@PLOS ‘ ONE

OPEN 8 ACCESS Freely available online

Genome-Wide Linkage Analysis of Cardiovascular
Disease Biomarkers in a Large, Multigenerational Family

Daniel Nolan'®, William E. Kraus?®, Elizabeth Hauser', Yi-Ju Li', Dana K. Thompson?, Jessica Johnson',
Hsiang-Cheng Chen?, Sarah Nelson?, Carol Haynes', Simon G. Gregory', Virginia B. Kraus?, Svati H.
Shah'#

1 Center for Human Genetics, Duke University, Durham, North Carolina, United States of America, 2 Department of Medicine, Duke University, Durham, North

Carolina, United States of America, 3 Division of Rheumatology, Immunology and Allergy, Tri-Service General Hospital, Taipei, Taiwan, 4 Department of
Biostatistics, University of Washington, Seattle, Washington, United States of America

Abstract

Given the importance of cardiovascular disease (CVD) to public health and the demonstrated heritability of both
disease status and its related risk factors, identifying the genetic variation underlying these susceptibilities is a critical
step in understanding the pathogenesis of CVD and informing prevention and treatment strategies. Although one can
look for genetic variation underlying susceptibility to CVD per se, it can be difficult to define the disease phenotype for
such a qualitative analysis and CVD itself represents a convergence of diverse etiologic pathways. Alternatively, one
can study the genetics of intermediate traits that are known risk factors for CVD, which can be measured
quantitatively. Using the latter strategy, we have measured 21 cardiovascular-related biomarkers in an extended
multigenerational pedigree, the CARRIAGE family (Carolinas Region Interaction of Aging, Genes, and Environment).
These biomarkers belong to inflammatory and immune, connective tissue, lipid, and hemostasis pathways. Of these,
18 met our quality control standards. Using the pedigree and biomarker data, we have estimated the broad sense
heritability (H2) of each biomarker (ranging from 0.09-0.56). A genome-wide panel of 6,015 SNPs was used
subsequently to map these biomarkers as quantitative traits. Four showed noteworthy evidence for linkage in
multipoint analysis (LOD score = 2.6): paraoxonase (chromosome 8p11, 21), the chemokine RANTES (22q13.33),
matrix metalloproteinase 3 (MMP3, 17p13.3), and granulocyte colony stimulating factor (GCSF, 8g22.1). Identifying
the causal variation underlying each linkage score will help to unravel the genetic architecture of these quantitative
traits and, by extension, the genetic architecture of cardiovascular risk.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death,
accounting for over 500,000 deaths per year in the United
States and greater than seven million deaths worldwide. It has
been estimated that over 82 million Americans are afflicted with
at least one form of CVD and over 16 million Americans are
afflicted with clinically significant CVD [1]. There are many well
accepted CVD risk factors including common metabolic
conditions (hypertension, dyslipidemia, metabolic syndrome,
diabetes), behavioral factors (smoking, sedentary lifestyle), and
non-modifiable factors (sex, age). Thus CVD is etiologically
complex with independent genetic influences on CVD
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susceptibility as well as genetic influences on CVD-related risk
factors.

Given the importance of CVD to public health and the
demonstrated heritability of both disease status and its related
clinical risk factors, identifying the genetic variation underlying
these susceptibilities is a critical step in understanding the
pathogenesis of CVD to inform prevention and treatment
strategies. Although many studies have examined genetic
variation underlying susceptibility to CVD, it can be difficult to
define the disease phenotype for such a qualitative analysis
because CVD likely represents an end convergence of diverse
biological etiologic pathways, reflects genetic factors operating
through these different pathways which may be different than
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factors influencing CVD directly, and results from an
incompletely understood interaction of genetic and
environmental factors. Alternatively, one can study the genetics
of CVD through a quantitation approach that uses intermediate
traits that are known risk factors for CVD and that can be
measured quantitatively; we have used this method
successfully for identification of osteoarthritis genes [2].

As quantitative traits we measured 21 biomarkers with
relevance to CVD. We present herein the subsequent
quantitative trait loci (QTL) mapping of these disease-related
intermediate traits in an extended multigenerational pedigree
as part of the CARRIAGE (Carolinas Region Interaction of
Aging, Genes, and Environment) study. The CARRIAGE family
is one of the most extensively pedigreed families in the U.S.,
comprising 10 generations and 3,327 individuals descended
from a single founding couple born in the 18" century, and
composed of primarily African and Native American ethnic
origin. The potential for reduced genetic heterogeneity within
extended pedigrees, such as this one, facilitates linkage
analysis [3]. This family has a reduced prevalence of CVD
relative to the general population with 15% of studied family
members having at least one cardiovascular condition
compared to approximately 33% in the US population [1]. Thus
the genetic effects identified for the CVD-risk biomarkers reflect
effects in a sample not ascertained for CVD conditions.

Materials and Methods

Study population: the CARRIAGE family

The CARRIAGE family data collection has been described
previously [2]. For this study, we have used a detailed
ascertainment of 350 family members from whom blood
samples were available, as previously reported [2]. Written
informed consent was obtained from each participant, and the
study was approved by the Duke Institutional Review Board. All
information and work was conducted under a Federal
Certificate of Confidentiality to ensure the privacy of each
participating member’s clinical and genetic data.

Selection and measurement of serum biomarkers

The biomarkers selected belong to important known
pathways involved in CVD risk: (1) inflammatory and immune
(C reactive protein [hsCRP], monocyte chemotactic protein one
[MCP1], Regulated upon Activation, Normal T-cell Expressed,
and Secreted [RANTES], granulocyte colony stimulating factor
[GCSF], interleukin eight [IL-8], TNF-related apoptosis-inducing
ligand [TRAIL], interleukin-six [IL-6], interleukin-two [IL-2],
interleukin-one beta [IL-1pB], interleukin-one receptor antagonist
[IL1RA], tumor necrosis factor receptor two [TNFR2], tumor
necrosis factor receptor one [TNFR1], and tumor necrosis
factor alpha [TNFa]); (2) connective tissue (vascular endothelial
growth factor [VEGF], matrix metalloproteinase three [MMP3],
and brain derived neurotrophic factor [BDNF]); (3) lipid
(paraoxonase, adiponectin, and leptin); (4) hemostasis (D-
dimer); and (5) metabolic pathways (glycated albumin [GSP]).

The procedures for biomarker quantification are described
below (unless otherwise stated, all kits were used to analyze
serum according to the manufacturer’s instructions). Total
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adiponectin was measured by enzyme-linked immunosorbent
assay (ELISA) using a kit from ALPCO Diagnostics (Salem,
NH), with samples diluted 1:1000. D-dimer was measured by
ELISA using a kit from American Diagnostics (Stamford, CT),
with plasma samples diluted 1:50. IL-6 was measured using a
high sensitivity immunoassay from MesoScale Discovery
(Gaithersburg, Maryland). Leptin was measured by ELISA
using a kit from Millipore Corporation (Billerica, MA), with 25ul
of sample and standards used. MMP-3 was measured by
ELISA using a kit from Invitrogen Corporation. Paraoxonase
activity was measured (nmol product formed/min/ml) via a kit
from Invitrogen Corporation; serum samples were diluted 1:100
and the reaction was stopped after 60 minutes and
fluorescence measured with an excitation wavelength of
360nM and an emission wavelength of 465nM. TRAIL was
measured by ELISA using a kit from Invitrogen. High sensitivity
CRP was detected by solid-phase ELISA (MAGIWEL; UBI,
Mountain View, CA). GSP was detected via the specific
enzymatic method using reagents from DIAZYME (Poway,
CA). For individual assays, samples were measured in
duplicate. The inter- and intra-assay percent coefficients of
variation for the individual assays are as follows: adiponectin
(2.31, 8.84), D-dimer (4.32, 9.35), IL-6 (4.36, 16.9), leptin (5.61,
6.46), MMP-3 (2.59, 11.04), paraoxonase (2.58. 15.9), and
TRAIL (3.74, 18.0). A Luminex Panel from Invitrogen
Corporation (Carlsbad, CA) was used to measure BDNF,
GCSF, IL-1RA, IL-1B, IL-2, IL-8, MCP1, RANTES, TNFaq,
TNFR1, TNFR2, and VEGF. For Luminex, samples were
assayed in individual wells, from which at least one hundred
beads were analyzed. Biomarkers with greater than 25% of the
measured sample concentrations at or below the limit of
quantification (LOQ) were not further analyzed (BDNP, IL2, and
IL1B). For the remaining biomarkers, samples with
concentrations below LOQ (representing <2% of samples for
any given biomarker, Table S1) were assigned a value of %2
LOQ.

Genome-wide genotyping

DNA was isolated and quantified according to standard
protocols, as previously described [2]. Genome-wide
genotyping was performed using the Infinium
HumanLinkage-12 Genotyping BeadChip (lllumina, San Diego,
CA). This assay includes 6,090 single-nucleotide polymorphism
(SNP) markers with an average marker density of one per 0.58
centiMorgans (cM). The quality control measures included:
genotyping two control samples from the Centre d’Etude du
Polymorphisme Humain (CEPH) and requirement of a
genotype call-rate = 98% for each SNP. A total of 6,015 of the
6,090 SNPs (98.8%) met this quality control standard. Two
individuals were excluded from the analysis due to overall low
call rates (<95%). In addition, Mendelian inconsistencies,
Hardy-Weinberg equilibrium and errors in sex assignment were
examined. Specifically, the genetic analysis package RELPAIR
[4] was used to verify the reported family relationships. Twenty-
four unrelated individuals were excluded from any further
analysis. One individual was removed due to gender error
using PLINK [5]. The genetic analysis package VITESSE [6]
was used to identify Mendelian errors in genotyping across
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generations. Of the 2+ million genotypes across all SNPs typed
on these individuals, there were a total of 188 Mendelian
errors. These genotypes were excluded from further analysis.
SNPs out of deviation with Hardy-Weinberg equilibrium
(p<0.0001) were removed and not further analyzed. The
deCODE genetic map was used to position the markers
(deCODE Genetics, Reykjavik, Iceland).

Statistical analysis

Heritability. The broad-sense heritability (H2) of each
biomarker was estimated using the Sequential Oligogenic
Linkage Analysis Routines (SOLAR) [7] with an adjustment for
age and sex. Broad-sense heritability includes the aggregate
genetic variance resulting from additive, epistatic, dominant,
maternal, and paternal genetic effects. As the assumption of
normality is very important in variance components analysis
several transformations were used to achieve approximate
normality [8]. All biomarker levels were log transformed to
approximate a normal distribution. After log transformation,
there was residual kurtosis for nine of the biomarkers (D-dimer,
GSP, IL1RA, IL-6, RANTES, TNFa, TNFR1, TNFR2, and
TRAIL). Extreme outliers were sequentially removed for these
biomarkers, starting with the removal of any values greater
than or equal to four standard deviations from the mean. If the
marker distribution still had significant kurtosis, then any values
greater than or equal to three standard deviations from the
mean were removed. This process resulted in residual kurtosis
remaining for two markers (TNFa and IL-6) and these markers
were analyzed using the “lodadj” command implemented in
SOLAR to compensate for this lack of normality. Three traits
(adiponectin, TNFa, and TNFR1) required rescaling to
approximate normality and in those cases the trait value was
multiplied by a factor ranging from 2.3-5.8. A polygenic
variance components model was fited and used as the
foundation for subsequent linkage analysis.

Quantitative trait linkage analysis. Two-point and
multipoint genome-wide linkage scans were performed for all
autosomes using 18 CVD-related biomarkers as quantitative
traits. As recommended for multigenerational pedigrees,
linkage between each of the biomarker traits and marker loci
was tested by maximum-likelihood methods using a variance
components model [9]. The size and complexity of the
CARRIAGE pedigree necessitated first computing the identity-
by-descent (IBD) probabilities for each pair of individuals at
each marker using the Markov-Chain Monte-Carlo (MCMC)
algorithm implemented in the Loki analysis package [10].
Linkage was interpreted as significant if the logarithm of odds
(LOD) score was = 3.0, “noteworthy” if the LOD score was =
2.6, and scores = 2.0 were identified as “interesting”.

Results

Baseline clinical characteristics of the study population are
presented in Table 1. Mean levels for each of the 18
biomarkers are listed in Table 2, and are similar to those seen
in the general American population, consistent with the fact that
this population was not ascertained for any particular disease
or metabolic phenotype. Eleven of the 18 biomarkers showed
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Table 1. Baseline clinical characteristics of the CARRIAGE
cohort.

Clinical characteristic Mean (SD) Percent’
Sex (% female) 66%
Hypertension 42%
Diabetes 15%
Smoker 78%
Body mass index 31.1(6.8)

Age, years 54.1 (15.3)

Low density lipoprotein (LDL) cholesterol, mg/dL 112.2 (36.5)

High density lipoprotein (HDL) cholesterol, mg/dL 48.0 (14.1)
Triglycerides, mg/dL 137.2 (90.9)

*. Quantitative traits presented as mean (standard deviation); discrete traits
presented as percent prevalence.

Table 2. Summary statistics for CVD biomarkers.

Biomarker Units Mean (SD) Max Min
Adiponectin ng/mL 13044.2 (6404.3) 52794.0 4462.7
hsCRP ng/mL 8.1 (1.4) 11.4 3.8
DDIMER ng/mL 703.7 (1015.0) 9057.0 78.3
GCSF pg/mL 314.6 (388.5) 3225.0 20.6
GSP umol/L 227.3 (58.1) 675.1 106.0
IL1RA pg/mL 4502.1 (10758.7) 110666.0 158.0
IL6 pg/mL 1.5(5.4) 80 .03
L8 pg/mL 85.1 (50.8) 542.6 12.2
Leptin ng/mL 30.4 (26.2) 304.1 0.3
MCP1 pg/mL 2601.5 (1601.2) 11840.6 151.7
MMP3 ng/mL 7.2 (7.3) 79.1 1.0
Paraoxonase nmol/min/L 11.6 (4.1) 27.4 23
RANTES pg/mL 9584.7 (17167.6) 243369.0 819.7
TNFa pg/mL 29.5 (88.8) 1240.7 5.9
TNFR1 pg/mL 5799.2 (3444.5) 25533.2 533.0
TNFR2 pg/mL 2485.7 (1482.1) 13936.6 136.0
TRAIL pg/mL 491.2 (195.2) 2012.9 86.9
VEGF pg/mL 227.6 (233.2) 1685.6 32.9

The unit of measurement, mean, standard deviation, maximum, and minimum

values for each biomarker are given.

nominally statistically significant heritability (p<0.05, Figure 1),
with heritability estimates ranging from 0.33 (leptin, p=0.02,
SE=0.18) to 0.56 (hsCRP, p=0.00006, SE=0.15).

Two point linkage analysis revealed that the highest LOD
score was for VEGF (chromosome 4p14, SNP rs790142,
LOD=2.6). In addition, eight additional SNPs were identified as
interesting based on evidence of linkage with LOD = 2.0 for five
biomarkers (VEGF, hsCRP, MCP-1, D-dimer, and
paraoxonase, Table 3). The maximum two point LOD score
obtained for each biomarker per chromosome is presented in
Table S2.

In multipoint analyses, we identified noteworthy (LOD = 2.6)
QTL for four of the 18 CVD biomarkers: paraoxonase,
RANTES, MMP3, and GCSF (Figure 2a—d, Table 4, Figure
S1a-d, Figure S2a-n). Specifically, paraoxonase had
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Table 3. Results for genome-wide linkage, two-point LOD
scores.

Biomarker LOD SNP
hsCRP 210 RS1419607 7

Chromosome Gene*
Intergenic (POT1, GRM8)

2.02 RS728919 11 NAA40

249 RS7240966 18 Intergenic (CTIF)
D-dimer 2.18 RS2780701 9 SYK
MCP1 2.14 RS857819 1 Intergenic (OR6NT)
Paraoxonase 2.10 RS491603 1 Intergenic (EIF2C3)

2.00 RS726455 13
225 RS234 7 Intergenic (CDHR3)

VEGF 2.56 RS790142 4 Intergenic (NSUN?7)

Results for genomic regions with noteworthy (LOD 2 2.6) or interesting (LOD = 2.0)

Intergenic (SOX7)

two-point LOD scores are presented. The biomarker name is given, followed by the
two-point LOD score, SNP rs number, chromosome and gene name.

*if SNP is intergenic, the closest gene(s) is listed in parentheses.

noteworthy or interesting evidence for linkage at three
locations: 8p11.21 (multipoint LOD [MLOD] 2.8), 7qg22.1
(MLOD 2.5), and 19912 (MLOD 2.1). RANTES had evidence
for linkage at one location, 22913.33 (MLOD 2.8). MMP3 had
evidence for linkage at three locations: 17p13.3 (MLOD 2.6),
6p22.3 (MLOD 2.5), and 5912.3 (MLOD 2.5). Finally, GCSF
had evidence for linkage at one location, 8g22.1 (MLOD 2.6).
Additionally, six of the remaining 14 biomarkers had interesting
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results based on evidence for linkage with a LOD = 2.0 (Table
4).

Discussion

Using a large, multiethnic, multigenerational extended family,
we have successfully identified QTL using CVD-related
inflammatory and metabolic biomarkers. These QTL may
harbor genes for genetic susceptibility for CVD mediated
through these biological pathways. Most of the biomarkers
were also found to be significantly heritable (p<0.05); we
believe this to be a novel finding for GCSF and MMP3, while
the other heritable biomarkers have support from the previous
literature [11-13]. Our unique study design, employing a single
extended multigenerational family not ascertained on CVD and
thus with a burden of CVD and related risk factors similar to or
less than the United States population, facilitates extension of
these findings to the general population with a common burden
of risk factors.

The strongest QTL was for paraoxonase, an enzyme
associated with high density lipoprotein (HDL) cholesterol that
inhibits oxidation of low density lipoprotein (LDL) cholesterol.
Oxidized LDL is important in the atherosclerotic process [14],
and it has been shown that low paraoxonase levels are
associated with increased risk of myocardial infarction [15]. In
our study, there were several interesting QTL for paraoxonase
levels, the strongest of which was on chromosome 8p11, 21, a
genomic region which contains genes encoding several
transcription factors (ZMAT4, NKX6-3, IKBKB, THAP1, and
RNF170) and an enzyme involved in post-translational
modification (FNTA); all of these could be plausible candidates
for regulators in trans of paraoxonase levels. Previously
published genome-wide linkage studies have reported linkage
to other parts of the genome, including the physical locus for
the paraoxonase gene cluster (PON1, PON2, PON3), on
chromosome 7q, but those studies did not report evidence at
any of the other loci detected in our study [16]. The linkage
peak we identified at 7q22.1 occurs at the paraoxonase gene
cluster and serves as a proof of principle for the accuracy of
our analyses, even in this complex family-based study. The
paraoxonase gene cluster regulates paraoxonase levels and
PON1 and PONS3 genetic variants are associated with CVD risk
[17,18], supporting the concept of using intermediate disease-
related markers as quantitative genetic traits for disease gene
mapping. The regions linked to paraoxonase levels are also
linked to other disease traits. For example, the 7922 region,
that contains the genes reelin (RELN) and leptin (LEP), is
linked to several conditions including: osteoarthritis [19], autism
[20], body mass index [21,22], and dilated cardiomyopathy [23].
The region on 19912, that contains the gene for the ryanodine
receptor [RYR1] [24] (a class of intracellular calcium channels
found primarily in cardiac muscle), are linked to paraoxonase
levels as well as linked to waist circumference [25], BMI [26],
resistance to muscle fatigue [27], essential hypertension [28],
prostate cancer [29], maturity onset diabetes of the young
(MODY) [30], and malignant hyperthermia [31].

The chemotactic cytokine RANTES recruits T-cells,
eosinophils, and basophils to sites of inflammation and is
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Figure 2. Multipoint genome-wide linkage scans for GCSF, MMP3, paraoxonase, and RANTES. Vertical dashed lines
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cytokine and has an immunologic role and thus could affect
levels of RANTES. This locus is linked to several traits

therefore a likely participant in CVD through the contribution of
inflammation to atherosclerotic plaque formation and response
to plaque rupture. The region around the LOD score peak for

RANTES (22q13) contains the gene IL17REL (IL17 Receptor E

including pulse pressure [33], bone mineral density [34], serum
creatinine [35], rheumatoid arthritis [36], schizophrenia [37],

height [38], and breast cancer [39].

in a genome-wide

identified

recently
association study (GWAS) for ulcerative colitis [32].

which was

Like),

Matrix metalloproteinase (MMP3) plasma concentrations are
linked to increased risk of plaque rupture and, thus, to
myocardial infarction [40]. In our study, the strongest evidence

The

ligands for this receptor are unknown but, due to its high

sequence homology to IL17RE, it is very likely that it binds a
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Table 4. Chromosomal locations for highest multipoint LOD
scores.

Biomarker Region SNPs’ Region SNPs’
LOD 2.6-3.0 LOD 2.0-2.5
RS1229540,
RS8685, 7922.1(2.5) RS234
Paraoxonase 8p11.21(2.8)
RS749540 19912(2.1) RS7250192,
RS2194198
RS7410750,
RANTES 22q13.33(2.8)
RS10451
RS965037,
RS216219, 6p22.3(2.5) RS1264451
MMP3 17p13.3(2.6)
RS12746 5q12.3(2.5) RS1020661,
RS164561
RS1051624,
GCSF 8922.1(2.6)
RS951826
RS306395,
GSP 13913.2(2.4)
RS668103
RS164561,
TRAIL 1q44(2.3)
RS2027432
RS12217,
hsCRP 7q32.3(2.2)
RS1371463
RS3132332,
9q34.3(2.1) RS7357733
MCP1
1922(2.0) RS13320,
RS10918078
RS10818768,
D-dimer 9934.2(2.1)
RS7860423
RS741737,
Adiponectin 11p15.5(2.1)
RS879114

Presented is a summary of all multipoint LOD score results greater than 2.0
obtained in the genome scan (multipoint LOD score in parentheses), with the
SNPs flanking the 1 LOD down interval.

*. SNPs flanking 1 LOD down interval around peak marker in QTL.

for linkage to MMP3 levels was found within a relatively gene-
dense region of chromosome 17, which contains several
interesting candidate genes including a scavenger receptor for
LDL (SCARF1) and a highly conserved intracellular signaling
protein (YWHAE). In addition, this region is linked to ventricular
hypertrophy [41], childhood obesity [42], and rheumatoid
arthritis [43], among others. The chromosome 6p22 region we
found linked to MMP3 levels is linked to sarcoidosis [44],
schizophrenia [45], reading ability [45], pulse pressure [46], and
early onset myocardial infarction [47]. The third peak for MMP3
in the 5912 region is linked to low density lipoprotein size [48]
and stroke [49].

GCSF is a growth factor and a cytokine which, in addition to
its obvious role in promoting the growth of granulocytes, also
promotes the growth of stem cells and their release from the
bone marrow and has been implicated in the response of
vascular endothelial cells to oxidative stress [50]. We observed
the strongest evidence for linkage to GCSF levels at
chromosome 8922, which contains the hematopoietic
transcription factor RUNX1T1. Although there are no data
specifically suggesting this, one might postulate regulatory
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networks in hematopoiesis wherein alterations in RUNX1T1
function or expression impact GCSF levels. Other studies have
reported linkage at 8922 for hypertension [51],
dihydrotestosterone levels [52], and Tourette’s syndrome [53],
although the actual genes have not yet been identified.

The significant heritabilities of these CVD biomarkers are not
necessarily surprising, as they are potential predictors or risk
factors of CVD, and CVD itself has a relatively strong genetic
component (i.e. heritability of 0.38-0.57 [54]). A significant
heritability means genetic components can explain part of the
variation in the ftrait. Such components can, in theory, be
mapped; however, it does not necessarily mean that the
underlying genetic model will allow those components to be
easily detected via current techniques. For example, as is the
case for human height, a trait may have a very high heritability
that is due to the additive behavior of many genes, each of
which contributes a small amount to the trait variability; such a
trait would be very difficult to map with current QTL methods.
Thus, it is interesting to note that of the 11 biomarkers with
significant heritability point estimates, eight showed interesting
results with evidence for linkage to one or more genomic
regions, (LOD = 2.0). This suggests that the genetic
architecture governing levels of these biomarkers may be
amenable to mapping and potentially eventual positional
cloning. Interestingly, the biomarker TRAIL did not have
significant heritability estimates and yet had some interesting
results for evidence for linkage. This discrepancy is likely to
result from a higher intra-assay coefficient of variation which
may impact the estimate of the heritability as well as reduce
power of the linkage analysis.

We can make some specific inferences about this genetic
architecture by examining the position of linkage peaks relative
to those loci that directly encode a biomarker. For example, the
enzyme paraoxonase is encoded by a cluster of genes
(PON1-3) on chromosome 7q. In our study, we had linkage to
this region on 7q, suggesting regulation in cis and possibly
allelic variation in the PON genes themselves, as has been
previously observed [18]. However, the strongest LOD score
related to paraoxonase in our study was not linked to the
paraoxonase locus on 7q but was found on 8p11. This
suggests that regulation in trans could contribute in some
significant way to variability in paraoxonase levels. The role of
regulation in trans is underscored by the fact that, of the
remaining LOD scores = 2.6 (MMP3, RANTES, and GCSF),
none were coincident with the physical loci encoding the
biomarker. Thus, just by examining the locations of our LOD
scores relative to the loci directly encoding the biomarker in
question, we were able to unravel some of the genetic
architecture of the trait. Interestingly, we did not find overlap
between the only interesting QTL for hsCRP in our study
(chromosome 7q32, LOD 2.2) with other published genomic
regions linked to and/or associated with hsCRP levels (1p22
[55], 1923 [55], 2914 [55], 10921 [55], 11p11-p13 [56], 11q14
[55], 12p11 [57], 12915 [57], 19912 [55], and 20q13 [58]); CRP
levels (1p22 [55], 1923 [55], 2914 [55], 10921 [55], 11p11-p13
[56], 11914 [55], 12p11 [57], 12915 [57], 19912 [55], and 20913
[58]); this may be due to the fact that our population was not
ascertained based on disease status, locus heterogeneity,
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and/or the nonspecific nature of hsCRP as a biomarker of
inflammation.

There are limitations to the current approach. Namely, the
study was conducted in a population with a specific ancestry,
primarily African and Native American and therefore the
genetic loci detected in our genome screen may not be
applicable to other ethnicities and populations. However, in
some ways this ‘limitation’ is also a great strength, as African
Americans are an understudied population at high risk for CVD.
Furthermore, it is not known to what extent a primarily African
American sample would be expected to share causal variation
underlying biomarker levels with another ethnic group. In
addition, it is possible that the presence of linkage
disequilibrium (LD) between SNPs can inflate LOD scores and,
as our population is of mixed African American descent, there
exists the potential for the significant LD inherent in recently
admixed populations. However, the SNPs selected for the
genome scan were designed to limit LD between markers and
there was no significant LD (r> > 0.4) between any of the SNPs
in our most significant linkage peaks (data not shown). The
genome scans themselves were conducted under the
assumption that the biomarkers were not correlated and that
each genome scan was a set of independent tests. However,
the level of inter-marker correlations between biomarkers could
invalidate that assumption and imposes a multiple testing
burden that could influence the significance interpretation of
our LOD scores. Identifying all MLODs greater than or equal to
two as “interesting” resulted in 15 loci, translating to only 3.7%
of the MLODS across all biomarkers and the 22 autosomes.
Even so, any of the 15 highlighted results could be type |
errors. However, our intent was to highlight the regions
providing the most evidence for linkage in our study. Finally,
there is no single method that allows for maximal power while
using all measurements of the quantitative trait, including
extreme outliers. In the current study, we have elected to
remove extreme values at either range of the quantitative
measure, thus creating distributions that are closer to
normality. In so doing, it is possible that some biologically
meaningful information has been lost. Other analytic methods
(such as the lodadj option in SOLAR) would allow those values
to be included, but could also introduce compromises in power,
particularly when the overall data does correspond well to a
normal distribution.

The results presented here can advance our understanding
of CVD in several ways depending on how the biomarker in
question relates to the pathogenesis of CVD. First, if the
biomarker is a biochemical mediator of CVD, i.e. the biomarker
is causal in CVD pathogenesis, then identifying the genes that
modify levels of this biomarker could identify targets for
development of therapeutic targeting of those genes as well as
serving as CVD biomarkers themselves. Second, if the
biomarkers are a result of CVD, then the genetic variants
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responsible for their levels should be genetic risk factors for
disease severity. In that case, identifying those variants will
advance efforts to predict CVD burden or risk of progression by
genotyping. Each of the four biomarkers with LOD scores = 2.6
has been implicated in some way with the pathogenesis or risk
of CVD. Fine-mapping of these QTL to identify the responsible
gene(s), subsequent evaluation of those genetic markers for
association with CVD, and validation in further cohorts are
necessary. The identification of the putative causal variants
underlying the linkage results for these four biomarkers will not
only advance our understanding of cardiovascular risk but
hopefully serve as a model for the study of other complex
diseases via the genetic dissection of intermediate traits.
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