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Abstract 

Background:  Cluster analysis is an integral part of precision medicine and systems 
biology, used to define groups of patients or biomolecules. Consensus clustering is 
an ensemble approach that is widely used in these areas, which combines the output 
from multiple runs of a non-deterministic clustering algorithm. Here we consider the 
application of consensus clustering to a broad class of heuristic clustering algorithms 
that can be derived from Bayesian mixture models (and extensions thereof ) by adopt-
ing an early stopping criterion when performing sampling-based inference for these 
models. While the resulting approach is non-Bayesian, it inherits the usual benefits of 
consensus clustering, particularly in terms of computational scalability and providing 
assessments of clustering stability/robustness.

Results:  In simulation studies, we show that our approach can successfully uncover 
the target clustering structure, while also exploring different plausible clusterings of 
the data. We show that, when a parallel computation environment is available, our 
approach offers significant reductions in runtime compared to performing sampling-
based Bayesian inference for the underlying model, while retaining many of the practi-
cal benefits of the Bayesian approach, such as exploring different numbers of clusters. 
We propose a heuristic to decide upon ensemble size and the early stopping criterion, 
and then apply consensus clustering to a clustering algorithm derived from a Bayesian 
integrative clustering method. We use the resulting approach to perform an integrative 
analysis of three ’omics datasets for budding yeast and find clusters of co-expressed 
genes with shared regulatory proteins. We validate these clusters using data external to 
the analysis.

Conclustions:  Our approach can be used as a wrapper for essentially any existing 
sampling-based Bayesian clustering implementation, and enables meaningful cluster-
ing analyses to be performed using such implementations, even when computational 
Bayesian inference is not feasible, e.g. due to poor exploration of the target density 
(often as a result of increasing numbers of features) or a limited computational budget 
that does not along sufficient samples to drawn from a single chain. This enables 
researchers to straightforwardly extend the applicability of existing software to much 
larger datasets, including implementations of sophisticated models such as those that 
jointly model multiple datasets.
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Background
From defining a taxonomy of disease to creating molecular sets, grouping items can help 
us to understand and make decisions using complex biological data. For example, group-
ing patients based upon disease characteristics and personal omics data may allow the 
identification of more homogeneous subgroups, enabling stratified medicine approaches. 
Defining and studying molecular sets can improve our understanding of biological systems 
as these sets are more interpretable than their constituent members [1], and study of their 
interactions and perturbations may have ramifications for diagnosis and drug targets [2, 
3]. The act of identifying such groups is referred to as cluster analysis. Many traditional 
methods such as K-means clustering [4, 5] condition upon a fixed choice of K, the num-
ber of clusters. These methods are often heuristic in nature, relying on rules of thumb to 
decide upon a final value for K. For example, different choices of K are compared under 
some metric such as silhouette [6] or the within-cluster sum of squared errors (SSE) as a 
function of K. Moreover, K-means clustering can exhibit sensitivity to initialisation, neces-
sitating multiple runs in practice [7].

Another common problem is that traditional methods offer no measure of the stability 
or robustness of the final clustering. Returning to the stratified medicine example of clus-
tering patients, there might be individuals that do not clearly belong to any one particu-
lar cluster; however if only a point estimate is obtained, this information is not available. 
Ensemble methods address this problem, as well as reducing sensitivity to initialisation. 
These approaches have had great success in supervised learning, most famously in the 
form of Random Forest [8] and boosting [9]. In clustering, consensus clustering [10] is a 
popular method which has been implemented in R [11] and to a variety of methods [12, 
13] and been applied to problems such as cancer subtyping [14, 15] and identifying sub-
clones in single cell analysis [16]. Consensus clustering uses W runs of some base cluster-
ing algorithm (such as K-means). These W proposed partitions are commonly compiled 
into a consensus matrix, the (i, j)th entries of which contain the proportion of model runs 
for which the ith and jth individuals co-cluster (for this and other definitions see section 1 
of the Additional file 1), although this step is not fundamental to consensus clustering and 
there is a large body of literature aimed at interpreting a collection of partitions (see, e.g., 
[17–19]). This consensus matrix provides an assessment of the stability of the clustering. 
Furthermore, ensembles can offer reductions in computational runtime because the indi-
vidual members of the ensemble are often computationally inexpensive to fit (e.g, because 
they are fitted using only a subset of the available data) and because the learners in most 
ensemble methods are independent of each other and thus enable use of a parallel envi-
ronment for each of the quicker model runs [20].

Traditional clustering methods usually condition upon a fixed choice of K, the number of 
clusters with the choice of K being a difficult problem in itself. In consensus clustering, Monti 
et al. [10] proposed methods for choosing K using the consensus matrix and Ünlü et al. [21] 
offer an approach to estimating K given the collection of partitions, but each clustering run 
uses the same, fixed, number of clusters. An alternative clustering approach, mixture model-
ling, embeds the cluster analysis within a formal, statistical framework [22]. This means that 
models can be compared formally, and problems such as the choice of K can be addressed 
as a model selection problem [23]. Moreover, Bayesian mixture models can be used to try to 
directly infer K from the data. Such inference can be performed through use of a Dirichlet 
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Process mixture model [24–26], a mixture of finite mixture models [27, 28] or an over-fitted 
mixture model [29]. The Bayesian model also assesses the uncertainty in the cluster alloca-
tions, and if K is treated as a random variable uncertainty about the value of K propagates 
through to the clustering. Furthermore, the Bayesian hierarchical modelling framework ena-
bles extrapolating the mixture model to capture more complex dependencies, for example, 
integrative clustering methods tailored for multi-omics analysis [30–32]. Bayesian clustering 
methods have a history of successful application to a diverse range of biological problems 
such as finding clusters of gene expression profiles [33], cell types in flow cytometry [34, 35] 
or scRNAseq experiments [36], and estimating protein localisation [37].

Markov chain Monte Carlo (MCMC) methods are the most common tool for perform-
ing computational Bayesian inference. They guarantee an exact description of the poste-
rior distribution in the limit of infinite iterations in contrast to Variational Inference [38]. 
In Bayesian clustering, they are used to draw a collection of clustering partitions from the 
posterior distribution. In practice MCMC methods may explore the parameter space very 
inefficiently despite their ergodic properties. As the number of features/measurements 
increases this inefficiency can become pathological with chains prone to becoming stuck 
in local posterior modes preventing convergence in any feasible period of runtime (see, 
e.g., the Supplementary Materials of [39]; this problem is frequently referred to as poor 
mixing within the chain. There is a rich zoo of MCMC methods designed to overcome the 
different limitations of the most basic samplers. For example, there are MCMC methods 
that use parallel chains to improve the scalability with an increasing number of observa-
tions, such as Consensus Monte Carlo [40–42]. Consensus Monte Carlo methods subsam-
ple the original dataset and run separate chains on each smaller dataset. In this way they 
can use a far smaller quantity of data for each Monte Carlo algorithm and treat each chain 
as embarrassingly parallel enabling simultaneous model runs across machines, with the 
samples then averaged across chains. This parallelisation and reduced dataset size offers a 
significant reduction in runtime for large N datasets. Another method designed to improve 
scaling to large datasets, is stochastic gradient MCMC (SGMCMC [43]). This uses a subset 
of the data in each sampling iteration and has provable guarantees [44]. However, SGM-
CMC converges at a slower rate than traditional MCMC algorithms and remains compu-
tationally costly [45, 46]. While these methods help in scaling to large N data, they are less 
helpful in situations where we have high-dimension but only moderate sample size, such 
as frequently arises in analysis of ’omics data. Other methods such as coupling [47] use 
multiple chains to reduce the bias of the Monte Carlo estimate.

Other MCMC methods make efforts to overcome the problem of poor mixing at the 
cost of increased computational cost per iteration [48]. In clustering models introducing 
split-merge moves into the sampler are the most common examples of such bold explo-
ration moves (see, e.g., [49–52]). However, these methods are difficult to implement and 
frequently propose many rejected moves, thereby increasing computational cost without 
necessarily guaranteeing full exploration of the target density in any finite amount of time. 
Furthermore, most available Bayesian clustering methods are implemented using a basic 
Gibbs sampler and would require reimplementation to exploit more scalable samplers, a 
costly investment of time and effort. Ideally these existing implementations could be used 
despite their simple sampler.
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There also exists a range of alternative clustering methods that are designed or have 
been extended to scale well with increasing sample size, e.g., k-means clustering [53, 54], 
spectral clustering[55, 56], density-based clustering[57, 58], etc., any of which could be 
used within a consensus clustering wrapper. However, while these methods have better 
scalability than sampling based clustering methods, they suffer from a lack of flexibility. 
They do not, in general, have the ability to explore multiple values of K in a single model 
run, it is not easy to extend these methods to the multiple dataset problem and they are 
often restricted to a specific data type.

As described above, sampling-based Bayesian clustering methods are flexible, capable 
of modelling complex dependencies and the number of clusters present. However, they 
suffer from prohibitive runtimes and poor exploration in high-dimensional data (i.e., large 
P data). This limits the consistency of their inference in biomedical applications where 
data is often very high dimensional with only moderate sample size (for some discussion 
around stability in clustering, please see [59–61]). Motivated by this, we aim to develop 
a general and straightforward procedure that exploits the flexibility of Bayesian model 
based clustering methods but improves their performance under a constrained compu-
tational budget without requiring reimplementation. Specifically, we make use of existing 
sampling-based Bayesian clustering implementations, but only run them for a fixed (and 
relatively small) number of iterations, stopping before they have converged to their target 
stationary distribution. We initialise each chain with a random draw from an uninforma-
tive prior distribution on the space of partitions and then collect the final sampled parti-
tion. Doing this repeatedly, we obtain an ensemble of clustering partitions which has large 
variety in its initialisation. We use this set to perform consensus clustering, constructing a 
consensus matrix (thereby avoiding the label-switching problem) which describes uncer-
tainty about the latent structure in the data. This can be used to infer a point estimate 
clustering. We propose a heuristic for deciding upon the ensemble size (the number of 
learners used, W) and the ensemble depth (the number of iterations, D), inspired by the 
use of scree plots in Principal Component Analysis (PCA; [62]). We hope to show a way 
of scaling Bayesian mixture models and their extensions with increasing numbers of fea-
tures that can explore a range of K in a single model run and can be tailored to specific 
properties of a given dataset. We note that, despite the similarity in names, our consensus 
clustering approach for Bayesian mixture models is very different to the consensus Monte 
Carlo approach of Ni et al. [41], which was designed to enable Bayesian mixture models to 
scale to large N datasets. Our approach leans into the ensemble framework of Monti et al. 
[10]; we consider the case that our individual chains are too short to have converged and 
in which case the inference is non-Bayesian, in contrast to Consensus Monte Carlo. Our 
primary aim is to mitigate the problem of poor mixing which tends to emerge when the 
data has a high numbers of features relative to the sample size and individual chains strug-
gle to converge in a reasonable runtime, and to enable the use of complex models such as 
arise in multi-view or integrative analyses for which each iteration of the MCMC algo-
rithm is slow even for small sample data and running a long chain might not be feasible.

We show via simulation that our approach can successfully identify meaningful 
clustering structures even when chains are very short. We then illustrate the use of 
our approach to extend the applicability of existing Bayesian clustering implementa-
tions, using as a case study the Multiple Dataset Integration (MDI [30] section 2 of the 
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Additional file 1) model for Bayesian integrative clustering applied to real data. While 
the simulation results serve to validate our method, it is important to also evaluate meth-
ods on real data which may represent more challenging problems. For our real data, we 
use three ’omics datasets relating to the cell cycle of Saccharomyces cerevisiae with the 
aim of inferring clusters of genes across datasets. As there is no ground truth available, 
we then validate these clusters using knowledge external to the analysis.

Material and methods
Consensus clustering for Bayesian mixture models

We apply consensus clustering to MCMC based Bayesian clustering models using the 
method described in algorithm 1.
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Our application of consensus clustering has two main parameters at the ensem-
ble level, the chain depth, D, and ensemble width, W. We infer a point cluster-
ing from the consensus matrix using the maxpear function [63] from the R 
package mcclust [64] which maximises the posterior expected adjusted Rand 
index between the true clustering and point estimate if the matrix is composed of 
samples drawn from the posterior distribution (section 3 of the Additional file 1 for 
details). There are alternative choices of methods to infer a point estimate which 
minimise different loss functions (see, e.g., [65–67]).

Determining the ensemble depth and width

As our ensemble sidesteps the problem of convergence within each chain, we need 
an alternative stopping rule for growing the ensemble in chain depth, D, and number 
of chains, W. We propose a heuristic based upon the consensus matrix to decide if 
a given value of D and W are sufficient. We suspect that increasing W and D might 
continuously improve the performance of the ensemble (implicitly assuming that the 
Bayesian posterior distribution is the optimal description of the parameter of inter-
est, an assumption that does not always hold, see, e.g. [68–70], but we observe in our 
simulations that these changes will become smaller and smaller for greater values, 
eventually converging for each of W and D (consider that if both W → ∞ and D → ∞ 
the ergodic properties of the MCMC sampler should emerge, exactly describing the 
entire posterior distribution). We notice that this behaviour is analogous to PCA in 
that where for consensus clustering some improvement might always be expected for 
increasing chain depth or ensemble width, more variance will be captured by increas-
ing the number of components used in PCA. However, increasing this number beyond 
some threshold has diminishing returns, diagnosed in PCA by a scree plot. Following 
from this, we recommend, for some set of ensemble parameters, D′ = {d1, . . . , dI } and 
W ′ = {w1, . . . ,wJ } , find the mean absolute difference of the consensus matrix for the 
di th iteration from wj chains to that for the d(i−1) th iteration from wj chains and plot 
these values as a function of chain depth, and the analogue for sequential consensus 
matrices for increasing ensemble width and constant depth.

If this heuristic is used, we believe that the consensus matrix and the resulting 
inference should be stable (see, e.g., [59, 60]), providing a robust estimate of the clus-
tering. In contrast, if there is still strong variation in the consensus matrix for varying 
chain length or number, then we believe that the inferred clustering is influenced sig-
nificantly by the random initialisation and that the inferred partition is unlikely to be 
stable for similar datasets or reproducible for a random choice of seeds.

Simulation study

We use a finite mixture with independent features as the data generating model 
within the simulation study. Within this model there exist “irrelevant features” [71] 
that have global parameters rather than cluster specific parameters. The generating 
model is
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for data X = (x1, . . . , xN ) , cluster label or allocation variable c = (c1, . . . , cN ) , cluster 
weight π = (π1, . . . ,πK ) , K clusters and the relevance variable, φ ∈ {0, 1} with φp = 1 
indicating that the pth feature is relevant to the clustering. We used a Gaussian density, 
so θkp = (µkp, σ

2
kp) . We defined three scenarios and simulated 100 datasets in each (Fig. 1 

and Table 1). Additional details of the simulation process and additional scenarios are 
included in section 4.1 of the Additional file 1.

In each of these scenarios we apply a variety of methods (listed below) and compare 
the inferred point clusterings to the generating labels using the Adjusted Rand Index 
(ARI, [72]).

•	 Mclust, a maximum likelihood implementation of a finite mixture of Gaussian 
densities (for a range of modelled clusters, K),

•	 10 chains of 1 million iterations, thinning to every thousandth sample for the overfit-
ted Bayesian mixture of Gaussian densities, and

•	 A variety of consensus clustering ensembles defined by inputs of W chains and D 
iterations within each chain (see algorithm  1) with W ∈ {1, 10, 30, 50, 100} and 
D ∈ {1, 10, 100, 1000, 10,000} where the base learner is an overfitted Bayesian mix-
ture of Gaussian densities.

Note that none of the applied methods include a model selection step and as such there 
is no modelling of the relevant variables. This and the unknown value of K is what sepa-
rates the models used and the generating model described in Eq. (1). More specifically, 
the likelihood of a point Xn for each method is

where p(Xn|µk ,�k) is the probability density function of the multivariate Gaussian dis-
tribution parameterised by a mean vector, µk , and a covariance matrix, �k , and πk is the 
component weight such that K

k=1 πk = 1 . The implementation of the Bayesian mixture 
model restricts �k to be a diagonal matrix while Mclust models a number of different 
covariance structures. Note that while we use the overfitted Bayesian mixture model, 
this is purely from convenience and we expect that a true Dirichlet Process mixture or a 
mixture of mixture models would display similar behaviour in an ensemble.

The ARI is a measure of similarity between two partitions, c1, c2 , corrected for chance, 
with 0 indicating c1 is no more similar to c2 than a random partition would be expected 
to be and a value of 1 showing that c1 and c2 perfectly align. Details of the methods in the 
simulation study can be found in sections 4.2, 4.3 and 4.4 of the Additional file 1.

(1)

p(X , c, θ ,π |K ) =

p(K )p(π |K )p(θ |K )

N∏

i=1

p(ci|π ,K )

P∏

p=1

p(xip|ci, θcip)
φpp(xip|θp)

(1−φp)

(2)p(Xn|µ,�,π) =

K∑

k=1

πkp(Xn|µk ,�k),
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Mclust

Mclust [73] is a function from the R package mclust. It estimates Gaussian mixture 
models for K clusters based upon the maximum likelihood estimator of the parame-
ters. It initialises upon a hierarchical clustering of the data cut to K clusters. A range of 
choices of K and different covariance structures are compared and the “best” selected 
using the Bayesian information criterion [74] (details in section  4.2 of the Additional 
file 1).

Fig. 1  Example of generated datasets. Each row is an item being clustered and each column a feature of 
generated data. The 2D dataset (which is ordered by hierarchical clustering here) should enable proper 
mixing of chains in the MCMC. The small N, large P case has clear structure (observable by eye). This is 
intended to highlight the problems of poor mixing due to high dimensions even when the generating labels 
are quite identifiable. In the irrelevant features case, the structure is clear in the relevant features (on the 
left-hand side of this heatmap). This setting is intended to test how sensitive each approach is to noise.

Table 1  Parameters defining the simulation scenarios as used in generating data and labels

�µ is the distance between neighbouring cluster means within a single feature. The number of relevant features ( Ps ) is ∑
p φp , and Pn = P − Ps

Scenario N Ps Pn K �µ σ 2 π

2D 100 2 0 5 3.0 1 ( 1
5
, 1
5
, 1
5
, 1
5
, 1
5
)

Small N, large P 50 500 0 5 1.0 1 ( 1
5
, 1
5
, 1
5
, 1
5
, 1
5
)

Irrelevant features 200 20 100 5 1.0 1 ( 1
5
, 1
5
, 1
5
, 1
5
, 1
5
)
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Bayesian inference

To assess within-chain convergence of our Bayesian inference we use the Geweke 
Z-score statistic [75]. Of the chains that appear to behave properly we then asses across-
chain convergence using R̂ [76] and the recent extension provided by [77]. If a chain has 
reached its stationary distribution the Geweke Z-score statistic is expected to be nor-
mally distributed. Normality is tested for using a Shapiro–Wilks test [78]. If a chain fails 
this test (i.e., the associated p value is less than 0.05), we assume that it has not achieved 
stationarity and it is excluded from the remainder of the analysis. The samples from the 
remaining chains are then pooled and a posterior similarity matrix (PSM) constructed. 
We use the maxpear function to infer a point clustering. For more details see sec-
tion 4.3 of the Additional file 1.

Analysis of the cell cycle in budding yeast

Datasets

The cell cycle is crucial to biological growth, repair, reproduction, and development [79–
81] and is highly conserved among eukaryotes [81]. This means that understanding of 
the cell cycle of S. cerevisiae can provide insight into a variety of cell cycle perturbations 
including those that occur in human cancer [80, 82] and ageing [83]. We aim to create 
clusters of genes that are co-expressed, have common regulatory proteins and share a 
biological function. To achieve this, we use three datasets that were generated using dif-
ferent ’omics technologies and target different aspects of the molecular biology under-
pinning the cell cycle process.

•	 Microarray profiles of RNA expression from [84], comprising measurements of cell-
cycle-regulated gene expression at 5-min intervals for 200 min (up to three cell divi-
sion cycles) and is referred to as the time course dataset. The cells are synchronised 
at the START checkpoint in late G1-phase using alpha factor arrest [84]. We include 
only the genes identified by [84] as having periodic expression profiles.

•	 Chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip) 
data from [85]. This dataset discretizes p values from tests of association between 
117 DNA-binding transcriptional regulators and a set of yeast genes. Based upon a 
significance threshold these p values are represented as either a 0 (no interaction) or 
a 1 (an interaction).

•	 Protein–protein interaction (PPI) data from BioGrid [86]. This database consists of 
of physical and genetic interactions between gene and gene products, with interac-
tions either observed in high throughput experiments or computationally inferred. 
The dataset we used contained 603 proteins as columns. An entry of 1 in the (i, j)th 
cell indicates that the ith gene has a protein product that is believed to interact with 
the jth protein.

The datasets were reduced to the 551 genes with no missing data in the PPI and ChIP-
chip data, as in [30].
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Multiple dataset integration

We applied consensus clustering to MDI for our integrative analysis. Details of MDI are 
in section  2.2 of the Additional file  1, but in short MDI jointly models the clustering 
in each dataset, inferring individual clusterings for each dataset. These partitions are 
informed by similar structure in the other datasets, with MDI learning this similarity as 
it models the partitions. The model does not assume global structure. This means that 
the similarity between datasets is not strongly assumed in our model; individual clusters 
or genes that align across datasets are based solely upon the evidence present in the data 
and not due to strong modelling assumptions. Thus, datasets that share less common 
information can be included without fearing that this will warp the final clusterings in 
some way.

The datasets were modelled using a mixture of Gaussian processes in the time 
course dataset and Multinomial distributions in the ChIP-chip and PPI datasets.

Results
Simulated data

We use the ARI between the generating labels and the inferred clustering of each 
method to be our metric of predictive performance.

In Fig.  2, we see Mclust performs very well in the 2D and Small N, large P sce-
narios, correctly identifying the true structure. However, the irrelevant features sce-
nario sees a collapse in performance, Mclust is blinded by the irrelevant features 
and identifies a clustering of K = 1.

The pooled samples from multiple long chains performs very well across all sce-
narios and appears to act as an upper bound on the more practical implementations 
of consensus clustering.

Consensus clustering does uncover some of the generating structure in the data, 
even using a small number of short chains. With sufficiently large ensembles and chain 
depth, consensus clustering is close to the pooled Bayesian samples in predictive per-
formance. It appears that for a constant chain depth increasing the ensemble width 
used follows a pattern of diminishing returns. There are strong initial gains for a greater 
ensemble width, but the improvement decreases for each successive chain. A similar 
pattern emerges in increasing chain length for a constant number of chains (Fig. 2).

For the PSMs from the individual chains, all entries are 0 or 1 (Fig. 3). This means only 
a single clustering is sampled within each chain, implying very little uncertainty in the 
partition. However, three different clustering solutions emerge across the chains, indi-
cating that each individual chain is failing to explore the full support of the posterior 
distribution of the clustering. In general, while MCMC convergence theorems hold as 
the number of iterations tend to infinity, any finite chain might suffer in representing the 
full support of the posterior distribution, as we observe here. Moreover, the mixing of 
each chain can be poor as well (i.e. it may take a long time to reach the stationary distri-
bution from an arbitrary initialisation). In our empirical study, we find that using many 
short runs provide similar point and interval estimates to running a small number of 
long chains (Fig. 3), while being computationally less expensive (Fig. 4), and hence more 
convenient for our applications.
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Figure 4 shows that chain length is directly proportional to the time taken for the chain 
to run. This means that using an ensemble of shorter chains, as in consensus clustering, 
can offer large reductions in the time cost of analysis when a parallel environment is 
available compared to standard Bayesian inference. Even on a laptop of 8 cores running 
an ensemble of 1,000 chains of length 1,000 will require approximately half as much time 
as running 10 chains of length 100,000 due to parallelisation, and the potential benefits 
are far greater when using a large computing cluster.

Additional results for these and other simulations are in section 4.4 of the Additional 
file 1.

Multi‑omics analysis of the cell cycle in budding yeast

We use the stopping rule proposed in  to determine our ensemble depth and width. In 
Fig.  5, we see that the change in the consensus matrices from increasing the ensem-
ble depth and width is diminishing in keeping with results in the simulations. We see 
no strong improvement after D =  6000 and increasing the number of learners from 
500 to 1,000 has small effect. We therefore use the largest ensemble available, a depth 
D = 10,001 and width W = 1000, believing this ensemble is stable (additional evidence 
in section 5.1 of the Additional file 1).

Fig. 2  Model performance in the 100 simulated datasets for each scenario, defined as the ARI between the 
generating labels and the inferred clustering. CC(d, w) denotes consensus clustering using the clustering from 
the dth iteration from w different chains
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We focus upon the genes that tend to have the same cluster label across multiple 
datasets. More formally, we analyse the clustering structure among genes for which 
P̂(cnl = cnm) > 0.5 , where cnl denotes the cluster label of gene n in dataset l. In our 
analysis it is the signal shared across the time course and ChIP-chip datasets that is 
strongest, with 261 genes (nearly half of the genes present) in this pairing tending to 
have a common label, whereas only 56 genes have a common label across all three 
datasets. Thus, we focus upon this pairing of datasets in the results of the analysis 
performed using all three datasets. We show the gene expression and regulatory pro-
teins of these genes separated by their cluster in Fig. 6. In Fig. 6, the clusters in the 
time series data have tight, unique signatures (having different periods, amplitudes, 
or both) and in the ChIP-chip data clusters are defined by a small number of well-
studied transcription factors (TFs) (see table  S2 for details of these TFs, many of 
which are well known to regulate cell cycle expression, [87].

As an example, we briefly analyse clusters 9 and 16 in greater depth. Cluster 9 has 
strong association with MBP1 and some interactions with SWI6, as can be seen in 
Fig.  6. The Mbp1-Swi6p complex, MBF, is associated with DNA replication [88]. 
The first time point, 0 min, in the time course data is at the START checkpoint, or 

Fig. 3  Comparison of similarity matrices from a dataset for the Small N, large P scenario. In each matrix, the 
(i, j)th entry is the proportion of clusterings for which the ith and jth items co-clustered for the method in 
question. In the first row the PSM of the pooled Bayesian samples is compared to the CM for CC(100, 50), with 
a common ordering of rows and columns in both heatmaps. In the following rows, 6 of the long chains that 
passed the tests of convergence are shown
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the G1/S transition. The members of cluster 9 begin highly expressed at this point 
before quickly dropping in expression (in the first of the 3 cell cycles). This suggests 
that many transcripts are produced immediately in advance of S-phase, and thus are 
required for the first stages of DNA synthesis. These genes’ descriptions (found using 
org.Sc.sgd.db, [89] and shown in table S3) support this hypothesis, as many of 
the members are associated with DNA replication, repair and/or recombination. 
Additionally, TOF1, MRC1 and RAD53, members of the replication checkpoint [90, 
91] emerge in the cluster as do members of the cohesin complex. Cohesin is associ-
ated with sister chromatid cohesion which is established during the S-phase of the 
cell cycle [92] and also contributes to transcription regulation, DNA repair, chromo-
some condensation, homolog pairing [93], fitting the theme of cluster 9.

Cluster 16 appears to be a cluster of S-phase genes, consisting of GAS3, NRM1 and 
PDS1 and the genes encoding the histones H1, H2A, H2B, H3 and H4. Histones are the 
chief protein components of chromatin [94] and are important contributors to gene reg-
ulation [95]. They are known to peak in expression in S-phase [84], which matches the 
first peak of this cluster early in the time series. Of the other members, NRM1 is a tran-
scriptional co-repressor of MBF-regulated gene expression acting at the transition from 
G1 to S-phase [96, 97]. Pds1p binds to and inhibits the Esp1 class of sister separating 
proteins, preventing sister chromatids separation before M-phase [92, 98]. GAS3, is not 
well studied. It interacts with SMT3 which regulates chromatid cohesion, chromosome 
segregation and DNA replication (among other things). Chromatid cohesion ensures the 
faithful segregation of chromosomes in mitosis and in both meiotic divisions [99] and is 
instantiated in S-phase [92]. These results, along with the very similar expression profile 
to the histone genes in the time course data, suggest that GAS3 may be more directly 
involved in DNA replication or chromatid cohesion than is currently believed.

Fig. 4  The time taken for different numbers of iterations of MCMC moves in log10(s). The relationship 
between chain length, D, and the time taken is linear (the slope is approximately 1 on the log10 scale), with 
a change of intercept for different dimensions. The runtime of each Markov chain was recorded using the 
terminal command time, measured in ms
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We attempt to perform a similar analysis using traditional Bayesian inference of MDI, 
but after 36 h of runtime there is no consistency or convergence across chains. We use 
the Geweke statistic and R̂ to reduce to the five best behaved chains (none of which 
appear to be converged, see section 5.2 of the Additional file 1 for details). If we then 
compare the distribution of sampled values for the φ parameters for these long chains, 
the final ensemble used (D =  10,001, W =  1000) and the pooled samples from the 5 
long chains, then we see that the distribution of the pooled samples from the long chains 
(which might be believed to sampling different parts of the posterior distribution) is 
closer in appearance to the distributions sampled by the consensus clustering than to 
any single chain (Fig.  7). Further disagreement between chains is shown in the Gene 
Ontology term over-representation analysis in section 5.3 of the Additional file 1.

Discussion
Our proposed method has demonstrated good performance on simulation stud-
ies, uncovering the generating structure in many cases and performing comparably 
to Mclust and long chains in many scenarios. We saw that when the chains are suf-
ficiently deep that the ensemble approximates Bayesian inference, as shown by the 

Fig. 5  The mean absolute difference between the sequential Consensus matrices. For a set of chain lengths, 
D′ = {d1, . . . , dI} and number of chains, W ′ = {w1, . . . ,wJ} , we take the mean of the absolute difference 
between the consensus matrix for (di ,wj) and (di−1,wj) (here D′ = {101, 501, 1001, 2001, . . . , 10,001} and 
W ′ = {100, 500, 1000})
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similarity between the PSMs and the CM in the 2D scenario where the individual chains 
do not become trapped in a single mode. We have shown cases where many short runs 
are computationally less expensive than one long chain and give meaningful point and 
interval estimates; estimates that are very similar to those from the limiting case of a 
Markov chain. Thus if individual chains are suffering from mixing problems or are too 
computationally expensive to run, consensus clustering may provide a viable option. We 
also showed that the ensemble of short chains is more robust to irrelevant features than 
Mclust.

We proposed a method of assessing ensemble stability and deciding upon ensem-
ble size which we used when performing an integrative analysis of yeast cell cycle 
data using MDI, an extension of Bayesian mixture models that jointly models multiple 

Fig. 7  The sampled values for the φ parameters from the long chains, their pooled samples and the 
consensus using 1000 chains of depth 10,001. The long chains display a variety of behaviours. Across chains 
there is no clear consensus on the nature of the posterior distribution. The samples from any single chain are 
not particularly close to the behaviour of the pooled samples across all three parameters. It is the consensus 
clustering that most approaches this pooled behaviour
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datasets. We uncovered many genes with shared signal across several datasets and 
explored the meaning of some of the inferred clusters using data external to the anal-
ysis. We found biologically meaningful results as well as signal for possibly novel biol-
ogy. We also showed that individual chains for the existing implementation of MDI 
do not converge in a practical length of time, having run 10 chains for 36 h with no 
consistent behaviour across chains. This means that Bayesian inference of the MDI 
model is not practical on this dataset with the software currently available.

However, consensus clustering does lose the theoretical framework of true Bayesian 
inference. We attempt to mitigate this with our assessment of stability in the ensem-
ble, but this diagnosis is heuristic and subjective, and while there is empirical evi-
dence for its success, it lacks the formal results for the tests of model convergence for 
Bayesian inference.

More generally, we have benchmarked the use of an ensemble of Bayesian mixture 
models, showing that this approach can infer meaningful clusterings and overcomes the 
problem of multi-modality in the likelihood surface even in high dimensions, thereby 
providing more stable clusterings than individual long chains that are prone to becom-
ing trapped in individual modes. We also show that the ensemble can be significantly 
quicker to run. In our multi-omics study we have demonstrated that the method can be 
applied as a wrapper to more complex Bayesian clustering methods using existing imple-
mentations and that this provides meaningful results even when individual chains fail 
to converge. This enables greater application of complex Bayesian clustering methods 
without requiring re-implementation using more clever MCMC methods, a process that 
would involve a significant investment of human time.

We expect that researchers interested in applying some of the Bayesian integrative 
clustering models such as MDI and Clusternomics [32] will be enabled to do so, as 
consensus clustering overcomes some of the unwieldiness of existing implementations 
of these complex models. More generally, we expect that our method will be useful to 
researchers performing cluster analysis of high-dimensional data where the runtime of 
MCMC methods becomes too onerous and multi-modality is more likely to be present.
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