figure 1). Mutations
associated with MMD are dominantly observed in E3 ligase.

E3 ligase plays a central role in post-translational modification
by ubiquitination. It recruits an E2 ubiquitin-conjugating enzyme
that has been loaded with ubiquitin, recognizes a protein
substrate and assists or directly catalyzes the transfer of ubiquitin
from the E2 to the protein substrate. Ubiquitin contains seven
lysine (K) residues that, together with its amino terminus,
provide eight attachment sites for further ubiquitin molecules
(K0, K6, K11, K27, K29, K33 or K48, K63), thereby allowing
the formation of polymeric chains (37). Variety of combination
of branch sites and the length of polyubiquitin chain allow
the system to be highly complex, and the system is called
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FIGURE 1 | Molecular structure of RNF213 and soluble guanylate cyclase

(sGC) encoded by GUCY1A3. RNF213 consists of N-arm, AAA+ ATPase, and

E3 ligase. E3 ligase contains two different types of zinc finger, RING and ZF2

(NFX1-type zinc finger). Not only mutations in the RING and ZF2, but also

mutations in the AAA+ ATPase may disturb the function of E3 ligase.

GUCY1A3 and GUCY1B3 encode the α1 and β1 subunits of soluble guanylate

cyclase (sGC) to form a heterodimer.

“ubiquitin codes.” Together with its various substrates, ubiquitin
acts as a versatile cellular signal that controls a wide range
of biological processes including protein degradation, DNA
repair, endocytosis, autophagy, transcription, immunity, and
inflammation. K63 linkages are known to regulate activation
of the nuclear factor-kappa B (NF-κB) transcription factor,
DNA repair, innate immune responses, clearance of damaged
mitochondria, and protein sorting (38). RNF213 RING domain
cooperates with Ubc13 E2 ubiquitin-conjugating enzyme to
generate K63-linked polyubiquitin chains and induces NF-κB
activation (Figure 2). MMD-associated mutations in the RING
domain enhances NF-κB activation (39). Still, ubiquitination
targets of RNF213 remain largely unknown, except for Nuclear
factor of activated T-cells 1 (NFAT1) and filamin A (40).

The AAA+ superfamily of ATPases has diverse cellular
functions including membrane fusion, proteolysis and DNA
replication, and it works as molecular chaperon (41). RNF213
was considered to belong to the dynein ATPase family which
has 6 AAA domains (35). It forms hexamer (42) and is similar
to the resting states of dynein. However, it does not have motor
activity along the microtubule but has trans-thiolation activity,
which transfers ubiquitin from one substrate to another (36).
This means that ATPase and E3 ligase work cooperatively. In fact,
deletion ormutations of the ATPase domain reduced the function
of E3 ligase (39, 43) (Figure 1). This may explain the reason why
MMD is caused by bothmutations in the ATPase and those in the
E3 ligase.

Molecular Structure and Functions of
Soluble Guanylate Cyclase Encoded by
GUCY1A3
GUCY1A3 encodes the α1 subunit of soluble guanylate cyclase
(sGC), which forms heterodimeric enzyme with ß1 subunit

encoded by GUCY1B3 (Figure 1), and it is the major receptor
for nitric oxide (NO) (Figures 2, 3). NO binds the heme iron of
sGC to induce production of cyclic guanosine monophosphate
(cGMP), which then activates the cGMP-dependent protein
kinase (PKG) pathway (44). Murine retrovirus integration
site 1 (MRVI1) encodes Inositol 1,4,5-Triphosphate Receptor
Associated 1 (IRAG1) and plays a role as NO/PRKG1-dependent
regulator of IP3-induced calcium release. Phosphorylation of
MRVI1 by PRKG1 inhibits bradykinin and IP3-induced calcium
release from intracellular stores, leading to inhibition of platelet
activation and aggregation. It also mediates NO-dependent
inhibition of calcium signaling, which contributes to NO-
dependent relaxation of smooth muscle cells. Intrudingly,
MRVI1 mutation was found to increase the risk of developing
moyamoya angiopathy in patients with NF1. Specifically, p.P186S
substitution (rs35857561) in MRVI1 was segregated with quasi-
MMD in both the Italian and German NF1 families (45).

The p.C517Y mutation in GUCY1A3 was found in patients
with MMD without any evidence of achalasia (12). Sf9 cells
expressing the GUCY1A3 p.C517Y mutation showed lower basal
cGMP-forming activity and lower maximal NO-induced activity.
Thus, the p.C517Y missense mutation led to a significantly
blunted response in NO signaling and decreased cGMP
production. This was in consistent with previously published
observations on rat sGC-containing nitrosylated C516 (mouse
homolog to human C517) to resulted in desensitization of sGC
to NO activation (46).

TRANSCRIPTIONAL REGULATION

Transcriptional Regulation of RNF213: A
Sensor for Mitochondrial Damage and
Inflammation
Various factors have been reported to upregulate RNF213,
and all of them were related to inflammation caused by
mitochondrial dysfunction and infection. In patients with
MMD,morphological abnormalities of mitochondria with higher
reactive oxygen species (ROS) as well as elevated Ca2+ levels
and reduced mitochondrial reductase activity was detected
in circulating endothelial colony-forming cells (47). Recent
evidence suggests that mitochondrial dysfunction upregulates
RNF213 (Figure 2). Genetic ablation of several mitochondrial
matrix factors such as the peptidase ClpP, the transcription
factor Tfam increased Rnf213 expression in various organs
in mice (48). RNF213 is also upregulated by poly(I:C),
which triggers toll like receptor 3 (TLR3)-mediated responses
to double-stranded RNA (dsRNA) toxicity (48) (Figure 2).
Since dysfunctional mitochondria were recently reported to
release immune-stimulatory dsRNA into the cytosol, RNA-
dependent inflammation initiated by mitochondrial dysfunction
or infections may increase the penetrance of patient mutations in
RNF213. SAMHD1 loss of function mutations is known to cause
inflammatory vasculopathy including moyamoya angiopathy.
It is noteworthy that SAMHD1 works as a sensor of dsRNA
and dsDNA at replication fork (49), and dysfunction of this
gene is associated with excess interferon (IFN) production and
senescence associated secretory phenotype (SASP). Tocilizumab,
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FIGURE 2 | Diverse biological functions of RNF213 and GUCY1A3. Biological functions and their related molecules were shown. Transcriptional regulators of RNF213

for each function were listed below. α-KGDDs represents α-Ketoglutarate-dependent dioxygenases; ECM, extracellular matrix; PDE, phosphodiesterase; RVF, Rift

Valley fever.

an interleukin (IL)-6 antagonist, was effective to reverse cerebral
vasculopathy in a patient with homozygous SAMHD1 mutation
(50). Therefore, regulation of inflammatory signals may be
effective for RNF213-related disease as well.

In endothelial cells, RNF213 is also upregulated by type I
IFN (51), and the combination of IFN-γ and tumor necrosis
factor (TNF)-α synergistically activated transcription of RNF213
both in vitro and in vivo (52) (Figure 2). The transcription
of RNF213 was regulated by phosphatidylinositol-3 kinase
(PI3K)/AKT and dsRNA-dependent protein kinase R (PKR)
pathways. Key et al. also showed that PKR inhibitor inhibited
RNF213 expression; however, the effect was only seen in neuronal
cell lines but not in fibroblast or HUVEC (48). These findings
suggest that transcriptional regulation of RNF213 seems to be
cell type- and context-dependent. In macrophage or adipocyte,
another inflammatory component, lipopolysaccharide (LPS), was
shown to upregulate RNF213, while peroxisome proliferator-
activated receptor γ (PPARγ), an anti-inflammatory signal,
downregulated it (53). In adipocyte, PTP1B mediated higher
expression of RNF213 by TNF-α, while PTP1B suppresses
E3 ligase activity of RNF213 in a breast cancer cell line
under hypoxic condition (54) (Supplementary Figure 1). Again,
regulation of RNF213 was cell-type and context-dependent.

Transcriptional Regulation of GUCY1A3
As compared with RNF213, transcriptional regulation of
GUCY1A3 is not well-characterized. Investigation of the

promoter activity of GUCY1A3 identified several consensus
sequences including NFAT and NF-κB (p50) (55). Because
both NFAT and NFκB are master regulators of inflammation,
GUCY1A3 may also be regulated by inflammatory signals as is
the case with RNF213. Another regulator of GUCY1A3 is eNOS.
It has been reported that GUCY1A3 is upregulated by eNOS in
the pulmonary vasculature (56). Upon chemical stimulation of
sGC, Zinc finger E box-binding homeobox 1 transcription factor
(ZEB1) binds to the promoter region of GUCY1A3 (57).

FUNCTIONS OF RNF213 AND SGC IN THE
VASCULAR WALL AND CIRCULATION

Histopathological Features of MMD
Histopathological features of MMD were intimal fibrous
thickening without significant inflammatory cell infiltration
or lipids, the tortuous internal elastic lamina, and disrupted
ECs (58, 59). VSMC proliferation was seen in the internal
carotid artery, whereas it was atrophic in the distal part of
the lenticulostriate arteries (59). Moth-eaten change of the cells
with increased extracellular matrix (ECM) was observed in the
media, suggesting irregular atrophy and damage of the smooth
muscle cells. We will discuss a possible link between these
histopathological characteristics and the molecular functions of
RNF213 and sGC.
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FIGURE 3 | Regulation of nitric oxide signaling by RNF213 (hypothetical role) and GUCY1A3 (sGC) in endothelial cells and vascular smooth muscle cells. Endothelial

cell stimulation induces calcium-calmodulin-calcineurin signaling, which produces eNOS via NFAT1. RNF213 degrades NFAT1, which may regulate eNOS production.

NO is synthesized from L-Arginin by eNOS and diffuses to vascular smooth muscle cells. NO is catalyzed by soluble guanylate cyclase (sGC), and cIMP or cGMP

transmit signaling to induce vasodilatation. sGC also contributes to prohibiting fibrinogenesis. Many molecules known to be associated with moyamoya disease such

as caveolin-1 (CAV1), Down Syndrome Critical Region 1 (DSCR1), inositol 1,4,5-Triphosphate Receptor Associated 1 (IRAG1) is involved in this molecular network.

ALDH2, aldehyde dehydrogenase 2; CaM, calmodulin; cIMP, Inosine 3’, 5’-cyclic monophosphosphate; EC, endothelial cell; Hcy, homocysteine; ITP, inosine

triphosphate; L-Arg, L-Arginin; MLCK, myosin light-chain kinase; PKD, protein kinase G; PGC-1α, PPARγ-coactivator-1α; PLC, phospholipase C; ROCK, Rho kinase;

ROS, reactive oxygen species; VSMC, vascular smooth muscle cell.

Functions of RNF213 in ECs and VSMCs
Effect of the p.R4180K mutation in endothelial cells were
first reported by Hitomi et al. who compared iPS-derived
ECs from patients with MMD and unaffected carrier with
the p.R4810K mutation and control individuals with wild type
RNF213. Angiogenic ability (tube formation) of iPS-ECs from
patients and mutation carriers were lower than those from
wild-type subjects (60). Gene expression profiles showed that
Securin was down-regulated, and knock-down of Securin also
impaired the angiogenic activity. RNF213 p.D4013N, p.R4019C,
and p.V4146A variants transfected into human umbilical
vein endothelial cells had significantly decreased migratory
abilities (61).

Effect of the p.R4810K in VSMCs were reported by Tokairin
et al. By using VSMCs from iPS-derived neural crest stem
cells, they showed that there was no significant difference in
VSMC markers, cellular proliferation, migration, or contractile
abilities between patients with the p.R4810K mutation and
controls (62). Gene expression patterns of iPS-derived VSMCs
were similar between patients and controls, whereas iPS-derived
ECs displayed distinct patterns. Therefore, they speculated that
pathological traits can be driven by naïve ECs predominantly
and that VSMCs may require specific environmental factors.

In agreement with this concept, RNF213 deficiency affected
the cell growth of ECs but not VSMC or fibroblast (52).
Likewise, peripheral blood-derived endothelial colony-forming
cells but not smooth muscle progenitor cells were responsible
for disturbed angiogenic activity when these cells from patients
with MMD and healthy controls were co-cultured (63). Taken
together, ECs is more likely to contributed to the pathogenesis
of MMD, but this model cannot explain the damaged VSMCs
as observed in patients with MMD. Therefore, there remains
the possibility that even minimum changes in VSMCs caused
by RNF213 mutation may affect the phenotype in long-term
observation because MMD is a chronically progressive disease.

Although fibrous thickening is a distinguished pathological
feature of affected arteries of patients with MMD, little is
known about fibrosis in MMD. Hamauchi et al. showed that
extracellular matrix (ECM) receptor-related genes, including
integrin β3, were significantly downregulated in iPS-derived ECs
from patients with the p.R4810K mutation (64). Masuo et al.
investigated extracellular matrix secreted from ECs. They showed
that iPS-derived ECs from patients with MMD produces less
chondroitin sulfate as compared with those from controls (65).
Because different types of chondroitin sulfate act differently
on fibrillogenesis (e.g., versican enhances fibrillogenesis, while
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aggrecan, decorin, and lumican have the opposite effect), it
remains unclear whether the reduced amount of chondroitin
sulfate is associated with increased fibrosis in patients with
MMD. Perivascular adipose tissue (66–68) is a well-known
source of fibrous tissue in vascular disease, but it is scarce in
the intracranial arteries. Thus, VSMCs and their dedifferentiated
form are postulated to be responsible for fibrosis, and ECs
may have some role in regulating fibrillogenesis of VSMCs via
secretion of MMPs and ECM.

Functions of sGC in ECs, VSMCs, and
Platelets
In contrast to the major role of RNF213 in ECs, sGC plays
an important role in VSMC relaxation and inhibition of
platelet aggregation (69). NO-driven cGMP production exerts
an anti-atherogenic effects, including vasodilatation, inhibition
of vascular smooth muscle proliferation, blockade of leukocyte
recruitment, and anti-platelet activity. Although functions of
GUCY1A3 mutation were not tested in VSMCs from patients
with MMD, influence of sGC dysfunction in aortic or pulmonary
smooth muscle cells have been well-studied. A single nucleotide
polymorphism in GUCY1A3, rs7692387, was associated with
coronary artery disease at genome-wide significance, and it
interferes with binding of the transcription factor ZEB1 and
impairs GUCY1A3 expression, leading to lower sGC levels and
lower sGC activity after stimulation (57). Accordingly, inhibitory
effects of sGC stimulator on VSMC migration were abolished
in homozygous risk allele carriers. In agreement with these
human data, lower Gucy1a3 expression correlated with more
aortic atherosclerosis in a population of genetically diverse mice
(70). Interestingly, sGC stimulation also has an anti-fibrotic effect
(71). Therefore, dysfunctional mutations in GUCY1A3 may be a
cause of fibrous thickening of intima in moyamoya angiopathy.
In vitro and in vivo models of moyamoya angiopathy having the
GUCY1A3mutation should be developed and investigated.

NO and sGC are generally recognized as major regulators
of platelet functions (72) (Figure 2). NO mediates inhibition
of collagen-induced platelet aggregation and secretion via sGC.
Hervé et al. compared platelet function between patients
with moyamoya angiopathy with GUCY1A3 mutation and
control individuals. Bleeding time and platelet count was not
different, but inhibition of collagen-induced platelet aggregation
and secretion by NO donor (PROLI NONOate or sodium
nitroprusside) was significantly impaired in platelets derived
from patients (11). The risk allele of coronary artery disease,
rs7692387 in GUCY1A3, also impaired an inhibitory effect of
platelet aggregation by NO donor. In agreement with human
data, loss of the α1 subunit of sGC in mice leads to enhanced
thrombus formation (13).

Functions of sGC are mostly studied in VSMCs and
platelets, but sGC also plays a role in ECs. Pyriochou et
al. demonstrated that overexpression of sGC promotes EC
proliferation, migration, and tube-like network formation
(73). Interestingly, pharmacological stimulation of PKG, a
downstream signaling molecule of sGC-cGMP, actually have
effects on ECs, VSMCs and platelets. It reduces neointimal

hyperplasia, inhibits platelet aggregation, and facilitates
re- endothelialization (74).

FUNCTIONS OF RNF213 AND SGC IN
VASCULAR INSULTS

Vascular Insults Associated With MMD
As discussed above in the section of transcriptional regulation,
RNF213 is upregulated by mitochondrial damage, LPS, poly
I:C or type I IFNs, and GUCY1A3 is regulated by NF-κB and
NFAT. This suggests that vascular insults such as infection or
hypoxia should be associated withmoyamoya angiopathy. In fact,
recent evidences suggest that dyslipidemia, an elevated level of
homocysteine and viral or bacterial infection have an impact on
the progression of MMD. Therefore, it is important to clarify
the functions of RNF213 and sGC in association with these
vascular insults.

Dyslipidemia and Lipotoxicity
Association of lipid metabolism and MMD has been reported
very recently. Ge et al. reported that the HDL cholesterol
level was inversely associated with the risk of MMD (75).
Church et al. reported that dyslipidemia was a risk factor for
contralateral progression in patients with unilateral MMD (76).
Hirano et al. also reported that dyslipidemia was associated
with symptomization of asymptomatic patients with MMD (77).
These findings suggest that lipid metabolism may be involved in
the pathogenesis of MMD, although neither study showed direct
association between RNF213 mutations and dyslipidemia.

In this context, functions of RNF213 in lipid metabolism
are of particular interest (Supplementary Figure 1). Strikingly,
it has been reported that RNF213 accelerate triglyceride
accumulation in lipid droplet (LD) by eliminating adipose
triglyceride lipase (ATGL) from LD, one of the major lipolytic
molecule of triglyceride (42). The authors showed that the
ubiquitin ligase and ATPase activities of RNF213 were both
important for its proper LD targeting and its fat-stabilizing
activity. Specifically, localization of RNF213 on lipid droplet
and its fat-stabilizing activity were disturbed when Caucasian
cysteine/histidine mutations (e.g., p.C3997Y) in the RING finger
domain or mutations in the AAA+ ATPase domain were
introduced. Of note, the p.D4013N mutation in the RING
domain and p.R4810K in the E3 core at the C-terminal region,
which are mutations found in familial MMD, did not alter the
functions of RNF213. This may partly explain the mechanism of
low penetrance of the p.D4013N and p.R4810K mutations and
high penetrance of the cysteine/histidine mutations.

Lipotoxicity represents toxic effects by saturated fatty acid
such as palmitate or stearate, and lipotoxic effect of palmitate
on β cells in pancreas can be a cause of diabetes mellitus. It has
been reported that ablation of RNF213 decreased lipotoxicity by
palmitate (78). Lipid droplet itself does not exert lipotoxicity (79),
while it reduces lipotoxicity through incorporating saturated fatty
acid inside (80). In fact, RNF213 deficiency increases the activity
of SCD1, a key enzyme that promotes palmitate detoxification
and storage into triglycerides (78) (Supplementary Figure 1).
Consistent with the protective effect against lipotoxicity, ablation
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of Rnf213 recovered insulin levels in Akita mouse, a diabetes
model with impaired insulin production, and it improved glucose
tolerance by protecting islet β cells (81). In patients with MMD,
the p.R4810K mutation was inversely associated with diabetes
mellitus (odds ratio = 0.35; 95% confidence interval, 0.18–
0.68) (82). Inverse association of p.R4810K with diabetes was
also found in patients with coronary artery disease (odds ratio
= 0.34; 95% confidence interval, 0.12–0.79) (7). In respect of
protection from diabetes, the p.R4810K is considered to have
loss-of-function or dominant negative properties.

Vascular Insults by Homocysteine
Hypehomocysteinuria has been recognized as a cause of quasi-
MMD, and recent study showed that homocysteine level is
associated with an increased risk of MMD, especially for
unilateral MMD (75). Duan et al. showed that rs9651118
in Methylenetetrahydrofolate reductase (MTHFR) gene and
rs9651118 in Transcobalamin 2 (TCN2) gene was associated with
a homocysteine level, and they were also associated with a risk of
MMD (21). Alcohol intake or folate deficiency is associated with
increased levels of homocysteine (Supplementary Figure 1), and
it has recently been reported that daily alcohol drinking was
an independent risk factor for contralateral progression of
unilateral MMD and daily drinker with the p.R4810K mutation
had significantly higher risk of progression (83). Homocysteine
decreased the expression of CAV1 in coronary artery ECs,
which induced translocation of NO from caveolae to non-
caveolae fractions (Figure 3). As a result, homocysteine impairs
NO release from ECs (84), leading to vascular dysfunction.
Homocysteine has been shown to induce ER stress and apoptosis
in a variety of cell types. Jeong et al. demonstrate that
pharmacological inhibition of sGC almost completely abolished
the protective effects of NO and nitrite, whereas pharmacological
elevation of cellular cGMP, mimicked the protective action of NO
donors in neurons (85). Thus, NO donors inhibit homocysteine-
induced ER stress and apoptosis via NO-sGC-cGMP signaling
pathway. In relation to the signaling of RNF213, Hcy upregulates
PTP1B (86).

Viral and Bacterial Infection
Infection has been postulated as a risk factor for MMD,
although there is no solid evidence to prove it. Quasi-MMD
associated with meningitis was reviewed by Mikami et al. It
was estimated to be 2.2% of all the quasi-MMD (87), and
it was caused by various pathogens. Among them, varicella
zoster virus infection draws attention due to the high frequency
of reversible arteriopathy called transient cerebral arteriopathy
(TCA) or focal cerebral arteriopathy (FCA), which sometimes
progresses to moyamoya (88). Pathological examination of
postinfectious vasculopathy with progression to moyamoya
angiopathy following Streptococcus pneumoniae meningitis was
reported by Czartoski et al., and they showed that inflammation
or atherogenic features were absent in the lesion. Due to the
progressive course, elevated anti-β2-glicoprotein 1 IgG titers,
and transient response to immunomodulatory therapy, they
speculated that the vasculopathy was likely to be mediated by an
autoimmune process (89).

Involvement of RNF213 in viral infection has just recently
been reported. Homozygous deletion of Rnf213 showed
significantly shorter survival in C57BL/6 J mice lethally infected
with Rift Valley fever virus (90), an enveloped negative single
stranded RNA viruses. The mechanism of entry is dynamin-
dependent, CAV1-mediated endocytosis (91). Because Rift
Valley fever virus infection suppresses the response of IFN-β
or other IFN-related molecules (92, 93), type-I IFN mediated
upregulation of Rnf213 is not likely to be the mechanism of
action against the virus. More recently, it has been shown that
RNF213 restricts the proliferation of cytosolic Salmonella and is
essential for the generation of the bacterial ubiquitin coat, which
initiates antibacterial autophagy (43). The ubiquitylation of LPS
on Salmonella requires the AAA+ ATPase domain and newly
identified NFX1-type zinc finger domain (ZF2 in Figure 1).
Together with the fact that RNF213 is upregulated by LPS,
RNF213 would contribute to antibacterial immune reactions.
However, no patient mutation tested in the study including
p.R4810K mutation affected the ubiquitination of LPS.

OTHER PROPERTIES

Inflammation via NF-κB Signaling
RNF213 protects cells from ER stress and inflammation by
lipotoxicity. Depletion of RNF213 stabilizes ER stress gene
expression, normalizes the cellular lipidome, and blocks NF-
κB pathway during palmitate exposure (78). Recent studies
showed that RNF213 selectively cooperates with Ubc13 (E2
enzyme) to generate K63-linked polyubiquitin chains, but not
K48-linked ones (39, 94). K63 linkages are known to regulate
activation of the NF-κB transcription factor, DNA repair, innate
immune responses, clearance of damaged mitochondria, and
protein sorting (38). Interestingly, BRCC3, whose deletion was
associated with X-linked syndromicmoyamoya, is a E3 ligase that
specifically cleaves K63-linked polyubiquitin chains (31). This
molecule regulates the abundance of these polyubiquitin chains
in chromatin and plays a role in the DNA damage response.

Importantly, most mutations in the RING domain found in
patients with MMD reduced E3 ligase activity and many of them
induced NF-κB activation (39). These mutations that induce
NF-κB activation included not only Caucasian cysteine/histidine
mutations but also proline mutations (p.P4007R in a Chinese
patient and P4033L in a Caucasian patient). These mutations
also induced apoptosis in a NF-κB dependent manner. However,
p.D4013N mutation did not affect either E3 ligase activity or
NF-κB activation. Importantly, critical point mutations in both
the Walker A and B of the AAA domains, completely abrogated
NF-κB activation by RNF213 mutation in the RING domain.
Thus, inflammation via NF-κB pathway was enhanced by patient
mutations in RNF213, while it was suppressed in the absence
of RNF213. In respect of NF-κB activation, RNF213 mutations
should have gain of function properties.

RNF213 also controls mitochondrial functions, cell cycle, or
differentiation and maturation of immune cells (Figure 2, details
are described in Supplementary Material). These properties will
also play a role in the development of MMD.
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FIGURE 4 | Molecular networks of RNF213 and GUCY1A3 (sGC). Growth

factors activate PI3K/AKT, which upregulate the expression of RNF213 and

eNOS. Activation of PI3K/AKT leads to inactivation of GSK-3β, which

increases degradation of NFAT1 by the proteasome possibly via ubiquitination

by RNF213. As opposed to the Ca+/Calmodulin/NFAT1 signaling shown in

Figure 3, NFAT1 is assumed to suppress eNOS expression in the context of

PI3K/AKT. GSK-3β, glycogen synthase kinase-3β; PKG, protein kinase G;

sGC, soluble guanylate cyclase.

POTENTIAL MECHANISM IN MMD

Possible Interaction of RNF213 and sGC
Molecular networks that potentially connects RNF213 and sGC
are shown in Figure 4. The key molecule is NFAT1, which is
a ubiquitin target of RNF213 downstream of non-canonical
WNT/Ca2+ signaling (40). Activation of calcineurin/NFAT
signaling by VEGF in human endothelial progenitor cells leads
to increased eNOS protein expression and NO production
(95). NFAT may also regulate the expression of sGC through
binding of NFAT1 to the consensus sequence in GUCY1A3
(55). Activation of PI3K/AKT leads to inactivation of glycogen
synthase kinase (GSK)-3β, which induces degradation of NFAT1
by the proteasome (96). Because PI3K/AKT was reported to be
an upstream regulator of RNF213 expression in ECs (52), the
effect of PI3K/AKT on NFAT1 may be mediated by RNF213.
Upregulation of NFAT1 is also mediated by S-nitrosylation of
RNF213 (97). S-nitrosylation is post-translational modification
adding a nitrosyl group to the reactive thiol group of a cysteine
to form S-nitrosothiol, which is a key mechanism in transferring
NO-mediated signals. S-nitrosylation of ubiquitin ligase leads
to its auto-ubiquitination and, as a consequence, increases its

substrate levels. NFAT is, in turn, regulated by sGC (98) via
activation of PKG, which phosphorylates GSK-3β.

Another key molecule that regulates NO signaling is caveolin.
The integral membrane protein caveolin-1 (CAV1) is ∼21–
24 kDa and is found primarily in 50–100-nm flask-shaped
invaginations called plasmamembrane caveolae, where it acts as a
scaffold to organize multiple molecular complexes that regulate a
variety of cellular events. CAV1 is regulated by a signal mediated
through Ca2+/calcineurin/NFAT (99). Importantly, CAV1 was
reported to be associated not only with MMD, but also with
coronary artery disease and pulmonary artery hypertension. The
function of CAV1 is well-characterized in pulmonary artery
hypertension (100–102). CAV1 level was decreased in patients
with MMD as compared with either patients with intracranial
atherosclerotic stroke or healthy subjects, and it was markedly
decreased in RNF213 R4810K variant carriers (103). However,
it remains unclear whether RNF213 has direct, e.g., CAV1 is a
target of ubiquitination by RNF213, or indirect association with
CAV1. CAV1 is associated with eNOS release (Figure 4). NO is
generated by eNOS release and it is metabolized by sGC. Direct
binding of eNOS to the scaffolding domain of CAV1 is a well-
accepted mechanism for inactivating eNOS (104). The absence of
CAV1 is thought to promote eNOS dysfunction associated with
cerebrovascular disease.

Potential Mechanism of MMD
Based on the molecular functions and networks of RNF213 and
sGC encoded by GUCY1A3 as discussed above, we propose a
potential mechanism in MMD as shown in Figure 3. Under
the physiological condition, EC stimulation by growth factors
or shear stress induces Ca2+-calmodulin signaling. Calmodulin
accelerates eNOS dissociation from CAV1 and upregulates eNOS
production via Calcineurin/NAFT1. RNF213, which degrades
NFAT1 through ubiquitin proteasome system, is not activated
without pathological stimulations. eNOS then produces NO
from L-Arginine, and NO diffuses into VSMCs. In VSMCs, NO
activates sGC to produce cGMP. cGMP then activates PKG,
which induces relaxation of VSMCs. Under the pathological
condition where viral infection causes mitochondria destruction,
RNF213 is upregulated and prohibits eNOS production by
degrading NFAT1. Patient mutations in RNF213 may sustain
the inflammation even after resolution of the infection, and
it causes sustained cGMP signaling impairment. The same
situation can be caused byGUCY1A3mutations. Impaired cGMP
signaling leads to VSMC proliferation, impaired vasodilation,
and fibrosis as well as endothelial dysfunction. These events
will account for intimal hyperplasia with fibrous thickening, a
typical pathological feature of MMD. Because impaired cGMP
signaling can cause VSMC dedifferentiation and endothelial-
to-mesenchymal transition, these cells can be potential sources
of fibrosis.

Impaired protection from vascular insults is also a potential
mechanism of arterial stenosis in MMD. As mentioned in the
previous section, sGC acts protective against homocysteine,
and RNF213 regulates lipotoxicity and has antiviral and
antibacterial properties. Viral or bacterial infection causes
type I IFN production and mitochondrial dysfunction,
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and they increase the RNF213 expression. When patient
mutations induce dysfunction of RNF213 or sGC, vascular
damage caused by homocysteine, dyslipidemia or infection
may be amplified, leading to chronic inflammation. RNF213
mutations also induce inflammation via NF-κB. This may cause
damaged VSMCs, which is another typical pathological feature
of MMD.

In terms of inflammation, autoimmune conditions with
Th17+ T cell polarization seem to be associated with MMD as
discussed in the Supplementary Material. However, the effect
of RNF213 and GUCY1A3 mutations have been studied mostly
in vascular cells (ECs and VSMCs) but not in immune cells.
To understand the precise mechanism of MMD, investigation
of functions of RNF213 and GUCY1A3 in immune cells
especially T cell, B cell, neutrophil and dendritic cell will
be needed.

Potential Therapeutic Strategy for MMD
Based on these potential mechanisms, we propose several
therapeutic strategies that includes lipid and homocysteine
regulation (Mediterranean or Japanese traditional diet,
restriction of alcohol intake, and lipid/homocysteine
lowering drugs), control of inflammation (avoidance of
hypoxic condition and anti-inflammatory drugs), and
pharmacological stimulation of eNOS-sGC-cGMP pathway.
Candidates for pharmacological treatment of MMD would
be anti-inflammatory drugs (e.g., COX-2 inhibitor or
anti-IL-6 antibody), lipid lowering (e.g., statins or PCSK9
inhibitor) and homocysteine lowering drugs (e.g., folate or
vitamin B12). Riociguat, a stimulator for sGC that is used
to treat pulmonary artery hypertension, may be another
option. However, there is not enough evidence that proves
functionality and interaction of the candidate molecules,
which account for the phenotypes of MMD. More precise
molecular networks should be identified to develop a new
treatment strategy.

CONCLUSIONS

In 10 years after identification of RNF213 as a susceptibility gene
for MMD, function of RNF213 has been gradually unraveled.

It plays a key role in lipid metabolism, oxygen consumption,
cell cycle control and inflammation, and it contributes to the
maintenance of vascular cells. GUCY1A3 is a regulator of platelet
function and VSMC contraction via NO-sGC-cGMP pathway.
Both mutations in RNF213 and GUCY1A3 cause not only MMD,
but also non-moyamoya intracranial arterial diseases, coronary
artery disease, and pulmonary artery hypertension. They have
significant interaction with CAV1 and NFAT1, both of which
have diverse molecular functions including immune regulation
and cell cycle control. Functions of RNF213 and GUCY1A3
in ECs and VSMCs have been well-studied, but a precise
mechanism of intimal thickening, fibrosis and its origin remain
unresolved. Involvement of other vascular components such as
inflammatory cells, platelet and extracellular matrix need to be
further investigated.
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