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Abstract 

Background:  Lung segmentation constitutes a critical procedure for any clinical-
decision supporting system aimed to improve the early diagnosis and treatment of 
lung diseases. Abnormal lungs mainly include lung parenchyma with commonalities 
on CT images across subjects, diseases and CT scanners, and lung lesions presenting 
various appearances. Segmentation of lung parenchyma can help locate and analyze 
the neighboring lesions, but is not well studied in the framework of machine learning.

Methods:  We proposed to segment lung parenchyma using a convolutional neural 
network (CNN) model. To reduce the workload of manually preparing the dataset for 
training the CNN, one clustering algorithm based method is proposed firstly. Specifi-
cally, after splitting CT slices into image patches, the k-means clustering algorithm with 
two categories is performed twice using the mean and minimum intensity of image 
patch, respectively. A cross-shaped verification, a volume intersection, a connected 
component analysis and a patch expansion are followed to generate final dataset. 
Secondly, we design a CNN architecture consisting of only one convolutional layer with 
six kernels, followed by one maximum pooling layer and two fully connected layers. 
Using the generated dataset, a variety of CNN models are trained and optimized, and 
their performances are evaluated by eightfold cross-validation. A separate validation 
experiment is further conducted using a dataset of 201 subjects (4.62 billion patches) 
with lung cancer or chronic obstructive pulmonary disease, scanned by CT or PET/CT. 
The segmentation results by our method are compared with those yielded by manual 
segmentation and some available methods.

Results:  A total of 121,728 patches are generated to train and validate the CNN 
models. After the parameter optimization, our CNN model achieves an average F-score 
of 0.9917 and an area of curve up to 0.9991 for classification of lung parenchyma and 
non-lung-parenchyma. The obtain model can segment the lung parenchyma accu-
rately for 201 subjects with heterogeneous lung diseases and CT scanners. The overlap 
ratio between the manual segmentation and the one by our method reaches 0.96.

Conclusions:  The results demonstrated that the proposed clustering algorithm based 
method can generate the training dataset for CNN models. The obtained CNN model 
can segment lung parenchyma with very satisfactory performance and have the 
potential to locate and analyze lung lesions.
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Background
In recent years, segmentation has known great successes in various medical images anal-
ysis tasks including detection of atherosclerotic plaques [1], pelvic cavity assessment [2, 
3], ear image data towards biomechanical researches [4], skin lesions detection [5], etc. 
This has led to its expansion to lung diseases detection [6, 7] and specifically to lung 
field extraction [8]. Lung segmentation is an incredibly important component of any 
clinical-decision support system dedicated to improving the early diagnosis of critical 
lung diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), etc. 
[9]. However, it constitutes a very challenging task [10]. Lung segmentation is difficult 
to achieve due to the fact that lung pathologies present various appearances different 
from the normal lung tissue [11, 12]. There exist dozens of lung diseases including the 
ground-glass opacity, consolidation, cavity, tree-in-bud and micro nodules, nodules, 
pleural effusion, honeycomb, etc., and each of them possesses different shape, texture, 
and attenuation information at CT images [13].

With the aim of improving the early diagnosis and treatment of lung diseases, numer-
ous studies have been conducted to segment and analyze both normal and abnormal 
lung from CT images. Generally, according to the study by Mansoor et al. [12], existing 
methods can be categorized into four classes; and each of them owns specific advan-
tages and disadvantages. The first class is the thresholding-based methods which set a 
thresholding (or CT number) interval to create binary partitions [14]. These methods 
are the fastest, but pathological regions are often not included and various morphologi-
cal operations are required. The second class is referred to as region-based methods and 
includes the region growing [15], graph cuts [16, 17], random walk [10, 18, 19], etc. This 
class of methods is fast and works well with more subtle attenuation variations. How-
ever, they presence some deficiencies such as over-segmentation problem and may fail 
if there exist great number of pathological findings in the lung. The third class is shape-
based methods and can be further divided into two sub-classes: atlas-based and model-
based. As the prior knowledge of lung shape, an atlas or model is aligned to the target 
images firstly, and then the atlas or model is transformed geometrically to the best seg-
mentation through an optimization procedure [20–23]. These methods work well only 
for the lungs with mild and moderate abnormalities, but have difficulties while creating 
representative model and are computationally expensive. The fourth class is neighbor-
ing anatomy guided methods which use the spatial information of surrounding organs 
(e.g., rib, heart, spine, liver, spleen) to constrain the segmentation [11]. Moreover, a new 
trend has been becoming obvious for the segmentation of lung, i.e., the combination of 
different methods generate better results [12, 19]. Other surface-based methods are also 
available [24], and readers are encouraged to refer to the reviews for further details [12, 
25, 26].

Recently, the tremendous success of machine learning techniques has attracted 
the attention of many researchers resulting in the development of numerous success-
ful machine learning-based lung segmentation methods. For instance, Xu et  al. [27] 
extracted 24 three-dimensional texture features including the first-order, second-order, 
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fractal features, and used Bayesian classifier to discriminate five categories. Yao et  al. 
[28] had extracted 25 features from each 16 × 16 image patch and used support vector 
machine (SVM) to differentiate normal from abnormal lung regions (pulmonary infec-
tion and fibrosis). Similarly, the 130 gray-level co-occurrence features extracted from 
21 × 21 × 21 pixel VOI and k-nearest neighbor classifier were used to classify lung 
parenchyma into normal, ground glass, and reticular patterns [29]. Extracted Mobius 
invariant shape features and statistical texture features and SVM were also employed to 
detect and quantify tree-in-bud (TIB) opacities from CT images [30]. Song et  al. [31] 
had extracted 176 texture, intensity and gradient features from each image patch and 
investigated the performance of four approximative classifiers. Thereafter, to the end of 
overcoming the difficulties encountered in the processes of features design and selec-
tion, some deep learning (i.e., convolutional neural network, CNN) and representation 
learning methods have been used to address the lung CT images analysis [32, 33].

Nowadays, many machine learning-based algorithms are being used to detect or dis-
tinguish various lung abnormalities and the obtained results are combined with the nor-
mal lung parenchyma segmented by other traditional methods to detect the complete 
lung area. Although, these methods can produce satisfactory results, their implementa-
tions comprise many processes which may need longer computational time. Moreover, 
in some machine learning methods especially the deep learning methods, huge amount 
of image patches need to be labeled or annotated manually; which is a time-consuming 
process and constitutes a tedious task for the radiologists. Thus, the development of a 
machine learning-based framework for precise segmentation of lung parenchyma from 
thoracic CT images will be of great help in analyzing and treating lung diseases. Addi-
tionally, an easier and low-cost accurate way for generating massive dataset used in the 
processes of training and validation of deep learning model is highly needed.

Motivated by the aforementioned, we propose one different strategy to segment lung 
parenchyma excluding lesions from CT images using a CNN trained with the cluster-
ing algorithm generated dataset. This idea originates from the observation that the nor-
mal lung parenchyma owns commonalities across subjects, diseases and CT scanners, 
although lung pathologies present various appearances at CT images. Segmentation of 
lung parenchyma can help detect and locate neighboring lung lesions, which is of great 
significance to the early diagnosis and treatment of lung diseases. The contributions of 
this paper are as follows. First, we proposed a weak supervised approach to generate 
large amount of CT image patches for the subsequent training and validation of CNN 
which can be effectively and efficiently used to replace the conventional time-consum-
ing process of determining regions of interest (ROI) manually. Second, we designed 
and trained a CNN model to identify patches of lung parenchyma generated from CT 
images. Through this trained CNN model, the fully automatic segmentation of lung 
parenchyma can be achieved with excellent robustness, efficiency and accuracy. The 
proposed fully automated machine learning based framework for lung parenchyma seg-
mentation possesses the potential to help researchers and radiologists locate and analyze 
the neighboring lesions of the lung.
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Methods
Our proposed lung parenchyma segmentation method consists of three stages: (1) the 
generation of the labeled dataset to be fed into the CNN; (2) the design, training and val-
idation of a CNN model; (3) the segmentation using the trained CNN. A detailed expla-
nation of every stage of the proposed framework is given below.

The generation of the labeled dataset

Adopting the popular machine learning framework, all the input images with a fixed 
size of 512 × 512 are split into smaller patches with the same size at first. The size of 
patches is determined through comparing the clustering results at different settings of 
64 × 64, 32 × 32, 16 × 16, 8 × 8, 4 × 4 and 2 × 2. The best patch size is set to 8 × 8, and the 
reason will be interpreted in the subsection of experiments. Total number of patches is 
10,076,160 split from the data of 23 patients.

The complete procedure with corresponding results after each sub-step of generating 
the labeled dataset is illustrated in Fig. 1. At first, with all the 10,076,160 patches as input, 
the k-means clustering algorithm with two categories is performed twice using the mean 
and minimum intensity of the image patch, respectively. As shown in Fig. 1a, the lung 
parenchyma and the background air outside the human body have been grouped into 
one class of low intensity. Then, one technique named the cross-shaped verification is 

Fig. 1  The generation of the labeled data. a The procedures and corresponding results after each sub-step. b 
The generated dataset for the training and validation of the CNN
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used to remove the group of patches of that background air. For each group of low inten-
sity patch obtained in this step, we check whether there is at least a high intensity patch 
in all of its four directions (left, right, up, and down). Only if this assumption is true, 
the current low intensity patch will be kept and regarded as one of lung parenchyma, 
otherwise it will be discarded. The k-means clustering with mean intensity of patch and 
the cross-shaped verification possesses the ability to generate more accurate lung paren-
chyma boundaries, but more patches are kept in the gap between human body and the 
scanner bed. The same process occurs in the opposite way in the case of using the mini-
mum intensity. Hence we apply this kind of k-means clustering algorithm twice and take 
the intersection of the obtained volumes.

Subsequently, connected component analysis algorithm based on Max-Tree proposed 
by Fu et al. [34] is applied to extract the lung parenchyma. Furthermore, padding is per-
formed to expand the 8 × 8 patch into 32 × 32 patch without overlapping so as to meet 
the image input demand of the next CNN training, as shown in Fig. 1b. It is worth men-
tioning that the expansion of the 8 × 8 patch will result in image patch containing both 
lung parenchyma and body parts. However, the center of every patch is the lung paren-
chyma. Finally a total of 60,864 patches of lung parenchyma are generated. Correspond-
ingly, the same number of patches belonging to non-lung parenchyma is selected out 
randomly for the balance of two classes. The balance of the two classification classes is 
performed in the aim of eliminating the decline in testing accuracy caused by the imbal-
ance of the training dataset.

A CNN model

We proposed a simplified CNN model possessing the ability to differentiate the real lung 
parenchyma image patches from non-lung parenchyma image patches. The structure of 
this CNN network comprises an image input layer, a convolutional layer, a pooling layer 
and two fully connected layers with a Softmax layer. A detailed description of the above-
mentioned CNN model is displayed in Fig. 2. Comparing with the well-known AlexNet 
structure comprising five convolutional layers, we just preserve one convolutional layer 
with six convolutional kernels to deal with the input set of image patches of 32 × 32. The 
single convolution layer is followed by rectified Linear Unit (ReLU) and normalization 
layers which helps accelerate the convergence of the stochastic gradient descent (SGD) 
and prevent overfitting as well. Then a MaxPooling layer, the first fully connected layer, 

Fig. 2  The network architecture of the proposed simplified CNN
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a dropout layer, ReLU layer, the second fully connected layer and Softmax layer follow, 
respectively. The first fully connected (FC) layer includes 120 neurons. The dropout layer 
helps in avoiding overfitting.

The segmentation using CNN

After splitting all the CT images for segmentation into patches of 32 × 32 using each 
voxel as the center point, they are input into the trained CNN. Simultaneously, each 
patch will be automatically given a label of 1 or 0, denoting lung parenchyma (LP) or 
non-lung parenchyma (NLP). The maximum connected component detection is done 
to extract the whole LP volume. Finally the hole in the LP volume is filled to achieve the 
final segmentation results of lung parenchyma.

Experiments and image data
In the aim of implementing the machine learning-based framework proposed in this 
study, four main experiments have been conducted. The first experiment consists of 
determining the most appropriate patch size among different sizes including 64 × 64, 
32 × 32, 16 × 16, 8 × 8, 4 × 4 and 2 × 2; during the stage of generating the labeled data-
set of LP and NLP. The characteristics of the image patches and the computational time 
are assessed to determine the best patch size. The second experiment is the parameters 
optimization procedure of the CNN model; which will be described shortly in “CNN 
parameters optimization” section. The performance of the trained CNN model is tested 
in the third experiment. The experimental dataset used in the second and third experi-
ments consists of 121,728 patches obtained from “The generation of the labeled data-
set” section. The fourth experiment is performed using a separate dataset of 201 subjects 
diagnosed with lung cancer or chronic obstructive pulmonary disease (COPD) to fur-
ther evaluate the performance of the trained CNN model. The details of the partition of 
the experimental dataset into training, validation and testing are given in Table 1.

All the experiments of this study were conducted under a Windows 7 on a workstation 
with CPU Intel Xeon E5-2620 v3 @2.40 GHz, GPU NVIDIA Quadro K2200 and 32 GB 
of RAM. The proposed CNN was implemented using the simplified AlexNet structure 
and the procedures of unsupervised clustering generation algorithm were implemented 
in MATLAB 2017a.

CNN parameters optimization

To the end of setting the best values of the CNN parameters, numerous experiments 
were conducted while evaluating its performance through comparing the achieved aver-
age value of F-score (Favg) and the computational time of training of the training process. 
Favg is defined as 

Table 1  The details of the train/validation dataset and the separate dataset

Dataset Number 
of patients

Number of slices Number of lung 
parenchyma 
patches

Number of non-
lung parenchyma 
patches

Total 
number 
of patches

The train/validation 23 2460 60,864 60,864 121,728

The separate 201 19,967 415,612,531 4.2040 × 109 4.6196 × 109
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where Precisionnlp and Recallnlp represent the positive prediction rate and the sensitivity 
of the class of non-lung parenchyma, respectively. Similarly, Precisionlp and Recalllp are 
he positive prediction rate and the sensitivity of the class of lung parenchyma, respec-
tively. Precision and Recall can be computed as

where TP is true positive, FP is false positive, and FN is false negative.
We varied up to 23 parameters during the training process of our CNN model, how-

ever, only the variation of nine of those parameters had a significant effect on the clas-
sification results. The default settings of these nine parameters can be determined as: 
the kernel size (5); the kernel number (6); the local response normalization layer (3); 
the output size of fully connected layer (120); the dropout probability (0.5); the pool-
ing type (Max); the batch size (128); the number of epochs (50); the learning rate (0.01). 
Using these default settings as the reference, we adjusted each parameter while keeping 
the others constant and investigated the variation of Favg and the elapsed time. Specifi-
cally, 11 cases were evaluated under the circumstances of the kernel size of 10, the kernel 
number of 3, the channels of normalization of 1, the output of FC of 240, the dropout 
probability of 0.2 and 0.1, the pooling type of Avg, the batch size of 256, the epochs of 80, 
the learning rate of 1 × 10−5 and 1 × 10−4.

Performance evaluation using cross‑validation

A total of 121.728 image patches of 32 × 32 are divided into the training and validation 
datasets with a ratio of 7:1, and the 8-folder cross-validation is carried out. The relation-
ship between the training accuracy and loss and the number of iterations is investigated. 
The receiver operating characteristic (ROC) curve is drawn and the area under the ROC 
curve (AUC) is calculated for the trained CNN model. The confusion matrix and six 
convolutional kernels are presented at last.

Performance evaluation using the separate dataset and manual segmentations

One separate dataset containing 201 cases of patients was collected to evaluate the 
robustness, efficiency and accuracy of the trained CNN model for lung parenchyma seg-
mentation. Among them, nine cases are patients with COPD confirmed by the pulmo-
nary function test, and 192 cases are with lung cancer confirmed by the histopathology 
examination. For the cases with lung cancer, 174 cases are acquired by CT scanner, 18 
cases by PET/CT scanner, whose CT images have a circular field of view. The 19,967 
image slices resulted from examining all the 201 patients’ image files have been split 
into 4.62 × 109 image patches. The robustness is evaluated through the 201 cases data 
with different diseases (COPD or lung cancer) and acquired by different scanners (CT 

(1)Favg ==
Precisionnlp × Recallnlp

Precisionnlp + Recallnlp
+

Precisionlp × Recalllp

Precisionlp + Recalllp

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN
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and PET/CT). The accuracy is calculated through comparing the lung field segmenta-
tion results achieved by the automated CNN model with that yielded by the manual and 
independent annotations of two experienced radiologists as the reference.

For a more comprehensive and clearer performance evaluation of the proposed 
machine learning based lung parenchyma segmentation method, four evaluation met-
rics have been considered including: the Dice similarity coefficient (DSC), Hausdorff dis-
tance, sensitivity, and specificity.
DSC is defined as

where VGT is the reference standard segmentation (ground truth) obtained by the radi-
ologists manually, Vtest is the segmentation by our proposed method.

Haussdorf distance (HD) is to measure how far apart the boundaries of our seg-
mentation and reference (ground truth) are from each other. Let the real lung 
boundaries (ground truth) obtained by the radiologists and the segmentation by our 
proposed method be defined by VGT and Vtest, respectively. VGT comprises a set of points 
VGT (i)(i = 1, 2 . . . . . . n) and Vtest as well comprises a set of points Vtest(j)(j = 1, 2 . . . . . . n) 
[35]. Hence, HD is defined as

Sensitivity is defined as TP/P, where P is the number of voxels in reference and TP is 
the number of voxels segmented correctly by the proposed method. Specificity is defined 
as TN/N, where N is the number of voxels not in reference, TN is the number of voxels 
correctly identified as non-lung parenchyma by the current method.

Results
The patch size

For different sizes of the image patch, the computational time, characteristics of seg-
mentation, and the assessment are given in Table 2 and Fig. 3. The segmentation results 
obtained considering six different patch sizes after k-means clustering with the mean 
intensity of the patches for one subject with 126 slices are illustrated in Fig. 3. It can be 
found that the segmentation becomes more exquisite with the decrease of the patch size, 

(4)DSC(VGT,Vtest) = 2

∣

∣VGT

⋂

Vtest

∣

∣

|VGT| + |Vtest|

(5)HD(VGT ,Vtest) = max

(

max
i∈VGT

min
j∈Vtest

∥

∥i − j
∥

∥, max
j∈Vtest

min
i∈VGT

∥

∥i − j
∥

∥

)

Table 2  The assessment of patch size through the segmentation characteristics and time 
consumption

Patch Size Time consumption 
for one patient

Characteristics of patch segmentation Assessment

64 × 64 0.9306 s Too rough, fast Not considered

32 × 32 1.2909 s Rough, fast Bad choice

16 × 16 2.6340 s Including other tissues such as fat, tumor and heart Bad choice

4 × 4 25.8358 s Exquisite, but computationally expensive Second choice

2 × 2 98.0321 s Very exquisite, but computationally expensive Bad choice

8 × 8 7.5695 s Exquisite Best choice
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while the computational time increases. Moreover, the accepted results can be obtained 
while the size is equivalent to or smaller than 8 × 8. The nodule and regions with high 
CT number are excluded from the lung parenchyma. Considering the tradeoff between 
the time-computation cost and the achieved segmentation results, the patch size of 8 × 8 
is set as the most appropriate choice.

Optimization of the CNN parameters

Experiments were conducted considering the default settings of the nine parameters 
previously mentioned in “CNN parameters optimization” section whose numerical val-
ues are shown in the first row of Table 3. The proposed system yielded a Favg validation 
of 0.9758 and the elapsed time for completing the training and validation was 846.53 s. 
Using these settings as the reference, each parameter is adjusted while keeping the others 
constant and the variation of Favg and the elapsed time are evaluated. The optimization 
of the network parameters through performing experiments while varying their values 
was conducted in the following manner. Doubling the size of the convolutional kernel 
from 5 × 5 to 10 × 10 led to the drop of Favg from 0.9758 to 0.9688 with an increase of the 
elapsed time by 27%. Favg also decreases slightly for both cases of the kernel number of 
3 and the local response normalization layer of 1. Doubling the output size of the fully 
connected layer from 120 to 240 led to a slight increase of Favg from 0.9758 to 0.9765, 
meanwhile the network training time rises sharply to 1282.9 s. The dropout probability 
of 0.5 has been chosen to be the optimal because the Favg reached 0.9688 and 0.9541 for 
a dropout probability of 0.2 and 0.1 respectively. In opposition to its usual effects on the 
training results, an increase of the batch size from 128 to 256 resulted in a diminishment 

Fig. 3  Segmentations using k-means clustering with different patch sizes
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of the Favg from 0.9758 to 0.9659. Similarly, an augmentation of the epoch’s number to 80 
resulted in a decrease of the Favg value. Last but not least, the learning rate is a very criti-
cal parameter whose decrease can significantly increase the Favg value. Specifically, the 
Favg reaches 0.9855 and 0.9917 for the learning rate of 0.00001 and 0.0001, respectively. 
The final optimized parameters employed in our trained CNN model can be found in 
the last row of Table 3. In summary, the relationships between Favg and most training 
parameters are not monotonic, and there exists an optimum condition for exploration.

Performance evaluated using cross‑validation

Using the hyper-parameter settings recorded in the last row of Table  3, the train-
ing accuracy and loss as the function of iterations number are presented in Fig. 4a, 
b respectively. The training accuracy and loss reach 99.08% and 0.0294, respectively, 

Fig. 4  Performance of the trained CNN for lung parenchyma segmentation. a The training accuracy. b 
The training loss. c The six convolutional kernels. d The receiver operating characteristic (ROC) curve. e The 
confusion matrix
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while the number of iteration reaches to 4.15 × 104, indicating the convergence 
without overfitting during the training process of our designed CNN model. The 
visualization of the six kernels of the convolutional layer after the lung parenchyma 
segmentation process is displayed in Fig. 4c. It is easily noticeable that the image pat-
terns are very smooth and there is absence of noises and artifacts. Thus, the network 
parameters have been appropriately chosen leading to great classification perfor-
mance. In addition, the ROC curve of the trained CNN is plotted in Fig.  4d repre-
sents, which clearly displays that the area under the curve (AUC) is up to 0.9991 for 
both lung parenchyma and non-lung parenchyma categories. Meanwhile, the confu-
sion matrix shown in Fig. 4e indicates a sensitivity of 98.8%, a positive prediction of 
99.5%, a specificity of 99.5%, a negative prediction of 98.9%, and an accuracy of 99.2%.

Performance evaluated using the separate dataset and manual segmentations

Comparing the segmentation results achieved by CNN model with those yielded by the 
two radiologists for all the 402 slices (manual segmentations), the averaged DSC, HDavg, 
sensitivity, specificity reach 0.968/0.966, 1.40/1.48  mm, 0.909/0.906, and 0.999/0.999 
(to radiologist I/to radiologist II), respectively. For each slice with 512 × 512 voxels, the 
averaged computational time to segment the region of lung parenchyma is 10.75 s. For 
a visual illustration of these performances, Figs. 5, 6 displays the segmentation results 
achieved by our proposed CNN model and manual segmentation on a separate dataset. 
From left to right, the first, second and third columns represent the segmentation by the 
radiologists, the segmentation by our CNN model and the hole-filling result performed 
on our CNN model result, respectively.

Figure 5a presents three segmentation instances of patients suffering from COPD at 
axial slices. It is found that most of the lung parenchyma regions have been identified 
and segmented with satisfactory performance. In the second column of Fig.  5a which 
represents the result of our CNN model, some patches of pulmonary bulla are not well 
segmented. After an ordinary hole-filling operation, the complete lung field can be 
obtained, as shown in the third column of Fig.  5a. Besides, there are other three seg-
mentation results of subjects with lung cancer shown in Fig. 5b. Their lung parenchyma 
can be well distinguished from lung tumor, pleural effusion and other backgrounds. The 
tumor region embedded in the lung field can be extracted easily through comparing the 
results before and after hole-filling. Additionally, Fig. 6a demonstrates three more seg-
mentation cases of subjects with lung cancer where the CT images are acquired by PET/
CT scanners. One can find that the present CNN model also produces a good effect on 
lung parenchyma segmentation though the contrast and lung attenuation coefficient are 
quite different between images acquired by CT and PET/CT scanners.

Some details on those special cases are shown in Fig.  6b. In the first row, the pleu-
ral effusion at the right lung cannot be segmented. The hole-filling result is not able to 
include these regions, for they are located at the boundary of the lung field. Due to the 
same reason, the pulmonary bulla near the boundary of lung field also failed to be seg-
mented, as shown in the second row of Fig. 6b. As illustrated in the third row of Fig. 6b, 
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Fig. 5  Examples of segmentation at axial slices (In each sub-figure, there are three columns: the left the left 
column shows the results of manual segmentation of lung field including both lung parenchyma and lesions; 
the middle column presents the results of segmentation of lung parenchyma by our proposed method; the 
right column shows the results after a “hole-filling” operation from those by our method.). a Three example 
slices (three rows) for subjects with COPD. b Three example slices for subjects with lung cancer (CT scanner)
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Fig. 6  Examples of segmentation at axial slices (In each sub-figure, there are three columns: the left the left 
column shows the results of manual segmentation of lung field including both lung parenchyma and lesions; 
the middle column presents the results of segmentation of lung parenchyma by our proposed method; the 
right column shows the results after a “hole-filling” operation from those by our method.). a Three example 
slices (three rows) for subjects with lung cancer (PET-CT scanner). b Three example slices (three rows) for 
special cases where the pleural effusion, emphysema, inflammation are near the boundary the lung field



Page 15 of 21Xu et al. BioMed Eng OnLine            (2019) 18:2 

the inflammatory lung cancer cannot be segmented out because its CT features are 
completely different from those of lung parenchyma. Furthermore, a 3D visualization of 
some segmentation results is displayed in Fig. 7. For most cases, the segmented lung sur-
face is smooth. There can also be seen some cavities or uncompleted lung fields resulted 
from the presence of the pleural effusion, pulmonary bulla and lung tumor near the 
boundary of the lung field.

In sum, from the averaged DSC (0.968/0.966), HDavg (1.40/1.48  mm), sensitivity 
(0.909/0.906), specificity (0.999/0.999) yielded by our proposed CNN model and the 
visualization of the segmentation results shown in Figs. 5, 6 and 7, the proposed deep 
learning based approach achieved very satisfactory segmentation performance.

Discussions
Semi‑supervised method of generating annotations

One semi-supervised method of generating annotations has been proposed and imple-
mented in the current study. Specifically, dual unsupervised k-means clustering, a cross-
shaped verification, an intersection operation, a connected component analysis and a 
patch expansion are successively executed. It is well known that most of the supervised 
machine learning (e.g., SVM, random forest, CNN) methods require a huge amount of 
labeled or annotated data usually produced by experts manually. For example, 12,481 
lesion patches and 16,741 normal patches are derived from the manually segmented 
regions in the study by Yao et al. [28]. In the experiments conducted by Song et al. [31], a 
total of 2062 2-D annotated ROIs were manually drawn by two radiologists. This manual 
annotation process is always time-consuming and high-costing. In this study we have 
proposed a semi-supervised method for generating annotated image patches which 
could effectively and efficiently help radiologists and researchers get rid of the tedious 
manual annotations. However, the comparison of this method with the manual annota-
tions conducted by the medical experts remains unexplored.

Fig. 7  Examples of segmentation shown using 3D surface rendering
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A simplified or deep CNN, and parameter optimization

We have proposed and implemented a simplified CNN model consisting of only a con-
volutional layer, a pooling layer and two fully connected layers with a Softmax layer. 
Comparing with LeNet [36] of two convolutional layers, AlexNet [37] of eight learned 
layers, and VGG-VD [38] of 19 layers, our CNN model is very “shallow”. However, its 
sensitivity of 98.9% makes the exploration of more deep CNN models not so urgent. 
The high sensitivity clearly justifies the ability of the proposed framework to segment 
lung parenchyma without many difficulties. For the more complicated lesions, the deep 
CNN is required because the network with more depth can better approximate the tar-
get function with high nonlinearity and achieve better feature representations [39]. For 
instance, Anthimopoulos et al. had proposed one deep CNN with five convolutional lay-
ers to do lung pattern classification for interstitial lung diseases [32]. Recently Shin et al. 
[40] have explored three CNN architectures of CifarNet, AlexNet and GoogLeNet using 
lymph node (LN) detection and interstitial lung disease (ILD) classification.

As done in some previous CNN studies [32, 40], the optimization of the CNN hyper-
parameters is critical and inevitable. Most trends of influence of hyper-parameters on 
the training accuracy observed in the current study accord with previous study. More 
specifically, as the common choice for most CNNs, the maximum pooling yields high 
accuracy and is much faster in terms of convergence. It is found that the dropout and 
normalization are effective to accelerate the convergence. Small kernel size of 5 × 5 is 
better than 10 × 10. Even smaller kernels have been employed, e.g., 3 × 3 kernel in VGG-
net, 2 × 3 kernel in work by Anthimopoulos et al. [32]. A relatively larger number of con-
volutional kernels and output units of FC, and a relatively smaller batch size and number 
of epochs lead to high accuracy. It is of great importance to mention that the learning 
rate is a very important parameter whose value needs to assign with special attention 
and according to the size of the objects of interest contained in the image patches to be 
classified.

The proposed method comparison with the traditional methods

To the end of detecting and analyzing the various lung diseases, numerous lung segmen-
tation methods have been proposed. Given the wide range of lung lesions, the existing 
methods aimed to solve different problems and they have been implemented on differ-
ent image types acquired from various databases. Thus, it is quite challenging to repro-
duce these algorithms as well as to collect the dataset used in their experiments.

Aiming to quantitatively evaluate the performance of our proposed method, exten-
sive experiments have been conducted using the proposed method and four commonly 
used lung segmentation methods including the iteration, improved Ostu, watershed 
and region growth methods [12]. The segmentation results achieved by each of the 
five methods were evaluated considering the Dice similarity coefficient (DSC) and the 
algorithm self-adaptability measure. The algorithm self-adaptability can be defined 
as the number of images successfully segmented by the system after inputting a set of 
images. The computed DSC and self-adaptability values have been recorded in Table 4. 
A comparison of those values shows that our method achieved a DSC of 0.9671 which 
is greater than that of the other four methods. In addition, our fully automatic machine 
learning based method yielded an adaptability of 100% because of the contribution of 
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the CNN model while the iteration, improved Ostu, watershed and region growth meth-
ods yielded an adaptability of 83.33%, 83.68%, 62.5% and 91.32%, respectively. The itera-
tion and improved Ostu methods failed to segment all the input images because of the 
presence of images whose cylinder-shaped background CT value and injected contrast 
agent value is always lower than − 1024HU and higher than 1024HU, respectively. The 
watershed method could not segment all the images due to the fact that the boundary of 
lung parenchyma is not stable and is easier to leak into the human body. Therefore, the 
proposed method is superior to the state-of-the-art lung segmentation methods both 
effectively and efficiently.

Parenchyma at first, then the whole lung analysis in a unified framework

To the best of our knowledge, this is the first study conducted on extracting lung paren-
chyma from CT images using a fully machine learning-based framework, rather than 
the whole lung or various lung pathologies. This idea originated from one previously 
ignored fact that lung parenchyma is quite different from lung pathologies [11, 12, 41]. 
The lung parenchyma owns commonalities across subjects, diseases and CT scanners 
although lung pathologies exist under various appearances. An accurate segmentation of 
lung parenchyma may have potential to help locate and analyze the lung lesions. Current 
framework is compatible to further segmentation of various lesions, so the whole lung 
analysis might be done in a unified framework.

Our method naturally belongs to the bottom-up strategy in which only local informa-
tion of the shape, texture and intensity within a 32 × 32 patch is considered. The ROI 
is larger than the thresholding and region-based approaches. Multiple scale technique 
(e.g., using the patches in different sizes simultaneously) may further improve the per-
formance. Comparing to the top-down strategy (the model-based and neighboring 
anatomy-guided methods), our method presents lower computational time and can 
successfully segment lung with a certain level of abnormities. Last, not the least, the 
CNN-based methods get rid of the work of feature engineering. All the features for clas-
sification are learned from the training data and no handcrafted feature is necessary [42].

Pixel‑wise or patch‑wise segmentation

Using the proposed CNN model, the average lung parenchyma regions segmentation 
time is estimated at 10.75  s for each slice with 512 × 512 voxels, which is a pixel-wise 
segmentation. The computational time can be shortened by using a multiple-core or 
GPU provided computer. Another alternative might be the patch-wise segmentation. 

Table 4  Comparison of the proposed method with the traditional methods

Methods DSC (vs observer 
A) (%)

DSC (vs observer 
B)

Average DSC Self-adaptability

Iteration 95.40 95.22 95.31 83.33

Improved Ostu 95.35 95.18 95.27 83.68

Watershed 94.72 94.49 94.61 62.50

Region growing 96.65 96.50 96.58 91.32

Proposed method 96.80 96.62 96.71 100
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For instance, one can split the CT images into 8 × 8 patches, generate 32 × 32 patches, 
and input them into the trained CNN to realize the segmentation of lung parenchyma, 
whose average computational time can be shorten to 0.16 s for each slice. Figure 8 gives 
some relevant examples. The lung parenchyma regions can also be segmented with rea-
sonable accuracy for subjects with COPD (the first and second columns) and lung can-
cer (the third to sixth columns). The images in the third and fourth columns of Fig. 8 are 
obtained using CT scanners, and the others in the fifth and sixth columns are obtained 
from PET/CT scanners. The boundaries between lung parenchyma and lung tumor, 
pleural effusion, pulmonary bulla and other backgrounds can be depicted well. There-
fore, our proposed segmentation framework owns the good feature of suitability of the 
multiple-resolution strategy.

Although our proposed segmentation method achieved quite satisfactory perfor-
mance, it presents some limitations that are worth mentioning. First, the size of the 
patches utilized in our CNN model is fixed as 32 × 32. The effect of the patch size on 
the CNN performance is not investigated. Moreover, ensemble of CNN models fed 
with patches of different sizes may help integrate multilevel features [43]. Second, some 
state-of-art CNN models such as Fast RCNN and Mask RCNN have presented excel-
lent performance for the objection detection and segmentation [44, 45]. However, their 
performances on the dataset generated by our clustering based method remain unex-
plored. In other words, these CNN models may do well in the lung parenchyma seg-
mentation. Third, though we had built up one fully machine learning-based framework, 
some instances including segmentations of pulmonary nodules, consolidation, and pleu-
ral effusion need to be developed. Combination of segmentations of lung parenchyma 
and various lesions will demonstrate the power of our fully machine learning-based 
framework.

Conclusions
A novel machine learning-based method has been presented to segment lung paren-
chyma from CT images automatically. To the best of our knowledge, it is the first study 
conducted on extracting lung parenchyma from CT images, rather than the whole lung 
or various lung pathologies using a fully machine learning-based framework. Moreo-
ver, a clustering method is used to automatically generate huge amount of annotated 
data. This clustering algorithm can properly and efficiently replace the tedious manual 

Fig. 8  Segmentation of lung parenchyma using small patches
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annotations which could significantly reduce the workload of the radiologists leading to 
a more accurate and faster diagnosis of the diseases. The CNN parameters have been 
carefully optimized through extensive experiments. Through the trained CNN, the 
voxel-wise identification of lung parenchyma can be achieved without any feature engi-
neering work. Besides the cross-validation, an independent dataset of more than 200 
subjects with lung cancer or COPD, acquired by CT or PET/CT scanners have been 
used to evaluate the performances of the CNN model. The quantitative results show 
that our method can segment lung parenchyma from images acquired through differ-
ent imaging modalities (i.e., CT and PET/CT) with very satisfactory performance. The 
proposed machine learning-based framework may have the potential to help locate and 
analyze the lung lesions.
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