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The synchronization between two coupled FitzHugh-Nagumo (FHN) neurons with or without external current is studied by using the
Laplace transform and the Adomian decomposition method. Different from other researches, the synchronization error system is
expressed as sets of Volterra integral equations based on the convolution theorem in the Laplace transform. Then, it is easy to
analytically obtain the conditions that synchronization errors disappear based on the successive approximation method in integral
equation theorem, the correctness of which is verified by numerical simulations. Furthermore, the synchronous dynamics of the
two coupled FHN neurons also can be written in the form of Volterra integral equations, which is more convenient to analytically
solve by using the Adomian decomposition method. It is found that the occurrence of synchronization between the two FHN
neurons only depends on the coupling strength and is irrelevant to the external current. Only synchronous rest state in the two
FHN neurons without external current can be achieved, while synchronous spikes appear if the external current is not zero.

1. Introduction

The neurons are considered as basic units to form neural sys-
tems, which have received much interest because of the great
significance and applications in neural science, brain science,
medical technology, and so on. To simplify matters, the
Hodgkin–Huxley (HH) equation [1–3] is usually used to
investigate the dynamics of neural networks. Although the
HH equation and its modified versions are simplification of
dynamics of a realistic neuron, it is still complex in some
problems. A simplified model of the HH equation called
the FitzHugh-Nagumo (FHN) model [4] is convenient in
the investigation of neural behavior by using nonlinear
dynamical theory [5, 6]. The FHN model has cubic nonline-
arity, which can show excitability of a neuron. The qualitative
nature of nerve impulse propagation and neural activity can
exhibit in several coupled FHN models, such as separatix
loops and bifurcation of equilibria and limit cycles [7, 8].

Synchronization in neural systems is a crucial phenome-
non. In many regions of the brain, synchronization is consid-

ered to be related to cognition as well as the correlate of
behavior [3, 9]. Phase synchronization [10] may play a very
important role in the brain’s ability to store, process, and
communicate information. Synchronization caused by
parameter mismatch [11] is a more general case in the real
world. Synchronization and corresponding dynamics of
coupled neurons have been studied in [12, 13] to understand
information processing in the brain. The effects of Gaussian
white noise on synchronization were researched in [14].

In the past decade, many criteria have been given to judge
the occurrence of synchronization in dynamical systems. The
Lyapunov function technology is one of the earliest methods
to establish the synchronization conditions in coupled oscil-
lators. The famous master stability function (MSF) method is
very effective to analyze the local stability of the synchroniza-
tion manifold [15]. Chen [16] proposed the matrix measure
approach (MMA) to analytically derive sufficient conditions
for synchronization in time-varying networks. Lu and Chen
[17] established the synchronization conditions for linearly
coupled ordinary differential systems by considering the
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distance between trajectories and the synchronization mani-
fold. The key to the Lyapunov function method is to find an
appropriate Lyapunov function. Usually, the synchronization
conditions by using such technology are sufficient and highly
conserved. The study in [18] showed that the method may
be invalid for systems with multiple components of different
types. In the MSF method and the MMA, the conditional Lya-
punov exponents have to be calculated numerically. For the
new approach given by Lu and Chen, some information of
the synchronous dynamics needs to be known previously.
However, the trajectories in the synchronization manifold
are unknown before solving the coupled systems. According
to the statements above, the analytical criterion for synchroni-
zation occurrence is still a question worthy to further discuss.

In this paper, we use the Laplace transform to investigate
the synchronization conditions for two coupled FHN neurons.
Different from other studies, the synchronization error system
derived from the original coupled neural system is converted
into sets of Volterra integral equations based on the convolu-
tion theorem in Laplace transform. It should be noted that the
technique that converts an ordinary differential equation into
sets of Volterra integral equations has been successfully
applied to other nonlinear systems. From References [19,
20], it was found that the form of the Volterra integral equa-
tions is clearer to show the influence of nonlinear parts in
the governing equation of a beam under a moving load.
According to the successive approximation method [21] in
the integral equation theory, it is convenient to obtain the con-
ditions that synchronization errors disappear. Furthermore,
the governing equation describing the synchronous dynamics
of the two FHN neurons also can be written in the form of the
Volterra integral equation, which is easy to analytically solve
by using the Adomian decompositionmethod [22]. Numerical
simulations are carried out to demonstrate the correctness of
the analytical approach proposed in this paper. It is analyti-
cally verified that two coupled FHN neurons without external
current can only exhibit synchronization rest regardless of the
coupling strength. When the external current is not zero, syn-
chronization spikes between the two FHN neurons occur, and
the synchronization conditions for coupling strength remain
the same as that for the case of no external current.

The rest of the paper is organized as follows. In Section 2,
the synchronization conditions for two coupled FHN neurons
are discussed by using the Laplace transform. In Section 3, the
synchronous dynamics of the coupled FHN neurons is analyti-
cally solved by using the Adomian decomposition method. In
Section 4, numerical simulations are carried out to verify the
effectiveness of the analytical results. Conclusions are given in
Section 5.

2. Synchronization Conditions for Two Coupled
FHN Neurons

A single FHN neuron is given in the following form:

_u1 = −u1 u1 − 1ð Þ u1 − að Þ − u2 + I sin ωtð Þ, ð1Þ

_u2 = b u1 − γu2ð Þ, ð2Þ

where u1 is the potential difference and u2 is a recovery cur-
rent. I and ω are the magnitude and frequency of the external
current, respectively. 0 < a < 0:5, b, γ > 0, ð1 − a + a2Þ/3 > bγ,
and ð1 − a + a2Þ/3 < 1/γ. ð0, 0Þ is the unique equilibrium
point needed to be considered in system (1). Two FHN neu-
rons are coupled as follows:

_u1 = −u1 u1 − 1ð Þ u1 − að Þ − u2 + c u1 − u3ð Þ + I sin ωtð Þ,
ð3Þ

_u2 = b u1 − γu2ð Þ, ð4Þ
_u3 = −u3 u3 − 1ð Þ u3 − að Þ − u4 + c u3 − u1ð Þ + I sin ωtð Þ,

ð5Þ
_u4 = b u3 − γu4ð Þ, ð6Þ

where c is the coupling strength. The two FHN neurons are
said to be synchronous if lim

t→+∞
u1 = u3 and lim

t→+∞
u3 = u4. By

letting

e1 =
u1 − u3

2 ,

e2 =
u2 − u4

2 ,

e3 =
u1 + u3

2 ,

e4 =
u2 + u4

2 ,

ð7Þ

system (3) can be written as

e
·
1 = −e31 + −3e23 + 2 a + 1ð Þe3 − a + 2c

� �
e1 − e2, ð8Þ

_e2 = b e1 − γe2ð Þ, ð9Þ
_e3 = −e33 + a + 1ð Þe23 − 3e21 + a

� �
e3 + a + 1ð Þe21 − e4 + I sin ωtð Þ,

ð10Þ
_e4 = b e3 − γe4ð Þ: ð11Þ

Then, the synchronization conditions of system (3) become
lim

t→+∞
e1,2 = 0. In the following, we use the Laplace transform

method to obtain the condition that ei → 0, i = 1, 2. The
Laplace transform used in this paper is defined as follows:

êi sð Þ = L ei½ � =
ð+∞
0

ei tð Þe−stdt,

ei tð Þ = L−1 êi½ � = 1
2πi

ðσ+i∞
σ−i∞

êi sð Þestds, i = 1, 2, 3, 4:
ð12Þ

Taking the Laplace transforms of both sides of Equation (9)
and arranging them yield

s + a − 2cð Þê1 + ê2 = e10 + F̂1, ð13Þ

s + bγð Þê2 + e20 = +bê1, ð14Þ
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s + að Þê3 + ê4 = e30 +
ωI

s2 + ω2 + F̂2, ð15Þ

s + bγð Þê4 = e40 + bê3, ð16Þ
where ei0, i = 1, 2, 3, 4, are given initial values of system (9),
and

F̂1 =
ð+∞
0

−e31 − 3e1e23 + 2 a + 1ð Þe1e3
� �

� e−stdt ≡
ð+∞
0

F1 tð Þ½ �e−stdt,

F̂2 =
ð+∞
0

−e33 + a + 1ð Þe23 − 3e21e3 + a + 1ð Þe21
� �

� e−stdt ≡
ð+∞
0

F2 tð Þ½ �e−stdt:

ð17Þ

Substituting the second and fourth equations into the first
and third equations in system (14), respectively, produces

ê1 =
s + α1ð Þe10 − e20
s2 + a2s + a3

+ s + α1ð ÞF̂1
s2 + a2s + a3

, ð18Þ

ê3 =
s + α1ð Þe30 − e40
s2 + a4s + a5

+ s + α1ð Þ ωI/ s2 + ω2� �� �
s2 + a4s + a5

+ s + a1ð ÞF̂2
s2 + a4s + a5

,
ð19Þ

where α1 = bγ, α2 = a + bγ − 2c, α3 = b½ða − 2cÞγ + 1�, α4 = a
+ bγ, and α5 = bðaγ + 1Þ. Since there exist the simply linear
relations between ê2,4 and ê1,3, respectively, only the dynamical
behaviors of ê1,3 need to be considered. Let ΦiðtÞ, i = 1, 2, 3, 4,
denote the following inverse Laplace transforms, respectively,

Φ1 tð Þ = L−1
s + a1

s2 + a2s + a3

� �
,

Φ2 tð Þ = L−1
1

s2 + a2s + a3

� �
,

Φ3 tð Þ = L−1
s + a1

s2 + a4s + a5

� �
,

Φ4 tð Þ = L−1
1

s2 + a4s + a5

� �
:

ð20Þ

Then, ΦiðtÞ, i = 1, 2, 3, 4, can be given by

Φ1 tð Þ =
e−α2t/2 cosh β1tð Þ + β2

2β1
sinh β1tð Þ

� �
, β1 ≠ 0,

e−α2t/2 1 + 2β2tð Þ, β1 = 0,

8><
>:

Φ2 tð Þ =
e−α2t/2

β3
sinh β1tð Þ, β1 ≠ 0,

te−α2t/2, β1 = 0,

8><
>:

8>>>>>>>>>><
>>>>>>>>>>:

ð21Þ

Φ3 tð Þ =
e−α4t/2 cosh β3tð Þ + β4

2β3
sinh β3tð Þ

� �
, β3 ≠ 0,

e−α4t/2 1 + 2β4tð Þ, β3 = 0,

8><
>:

Φ4 tð Þ =
e−α4t/2

β3
sinh β3tð Þ, β3 ≠ 0,

te−α4t/2, β3 = 0,

8><
>:

8>>>>>>>>>><
>>>>>>>>>>:

ð22Þ

where β1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α22 − 4a3

p
/2, β2 = 2a1 − a2, β3 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α24 − 4a5

p
/2, β4

= 2a1 − a4. From the convolution theorem, taking the inverse
Laplace transform on both sides of equations in Equation (18)
yields

e1 = e10Φ1 − e20Φ2 +
ðt
0
Φ1 t − τð ÞF1 τð Þdτ, ð23Þ

e3 = e30Φ3 − e40Φ4 + I
ðt
0
Φ3 t − τð Þ sin ωτð Þ

� dτ +
ðt
0
Φ3 t − τð ÞF2 τð Þdτ,

ð24Þ

where F1,2 is defined in Equation (14). From Equations
(21) and (22), if −ða2/2Þ ± jRe fβ1gj < 0, Refβ1g represents
the real part of β1,Φ1,2 decay to zero quickly. In this case,
the first equation in Equation (23) is simplified as

e1 tð Þ =
ðt
o
Φ1 t − τð ÞF1 τð Þdτ =

ðt
0
Φ1 t − τð Þ −e1 τð Þ2�

− 3e3 τð Þ2 + 2 a + 1ð Þe3 τð Þ�e1 τð Þdτ:
ð25Þ

From the successive approximation method introduced in
[21, 23], the recurrence relation

e1n+1 tð Þ =
ðt
0
Φ1 t − τð Þ −e1n τð Þ2 − 3e3 τð Þ2�

+ 2 a + 1ð Þe3 τð Þ�e1n τð Þdτ, n ≥ 0
ð26Þ

can be used to get the solution of Equation (25). Starting
with an initial guess e10 = 0, it is clear that e1 = 0 is the solution
of Equation (25) for any e3.If −a2/2 ± jRe fβ1gj ≥ 0,Φ1,2 can-
not approach to zero, then it means that e1 does not decay to
zero. Thus, −a2/2 ± jRe fβ1gj < 0 is a necessary and sufficient
condition for e1 → 0 in system (9). It is easy to check that

sign −
α2
2 + Re β1f gj j

n o
=

+,a2 < 0,
sign −a3f g, a2 > 0&a22 − 4a3 ≥ 0,
−, a2 > 0&a22 − 4a3 < 0,

8>><
>>:

ð27Þ
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sign −
α2
2 − Re β1f gj j

n o
=

sign a3f g, a2 < 0&a22 − 4a3 ≥ 0,
+, a2 < 0&a22 − 4a3 < 0,
−, a2 > 0:

8>><
>>:

ð28Þ
Clearly, α2 = a + bγ − 2c > 0 must be satisfied to guarantee −
a2/2 ± jRe fβ1gj < 0. Under such condition, α3 = b½ða − 2cÞγ
+ 1� > bð1 − bγ2Þ > 0 holds for the parameter ranges given in
Equation (1). Therefore, α2 > 0ðc < ðða + bγÞ/2ÞÞ is the neces-
sary and sufficient condition for e1 → 0 in system (9). Further-
more, if α2 > 0 and a22 − 4a3 < 0, e1 approaches to 0 with
oscillatory when t→ +∞. If α2 > 0 and a22 − 4a3 ≥ 0, e1 will
lose its oscillatory behavior when itconverges to zero.

Lemma 1. For two coupled FHN neurons in system (1) with or
without external current, synchronization occurs when and
only when c < ða + bγÞ/2.

Remark 2. Only when Φ1,2 defined in Equation (21) decay to
0, e1 → 0 for t→ +∞. To guarantee Φ1,2 approach to 0, it is
necessary and sufficient that the denominator in the first
equation in Equation (18)

s2 + α2s + α3 ð29Þ

has two roots with negative real parts. According to the
Routh-Hurwitz criterion, α2,3 > 0 are necessary and sufficient
to guarantee that all roots of Equation (29) have negative real
parts. Moreover, if polynomial (29) has two negative real
roots, e1ðtÞ is nonoscillatory.

3. Synchronous Dynamics of the Coupled
FHN Neurons

In this section, we discuss the synchronous dynamics of sys-
tem (3) with I = 0 and I ≠ 0, respectively.

3.1. I = 0 in System (3). In this case, from the second equation
in Equation (23), the governing equation of synchronous
dynamics is given by

e3 = e30Φ3 − e40Φ4 +
ðt
0
Φ3 t − τð ÞF2 τð Þ

� dτ = e30Φ3 − e40Φ4 +
ðt
0
Φ3 t − τð Þ

� −e3 τð Þ + a + 1½ �e3 τð Þ2dτ:

ð30Þ

Since α4 = ða + bγÞ > 0 and −a4/2 ± jRe fβ3gj < 0 hold
according to the parameter ranges given in system (1), Φ3,4
defined in Equation (22) decay to zero very quickly when t
→ +∞. Using the successive approximation method, similar
as that for Equation (25), the solution of Equation (30) is e3
= 0. Thus, if there is no external current in the coupled sys-
tem, two FHN neurons only can achieve the synchronization
of the resting state.

3.2. I ≠ 0 in System (3). Under such condition, by getting rid
of the terms including e−α4t in the second equation in Equa-
tion (23), the governing equation of synchronous dynamics
can be simplified as

e3 = ϕ0e
iωt + ϕ0e

−iωt +
ðt
0
Φ3 t − τð ÞF2 τð Þdτ = ϕ0e

iωt + ϕ0e
−iωt

+
ðt
0
Φ3 t − τð Þ −e3 τð Þ + a + 1½ �e3 τð Þ2dτ,

ð31Þ

where

β3 ≠ 0,

ϕ0 = I
−2ω 4ω2 + a24 + 2a4β4 + 4β2

3
� �

+ i −a34 + 4 β2
3 − ω2� �

a4 + −a24 + 4ω2 + 4β2
3

� �
β4

� �
4ω2 + a4 − 2β3ð Þ2� �

4ω2 + a4 + 2β3ð Þ2� � ,

β3 = 0,

ϕ0 = I
−2ω 4ω2 + 8a4β4 + a24

� �
+ i 4 4ω2 − a24

� �
β4 − a4 4ω2 − a24

� �� �
4ω + a24
� �2 :

ð32Þ

ϕ0 is the complex conjugate of ϕ0, and Φ3 is defined in
Equation (22).

According to the Adomian decomposition method [22],
we let

e3 = 〠
∞

n=0
yn, ð33Þ

F2 = −e33 + a + 1ð Þe23 = 〠
∞

n=0
An, ð34Þ

where

An =
1
n!

dn

dλn
F2 〠

∞

n=0
λnyn

 !" #
λ=0

, n = 0, 1, 2,⋯, ð35Þ

are Adomian polynomials of order n, in terms of y0, y1,
⋯, yn,⋯. The first several Adomian polynomials are given as

A0 = a + 1ð Þy20 − y30,
A1 = 2 a + 1ð Þy0y1 − 3y20y1,

A2 = y0 2 a + 1ð Þy2 − 3y21
� �

− 3y20y2 + a + 1ð Þy21,⋯, ⋯ ,
ð36Þ

Substituting Equations (33) and (34) into Equation (31)
yields

〠
∞

n=0
yn = ϕ0e

iωt + ϕ0e
−iωt +

ðt
0
Φ3 t − τð Þ 〠

∞

n=0
An

 !
dτ: ð37Þ

Then, the solution structure of Equation (37) can be
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written as

y0 = ϕ0e
iωt + ϕ0e

−iωt ,

y1 =
ðt
0
Φ3 t − τð Þ a + 1ð Þy20 − y30

� �
dτ,

y2 =
ðt
0
Φ3 t − τð Þ 2 a + 1ð Þy0y1 − 3y20y1

� �
dτ,

⋯,⋯ , ⋯ :

ð38Þ

In the calculations of y1,2, the terms including e−α4t can be
discarded to simplify the expressions. For β3 ≠ 0, y1,2 is easily
given as

y1 =w0 + 〠
3

n=1
wne

inω +wne
−inω� �

,wn = f1 hn, nωð Þ, n = 0, 1, 2, 3,

y2 = f1 q0, 0ð Þ + 〠
5

n=1
f1 qn, nωð Þeinω + f1 qn, nωð Þe−−inω
	 


,

ð39Þ

where

f1 x, yð Þ = 2x i2y + β4 + a4ð Þ
i 2β3 − a4ð Þ + 2y½ � i 2β3 + a4ð Þ − 2y½ � ,

h0 = 2 a + 1ð Þ ϕ0j j2,
h1 = −3 ϕ0j j2ϕ0,
h2 = a + 1ð Þϕ20,
h3 = −ϕ30,

q0 = 2 a + 1ð Þ ϕ0w1 +w1ϕ0
� �

− 3ϕ20w2 − 6w0 ϕ0j j2 − 3w2ϕ02,

q1 = 2 a + 1ð Þ ϕ0w2 + ϕ0w0
� �

− 6w1 ϕ0j j2 − 3ϕ20w3 − 3w1ϕ0
2,

q2 = 2 a + 1ð Þ ϕ0w3 + ϕ0w1
� �

− 6w2 ϕ0j j2 − 3ϕ20w0,

q3 = 2 a + 1ð Þϕ0w2 − 6w3 ϕ0j j2 − 3ϕ20w1,
q4 = 2 a + 1ð Þϕ0w3 − 3ϕ20w2,
q5 = −3ϕ20w3:

ð40Þ
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Figure 1: The dynamics of u1,2,3,4 in Equation (3) with I = 0. (a) The dynamics of u1,3 with c = 0:16. (b) The dynamics of u2,4 with c = 0:16. (c)
The dynamics of u1,3 with c = 0:18. (d) The dynamics of u2,4 with c = 0:18. The initial conditions are taken as u1ð0Þ = 0:01, u2ð0Þ = −0:01,
u3ð0Þ = 0:02, and u4ð0Þ = 0:01.
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Then, the approximate solution of Equation (31) can be
expressed as

e3 = y0 + y1 + y2: ð41Þ

The approximate solution for the case of β3 = 0 can be
derived in a similar way, which is not presented here. The
validity of the above analysis results will be demonstrated
in Section 4.

4. Numerical Simulations

In this section, some numerical simulations for Equation
(3) with a = 0:1, b = 0:08, and γ = 3 are carried out to
demonstrate the effectiveness of the analysis in the last
section. For the case of I = 0, the synchronization condi-
tion is c < ða + bγÞ/2 = ð0:1 + 3 × 0:08Þ/2 = 0:17 according
to the analysis results in Equation (28). To illustrate the
validity of the critical value of the coupling strength, c =
0:16 and c = 0:18 are chosen to carry out the numerical

simulations for Equation (3) with I = 0. The initial condi-
tions are taken as u1ð0Þ = 0:01, u2ð0Þ = −0:01, u3ð0Þ =
0:02, and u4ð0Þ = 0:01. The results are presented in
Figure 1, which show that synchronous spikes do not
occur for any given coupling strength in two coupled
FHN neurons without external current.

For the case of I ≠ 0, the current and frequency are chosen
as I = 0:01 and ω = 0:1, respectively. The values of a, b, and γ
remain the same. The initial conditions are taken as u1ð0Þ =
0:01, u2ð0Þ = u3 ð0Þ = u4ð0Þ = 0. The dynamics of u1,2,3,4 and
synchronization errors u1 − u3, u2 − u4 are depicted in
Figure 2 for c = 0:16 and c = 0:18, which demonstrate the
effectiveness of the synchronization criterion c < ða + bγÞ/2.

Next, we verify the effectiveness of analytical results of
Equations (38)–(41) describing the synchronous dynamics
of the two FHN neurons derived by using the Adomian
decomposition method. The parameters in Equation (3) are
given by a = 0:1, b = 0:08, γ = 3, I = 0:01, ω = 0:1, and c =
0:1, according to Equations (38)–(41); the approximation of
e3 is expressed as
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Figure 2: The dynamics of u1,2,3,4 and synchronization errors in Equation (3) with I = 0:01, ω = 0:1. (a) The dynamics of u1,3 and the error
between them for c = 0:16. (b) The dynamics of u2,4 and the error between them for c = 0:16. (c) The dynamics of u1,3 and the error between
them for c = 0:18. (d) The dynamics of u2,4 and the error between them for c = 0:18. The initial conditions are taken as u1ð0Þ = 0:01, u2ð0Þ
= u3ð0Þ = u4ð0Þ = 0.
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e3 = −0:0000891 cos 0:1tð Þ + 0:0003954ð Þ cos 0:274tð Þ½
+ −0:0001033 cos 0:1tð Þ + 0:00003 sin 0:1tð Þð
+ 0:003753Þ sin 0:274tð Þ�e−0:17t + 0:000853
+ 0:001248 cos 0:1tð Þ − 0:001233 cos 0:2tð Þ
+ 0:00005934 cos 0:3tð Þ + 0:02617 sin 0:1tð Þ
− 0:00003028 sin 0:2tð Þ − 0:0001005 sin 0:3tð Þ:

ð42Þ

The comparison between the numerical results of Equa-
tion (3) using the Runge-Kutta method for different initial
conditions and the analytical results from Equation (42) is
given in Figure 3. Clearly, the analytical results coincide
exactly with the numerical ones after enough time, which
show the correctness of the analytical results expressed in
Equation (42).

5. Conclusions

In this paper, the synchronization of two FHN neurons with
or without external current is investigated by using the
Laplace transform and the Adomian decomposition method.
A linear transformation is carried out for the original system
to obtain the synchronization error system. Different from
other methods, the error system is converted into sets of Vol-
terra integral equations by using the convolution theorem.
Then, the successive approximation method in the integral
equation theorem is used to judge whether the synchroniza-
tion error approaches to zero. Thus, a criterion is obtained to
determine the occurrence of synchronization in the two FHN
neurons.

It is found that the two coupled FHN neurons without
external current can only maintain neural rest when synchro-
nization is achieved. While the external current is not zero,
synchronous spikes occur. The numerical simulations dem-
onstrate that the criterion presented in this paper is very

effective. The analytical result describing the synchronous
dynamics of the two FHN neurons derived by using the Ado-
mian decomposition method is accurate enough. The analyt-
ical expression helps us to deeply understand the
synchronous dynamics of coupled FHN neurons. The
method adopted in this paper is valid to discuss the synchro-
nization between FHN neurons. Moreover, the calculation
quantities of this method are small, which can be developed
to judge synchronization between N coupled FHN neurons.
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