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Abstract: The genus Pleurotus (Fr.) P. Kumm (Pleurotaceae, Basidiomycota) comprises a cosmopolitan
group of mushrooms highly appreciated for their nutritional value and health-promoting benefits.
Despite there being many studies about the phytochemical composition of Pleurotus spp., there
are very few reports dealing with the phytochemistry, antioxidant and antimicrobial activities of
P. columbinus Quél. In this study, a mass spectrometry ultra-performance liquid chromatography
mass spectrometry (UHPLC)-QTOF method, coupled with principal component analysis (PCA), was
applied to the P. columbinus metabolome in order to investigate the influence of different agri-food
residues as growth substrates for P. columbinus cultivation, on the bioactive chemical profile of fruiting
bodies and evaluated their potential as antioxidants and antimicrobials. Additionally, a quantitative
HPLC-DAD-MS analysis was conducted on phenolic and flavonoid compounds, that could explain,
albeit partially, the observed biological effects of P. columbinus extracts. The qualitative metabolic
profile identified 97 metabolites, whereas the quantitative HPLC-DAD-MS analysis confirmed the
presence of phenolic and flavonoids, in the mushroom extracts, which also showed intrinsic scaveng-
ing/reducing and antimicrobial effects. The antibacterial effects were particularly evident against
Escherichia coli, whereas Tricophyton and Aspergillus were the dermatophytes more sensitive to the
mushroom extracts. The present study supports more in-depth investigations, aimed at evaluating
the influence of growth substrate on P. columbinus antimicrobial and antioxidant properties. The
extracts from P. columbinus revealed valuable sources of primary and secondary metabolites, thus
suggesting potential applications in the formulation of food supplements with biological properties,
above all in terms of antioxidant and antimicrobial properties.

Keywords: Pleurotus columbinus; metabolomics; phenolic compounds; antimicrobial properties

1. Introduction

The genus Pleurotus (Fr.) P. Kumm (Pleurotaceae, Basidiomycota) comprises a cos-
mopolitan group of mushrooms highly appreciated for their nutritional value and health-
promoting benefits [1,2]. Pleurotus spp., commonly known as oyster mushrooms, are classi-
fied as white-rot fungi and after Agaricus bisporus (J.E. Lange) Imbach and Lentinula edodes
(Berk.) Pegler, they represent a very diffuse group of cultivated edible mushrooms world-
wide [3].

At present, Pleurotus spp., including P. citrinopileatus Singer, P. djamor (Rumph. ex Fr.)
Boedijn, P. eryngii (DC.) Quél, P. flabellatus Sacc, P. florida Singer and P. ostreatus (Jacq.) P.
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Kumm., have achieved wide acclaim as nutraceuticals due to their exceptional nutritional
and medicinal properties and their ability to grow on various sources of agricultural
waste [4,5].

Nutritionally, oyster mushrooms are low-fat, low-energy, low sodium and cholesterol-
free food items. In addition, they are valued as an important source of water-soluble
vitamins, proteins, minerals, chitin and glucans (functional polysaccharides). Furthermore,
Pleurotus spp. contain biologically active compounds such as ergosterol (provitamin D2),
phenolic acids, antioxidant amino acid, ergothioneine and lovastatin [6].

The fruiting bodies and mycelia of several Pleurotus species possess various biologi-
cal activities, such as anti-inflammatory, immune-stimulating and immune-modulating,
antitumor, anticancer, ribonuclease activity, hypolipidemic, antimicrobial and antioxi-
dant [2,7–16].

Chemical analyses have shown that many of the biologically active compounds iso-
lated from Pleurotus mushrooms belong to hemicelluloses, polysaccharides, lipopolysac-
charides, peptides, proteins, glycoproteins, nucleosides, triterpenoids, complex starches,
lectins and lipids [17].

Pleurotus spp. also have high ability to use a wide variety of lignocellulosic waste such
as sawdust (i.e., Populus spp., Quercus spp., Fagus sylvatica L.), rice straw (Oryza sativa L.),
wheat straw (Triticum aestivum L.), corn stover (Zea mays L.), grass residues [Cynodon dactylon L.
Pers.], sunflower residues (Helianthus annuus L.), grape marc (Vitis vinifera L.), olive mills
(Olea europaea L.), banana straw (Musa x paradisiaca L.), date-palm leaves (Phoenix dactylifera L.),
hazelnut leaves (Corylus spp.), coffee husks, etc. [18–21].

After mushroom harvesting, the residual substrate can be used as a type of bio-
fertilizer or an animal feeding, but also for enzymes production [22]. Therefore, the
cultivation of mushroom meets the needs of current sustainable agriculture, while at
the same time supplying a functional food [23]. In this regard, it is sensitive to note that
different agricultural byproducts have been employed as substrates for cultivating Pleurotus
mushrooms, namely, banana leaves, peanut hull, corn leaves and others [24]. The most
cultivated Pleurotus species included on residual substrates are P. ostreatus, P. sajor-caju,
P. eous and P. florida [24].

Extensive research regarding the influence of substrate formulations used for mush-
rooms cultivation on the bioactive chemical profile of different species of Pleurotus has
been investigated by researchers [3,25–29]. However, it should be also considered the influ-
ence of post-harvesting conditions which could lead to a loss of biomolecules, especially
phenolic compounds, thus leading to discoloration of the mushroom [24].

Cereal straws represent a by-product of cereal threshing and are produced in large
volume. Chopped wheat straw is one of the main components of the growth medium
used for the cultivation of Pleurotus spp., but often, in order to increase the yield, it is
supplemented with materials rich in proteins [3]. Kinge et al. [28] found that P. ostreatus
grown on sawdust is characterized by better growth and nutritional properties than that
grown on corn cobs. The analysis of the bioactive components revealed the presence of
flavonoids, polyphenols, saponins, triterpenoids and steroids. Within the same species of
Pleurotus, the protein content would appear to be that mushroom nutrient most influenced
by the type of growth substrate, followed by crude fiber and carbohydrates [29].

As P. ostreatus is the most common species considered in the literature, and apparently
the best known, this name has often been used indiscriminately and it has been confused
with other species, such as P. columbinus Quél., P. pulmonarius (Fr.) Quél., etc. [30].

The names P. columbinus Quél. has been applied to blue-greenish blue variant of
P. ostreatus. Hilber [31] considers P. columbinus a variety of P. ostreatus (P. ostreatus var.
columbinus Quél., Enchir. Fung.: 148. 1886) and demonstrated a high degree of intercom-
patibility (>85%) between var. columbinus and var. ostreatus. The investigation of Zervakis
and Labarère [32], based on isoenzymes from 23 Pleurotus spp. isolates examined by poly-
acrylamide gel electrophoresis isoelectric and protein blotting, however, demonstrated that
P. columbinus (Figure 1) could be regarded as a separate taxon.
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Figure 1. Maximum parsimony tree (obtained using the Min-mini heuristic algorithm) showing the
phylogenetic position of the Pleurotus columbinus strain used in the present study (PeruMyc 2474).
Sequences representing different Pleurotus spp. were used along with Hypsizygus marmoreus (seq.
HW391183) as outgroup.

Despite there being many studies about the phytochemical composition of Pleurotus
spp., also highlighted by recent reviews [33–35] there are very few studies dealing with
the phytochemistry, antioxidant and antimicrobial activities of P. columbinus Quél [36,37].
Metabolomics is a new discipline which is defined as the monitoring of metabolite concen-
tration in fungi, bacteria and plants. Nowadays, the metabolomics-based approach has
been gradually applied in the field of edible and medicinal mushrooms to gain insight
into the chemical compositions of biological processes and the understanding response of
mushrooms to certain environmental conditions [38].

In this study, a mass spectrometry ultra-performance liquid chromatography mass
spectrometry (UHPLC)-QTOF method, coupled with principal component analysis (PCA),
was applied to the P. columbinus metabolome in order to investigate the influence of
different agri-food residues as growth substrates for P. columbinus cultivation, on the
bioactive chemical profile of fruiting bodies and evaluated their potential as antioxidants
and antimicrobials. Additionally, a quantitative HPLC-DAD-MS analysis was conducted
on phenolic and flavonoid compounds, possibly involved in the observed biological effects
of P. columbinus extracts.

2. Results and Discussion
2.1. Mushroom Identification

The morphological characteristics of Pleurotus columbinus fruiting body correspond to
those reported by Bas et al. [39].

Considering the influence of cultivation conditions on morphological and physiolog-
ical features, the DNA barcoding is requested for the identification of Pleurotus species.
The exact characterization and identification of medicinal mushrooms is fundamental for
exploiting their full potential in food and pharmaceutical industries [29].

The taxonomic affiliation of the mushroom strain was performed via targeting the
internal transcribed region of the ribosomal DNA. The ITS sequence of sample PeruMyc
2474 was consistent with the species P. columbinus; accordingly, a phylogenetic tree with
Hypsizygus marmoreus as an outgroup (Figure 1).

The PeruMyc 2474 strain clearly clustered with other P. columbinus strains and were
related to P. pulmonarius, P. ostreatus and P. eryngii, as well.
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2.2. Untargeted LC-MS/MS-Based Metabolomics

In this study, the chemical profile of P. columbinus was evaluated through mass spec-
trometry ultra-performance liquid chromatography mass spectrometry (UHPLC)-QTOF
method, coupled with principal component analysis (PCA). The full list of metabolites an-
notated using the mummichog algorithm is included in Table S1 (Supplementary Material).
The data matrix showing the annotation and peak areas for each sample was subjected to sta-
tistical analysis. The ANOVA performed with a p-value cut-off of 0.001 found 97 significant
and 136 non-significant metabolites. In Table S2 (Supplementary Material), it is reported
the list of significance using post hoc analysis (Fisher’s LSD), whereas Figure 2 shows the
heatmap using the 50 most significant metabolites from the ANOVA test. Specifically, the
fungi grown in the substrate D showed higher levels of carbohydrates, such as sucrose
and mannose, compared to the reference substrate A, whereas the substrate B is related to
higher amounts of aminoacids, such as L-glutamine and L-proline, in the fruiting bodies.
This is also consistent with the functional metanalysis carried out to contextualize the
metabolomics profile (Figure 3). Comparisons were made between the metabolic profiles
of the fungus grown in substrates B–D with respect to substrate A taken as reference. The
most evident thing is that the metabolic pathways are strongly influenced by the chemical
composition of the growth substrate. Some differences can be tentatively explained. For
example, mannose degradation is greater for the fungus grown on substrate C. Indeed,
this substrate contains, among other things, coffee grounds which are rich in mannose. A
similar trend is noted for the metabolic pathway of leucine biosynthesis which is increased
for the fungus grown on substrate C. In this substrate, free leucine is scarce compared to
substrates B and D where the presence of soybeans constitutes an immediate source of
free leucine.
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2.3. Phenolic and Flavonoid Determination via HPLC-DAD-MS

An HPLC-DAD-MS analysis was also carried out in order to measure the levels of
selected phenolic and flavonoid compounds, namely, gallic acid, hydroxytyrosol, cate-
chin, chlorogenic acid, epicatechin and benzoic acid, that play a major role in the antioxi-
dant/antimicrobial response following mushroom extract administration [40,41]. Specifi-
cally, Table 1 shows that the level of gallic acid is higher in extracts A and C, whereas extract
B do not show a relevant amount of this compound. In the extracts B–D, the catechin
fraction was present at higher concentrations, compared to extract A. This last extract
also had the highest epicatechin content, whereas extract A showed higher benzoic acid
concentration. According to the quantitative analysis conducted, extract C was the richest,
in terms of qualitative and quantitative composition in phenolic compounds.

Table 1. Quantitative analysis of phenolic and flavonoid compounds in P. columbinus extracts.

Quantity (µg/mL ± S.D.)

Extracts A B C D

Gallic acid 2.76 ± 0.12 1.29 ± 0.04 2.74 ± 0.05 1.97 ± 0.38
Hydroxytyrosol not detected not detected 4.43 ± 0.39 2.91 ± 0.77

Catechin 7.60 ± 0.21 12.25 ± 0.42 26.90 ± 1.07 14.54 ± 0.13
Chlorogenic acid not detected not detected 1.62 ± 0.13 1.10 ± 0.01

Epicatechin not detected 5.69 ± 0.18 7.97 ± 0.19 11.98 ± 0.01
Benzoic acid 0.13 ± 0.02 0.06 ± 0.01 0.05 ± 0.01 0.015 ± 0.01

2.4. Antimicrobial and Antioxidant Effects

The antimicrobial activity of the extracts A–D are shown in Table 2, also in comparison
with reference antimicrobial drugs ciprofloxacin, fluconazole and griseofulvin. All extracts
from mushroom displayed antimicrobial activity in the concentration range of 6.25 to
200 µg/mL. Regarding the yeasts, C. parapsilosis (YEPGA 6551) was the most sensitive
strain to the extracts, with MIC ranges of 31.49- >200 µg mL−1, while C. albicans (YEPGA
6379) showed the least sensitivity to the mushroom extracts. The results of the growth
inhibition of yeast strains evidenced a major activity of the extract A, underlining the
role of growth substrate on P. columbinus extract properties. With reference to bacteria,
the strongest inhibition was observed for the extracts B and C [MIC 6.25–12.5 µg/mL
against E. coli (ATCC 10536) and PeryMycA 2]. Collectively, Gram− bacterial strains
(PeruMyc 2, 3, 5 and 7) were less sensitive to mushroom extracts than that of Gram+ ones.
Intriguingly, the B. cereus strain PeruMycA 4 showed the lowest MIC values. All results
from the tested extracts showed active inhibition of dermatophytes growth. Regarding
A. currey (CCF 5207), it was the most sensitive fungal species to mushroom extracts, with
MIC range between 9.92 and 79.37 µg/mL. Values of MIC < 100 µg/mL was considered
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as an index of high antimicrobial activity (Dogan et al. 2013). The highest antimicrobial
activity of riseofulvin was against T. tonsurans (CCF 4834) (MIC: 0.125–0.25 µg/mL). On
the other hand, the present data did not permit to whether the isolates were resistant to the
griseofulvin as no breakpoints have yet been established.

Table 2. Minimal inhibitory concentrations (MICs) of P. columbinus extracts against yeast, bacterial and dermatophytes strains.

Extracts
MIC (µg mL−1) *

A B C D Fluconazole
(µg/mL)

Yeasts

Strain (ID)
C. tropicalis (YEPGA 6184) 125.99 (100–200) 79.37 (50–100) 200- > 200 200- > 200 2

C. albicans (YEPGA 6379) 125.99 (100–200) 200- > 200 200- > 200 200- > 200 1
C. parapsilosis (YEPGA 6551) 31.49 (25–50) 39.68 (25–59) 200- > 200 200- > 200 4

C. albicans (YEPGA 6183) 62.99 (50–100) 158.74 (100–200) 200- > 200 200- > 200 2

Gram - Ciprofloxacin
(µg/mL)

Bacteria

E. coli (ATCC 10536) 19.84 (12.5–25) 9.92 (6.25–12.5) 31.49 (25–50) 15.74 (12.5–25) <0.12
E. coli (PeryMycA 2) 158.74 (100–200) 79.27 (50–100) 9.92 (6.25–12.5) 19.84 (12.5–25) 1.23 (0.98–1.95)
E. coli (PeruMycA 3) 200- > 200 200- > 200 79.37 (50–100) 125.99 (100–200) 0.62 (0.49–0.98)

P. aeruginosa (PeruMycA 5) 62.99 (50–100) 62.99 (50–100) 125.99 (100–200) 125.99 (100–200) 1.23 (0.98–1.95)
S. typhy (PeruMycA 7) 125.99 (100–200) 79.37 (50–100) 79.37 (50–100) 125.99 (100–200) 0.38 (0.24–0.49)

Gram +
B. cereus (PeruMycA 4) 31.49 (25–50) 200- > 200 125.99 (100–200) 125.99 (100–200) <0.12
B. subtilis (PeruMycA 6) 79.37 (50–100) 79.37 (50–100) 125.99 (100–200) 158.74 (100–200) <0.12
S. aureus (ATCC 6538) 158.74 (100–200) 125.99 (100–200) 200- > 200 125.99 (100–200) 0.62 (0.98–0.49)

Griseofulvin
(µg/mL)

Dermatophytes

T. mentagrophytes (CCF 4823) 28.24 (12.5–25) 20.37 (6.25–12.5) 129.37 (50–100) 81.50 (25–50) 2.52 (2–4)
T. tonsurans (CCF 4834) 129.37 (50–100) 112.99 (50–100) 89.68 (25–50) 112.99 (50–100) 0.198 (0.125–0.25)

T.rubrum (CCF 4933) 158.74 (100–200) 200- > 200 16.17 (6.25–12.5) 158.74 (100–200) 1.26 (1–2)
A. quadrifidum (CCF5792) 89.68 (25–50) 81.50 (25–50) 62.99 (50–100) 15.74 (12.5–25) >8

T. erinacei (CCF5930) 39.68 (25–50) 158.74 (100–200) 79.37 (50–100) 31.49 (25–50) 3.174 (2–4)
N. gypseum (CCF6261) 31.49 (25–50) 125.99 (100–200) 79.37 (50–100) 62.99 (50–100) 1.587 (1–2)

A. currei (CCF5207) 62.99 (50–100) 39.68 (25–50) 31.49 (25–50) 19.84 (12.5–25) >8
A. insingulare (CCF5417) 19.84 (12.5–25) 79.37 (50–100) 62.99 (50–100) 31.49 (25–50) >8

* MIC values are reported as geometric means of three independent replicates (n = 3). MIC range concentrations are reported within brackets.

Regarding the antioxidant activity, experimental data were normalized and expressed
as EC50 values (µg/mL) for each mushroom extract and Trolox, which was used as refer-
ence antioxidant compound. The results were given in Table 3. Values for DPPH radical
scavenging activity varied between 2.25 and 4.98; extract B was the most active. Decidedly
low was the activity of the extract A, with a mean value of 4.98, whilst the extract C had
a medium–low mean value (3.81). Values for ABTS radical scavenging activity varied
between 4.34 and 6.16, and the best activity was shown by the extracts B, with a mean
value of 4.34 referred to the Trolox. The values for β-carotene-linoleic acid assay varied
between 7.47 and 11.65; the higher activity was showed by the extract B, with a mean
value of 7.47 referred to the Trolox, while lower antioxidant effects were detected for the
other extracts. Although the content of phenolic compounds was previously related to the
scavenging/reducing and antimicrobial properties of extracts, especially in the case of polar
extracts [42,43], in the present study the intrinsic antioxidant and antimicrobial abilities
of the extracts seemed to be dependent, at least in part, from the content of the gallic acid
present in the extracts (their correlation coefficients with gallic acid were <0.43). Matrix
analysis (Table S3) revealed a strong positive correlation (correlation coefficients > 0.89) of
quantitative presence of gallic acid in the extracts and the antioxidant activities. Further-
more, among the three tests used for antioxidant activity a largely positive correlation was
observed as expressed by coefficients falling in the range 0.88–0.99. On the other hand,
antioxidant properties of the extracts were less affected by the presence of other detected
flavonoids and phenolics. This reflected the complexity of the analyzed biological matrices.
Regarding the antimicrobial properties, the results from the present study did not provide
the optimal substrate for the cultivation of fungi with antimicrobial properties; however,
the effect of the substrate was present and should be deeply considered in view of the
production of antimicrobial extracts from Pleurotus species. For instance, the differences in
the metabolic pathway activation induced by the substrates seemed to affect the sensitivity



Antibiotics 2021, 10, 1245 7 of 12

of Candida species to the mycostatic effects by the extracts. Future studies need to unravel
the mechanism underlying this effect.

Table 3. Antioxidant properties of the tested extracts.

Extracts DPPH Test EC50
(µg/mL ± SD)

ABTS Test EC50
(µg/mL ± SD)

Linoleic Assay EC50
(µg/mL ± SD)

A 4.98 ± 0.53 c 6.16 ± 0.53 c 11.29 ± 1.11 c

B 2.25 ± 0.19 a 4.34 ± 0.45 a 8.47 ± 0.62 ab

C 3.81 ± 0.32 c 5.52 ± 0.51 c 11.65 ± 0.99 c

D 2.58 ± 0.21 ab 4.61 ± 0.37 ab 8.74 ± 0.86 ab

Trolox (µg TE) 0.28 ± 0.03 0.66 ± 0.07 0.56 ± 0.06
Different letters indicated mean statistical differences (p < 0.05).

3. Materials and Methods
3.1. Chemical and Reagents

20-Azino-bis-(3-ethylbenzothiazoline-6-sulphonate) diammonium salt (ABTS), 6-hydr
oxy-2,5,7,8-tetramethyl-2-carboxylic acid (Trolox), 2,2-diphenyl-1-picrylhydrazyl (DPPH),
ferric chloride (FeCl3), Mueller–Hinton broth (MHB), Rose Bengal Chloramphenicol Agar
(RBCA), Malt Extract Agar (MEA), Tryptic Soy Agar (TSA), Sabouraud Dextrose Agar
(SDA), RPMI (Roswell Park Memorial Institute) 1640 medium, purity grade organic sol-
vent (Methanol), ciprofloxacin, fluconazole and griseofulvin, were purchased from Sigma
(Sigma-Aldrich GmbH, Hamburg, Germany).

3.2. Mushroom Material

The fruiting bodies of the strain of P. columbinus (PeruMyc 2474) were collected in
April 2019, in Marmore Waterfall (Terni, Umbria, Italy), a Special Area of Conservation
and Special Protection Area (SAC/SPA IT5220017) of the Natura 2000 EU-wide network
(Habitat Directive 92/43/EEC). Basidiomata identification was carried out by macro and
micro-morphological analysis [39,44]. The Vaucher specimens were deposited in the Myco-
logical Herbarium MPeru (ID: 62) at the University of Perugia [Department of Chemistry,
Biology and Biotechnology (DCBB), Perugia, Italy].

For the isolation of mycelia, portions (less than 5 mm) of context were excised asep-
tically from inside the basidiome, transferred into Petri dishes containing Rose Bengal
Chloramphenicol agar (Sigma-Aldrich, Milan, Italy) and incubated for 7 d at 24 ◦C [45,46].
The mycelial strains are deposited in the DCBB culture collection and subcultured on MEA
medium every three months.

3.3. Molecular Identification

Angelini et al. [47] method was used to extract the total genomic DNA from ten
days mycelium grown in MEA. The detailed protocol is included in our recent paper [2].
Whereas the phylogenetic analysis was conducted according to literature [48–50].

3.4. Spawn Production

P. columbinus spawn was produced following the standard method with the use of
barley grains. Details about the protocol followed are reported in a previous paper of
ours [2].

3.5. Mushroom Cultivation Substrates

The P. columbinus strains were cultivated on four substrates consisting of (A) wheat
straw in 1:1 w/w ratio with beech sawdust (as control), (B) wheat straw in 4:2:1 w/w/w ratio
with oak sawdust and soya beans, (C) wheat straw in 4:2:1 w/w/w ratio with oak sawdust
and coffee grounds and (D) wheat straw in 3:2:1 w/w/w ratio with beech sawdust and soya
beans. Wheat straw, sawdust, soya beans and coffee ground were obtained from the “Soc.
Coop. Umbria Verde farm” (Perugia, Central Italy).
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Soya beans make certain free amino acids such as Glutamate, Aspartate, Leucine,
Arginine, Serine, Lysine and Proline readily available. Coffee grounds are particularly rich
in sugars such as mannose, galactose and arabinose. The detailed protocol is included in
our recent paper [2].

3.6. Preparation of Mushrooms Methanol Extracts

The fruiting bodies of P. columbinus grown on substrates A–D were manually collected
and selected discarding parts presenting non-healthy aspect, of physical damage. Fresh
material was grossly divided in slices and immediately macerated in methanol for seven
days at 20 ◦C (1:10 w:v). Extracts were then centrifuged (5000× g for 10 min), the residue
was removed and the liquid phase was directly used for phytochemical investigation or
taken to dryness in a rotary evaporator (bath temperature below 50 ◦C) and calculated the
loss of drying. The extraction yield resulted 41.03, 28.92, 43.19 and 30.90 mg of dry extract
from 1 g of fresh fruiting body, respectively, from substrates A–D. Extraction of samples
deriving from each substrate (A–D) were performed in two independent extractions and
the liquid phase from both extractions combined together and used as single sample.

As for the biological tests, an accurately weighted aliquot of extract was mixed in a
defined volume of distilled water and solubilized in a sonicating bath at room temperature
for one hour.

3.7. Untargeted LC-MS/MS-Based Metabolomics and Statistical Analysis

Untargeted metabolomics was carried out by using ultra-performance liquid chro-
matography mass spectrometry (UHPLC)–QTOF employing a 1260 ultra-high-performance
liquid chromatograph and a G6530A QTOF mass spectrometer (Agilent Technologies,
Santa Clara, CA, USA). The chromatographic conditions are fully described in our recent
paper [2].

Compound annotation was made using mummichog algorithm [51] implemented in
“Functional analysis” module of MetaboAnalyst 5.0 [52] using 5 ppm of tolerance for both
polarities. Heatmap, ANOVA and Functional Meta Analysis were also performed with
MetaboAnalyst. For statistical analysis, samples were normalized by median, followed by
pareto scaling.

3.8. Phenolic and Flavonoid Determination: HPLC-DAD-MS Analyses

The identification and quantification of selected phenolic compounds, namely gallic
acid, benzoic acid, catechin, hydroxytyrosol, chlorogenic acid and epicatechin was carried
out through HPLC-DA-MS analysis. The detailed protocol is included in a recent paper of
ours [53].

3.9. Free Radical-Scavenging Activity
3.9.1. DPPH Assay

The scavenging effect of mushroom extracts on DPPH radicals was evaluated spec-
trophotometrically according to literature [54–56].

3.9.2. ABTS Assay

The ABTS radical cation scavenging activity was performed according to Re et al. [57]
and Ozturk et al. [55].

3.9.3. β-Carotene-Linoleic Acid Assay

The antioxidant activity of extracts was determined spectrophotometrically following
the β-carotene–linoleic assay method of Yae et al. [58], Prieto et al. [59] and Vaz et al. [60].
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3.10. Antimicrobial Tests
3.10.1. Bacterial and Fungal Strains

The in vitro antimicrobial activity of extracts A–D samples was assessed against the
following Gram-negative and Gram-positive bacterial strains: Escherichia coli (ATCC 10536),
E. coli (PeruMycA 2), E. coli (PeruMycA 3), Bacillus cereus (PeruMycA 4), Pseudomonas aerug-
inosa (PeruMyc 5), B. subtilis (PeruMyc 6), Salmonella typhy (PeruMyc 7) and Staphylococcus
aureus (ATCC 6538). Furthermore, the same extracts were assayed for the antifungal assays
against different yeasts, dermatophyte and fungal pool species: Candida albicans (YEPGA
6183), C. tropicalis (YEPGA 6184), C. albicans (YEPGA 6379), C. parapsilopsis (YEPGA 6551),
Arthroderma crocatum (CCF 5300), A. curreyi (CCF 5207), A. gypseum (CCF 6261), A. in-
singulare (CCF 5417), A. quadrifidum (CCF 5792), Trichophyton mentagrophytes (CCF 4823),
T. mentagrophytes (CCF 5930), T. rubrum (CCF 4933), T. rubrum (CCF 4879) and T. tonsurans
(CCF 4834), Talaromyces sp. (PMDB1), Talaromyces minioluteus (PMDB3), Trichothecium ro-
seum (PMDB4), Stemphylium vesicarium (PMDB5), Fusarium oxysporum (PMDB6), Auxarthron
ostraviense (PMDB7) and Candida parapsilopsis (PMDB10) [61].

3.10.2. Antibacterial Activity

Determination of Minimum Inhibitory Concentration (MIC) was performed according
to the broth dilution method M07-A9 drafted by the Clinical and Laboratory Standard
Institute (CLSI M07-A9, 2012). The experimental conditions are reported in our previous
paper [61].

3.10.3. Antifungal Activity

Susceptibility testing against yeasts and filamentous fungi was performed according
to the CLSI M27-A3 and M38-A2 protocols, respectively.

Candida parapsilosis (Ashford) Langeron & Talice (ATCC 22019) and Candida krusei
(Castell.) Berkhout (ATCC 6258) strains were used as quality controls. The experimental
conditions are reported in our previous paper [61].

For the mushroom extracts, the MIC end-points were defined as the lowest concentra-
tion that showed total growth inhibition.

3.10.4. Statistical Analysis

The results were expressed as mean ± standard deviation and analyzed via Student
test. The statistical significance was set a p < 0.05 and analysis was conducted through
GraphPad Prism 5.01 version (GraphPad Software, San Diego, CA, USA).

4. Conclusions

The present findings support more in-depth investigations aimed at evaluating the in-
fluence of growth substrate on P. columbinus antimicrobial and antioxidant properties. The
extracts from P. columbinus revealed valuable sources of primary and secondary metabo-
lites, thus suggesting potential applications in the formulation of food supplements with
biological properties, above all in terms of antioxidant and antimicrobial properties. Future
studies are needed to further improve our knowledge of the metabolic pathways and
the complexity of the compounds measured. This will also allow in understanding the
mechanisms of action at the basis of the observed effects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10101245/s1, Supplementary Tables S1: P. columbinus metabolites identified by
untargeted HPLC-MS analysis; Tables S2: List of significance using post-hoc analysis (Fisher’s LSD);
and Tables S3: Correlation matrix between phenolic and flavonoid compounds in P. columbinus
extracts and antioxidant effects in selected experimental models.

https://www.mdpi.com/article/10.3390/antibiotics10101245/s1
https://www.mdpi.com/article/10.3390/antibiotics10101245/s1
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