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Abstract With the development of mass spectrometry (MS)-based proteomics technologies, patient-derived xenograft
(PDX), which is generated from the primary tumor of a patient, is widely used for the proteome-wide analysis of cancer
mechanism and biomarker identification of a drug. However, the proteomics data interpretation is still challenging due to
complex data deconvolution from the PDX sample that is a cross-species mixture of human cancerous tissues and
immunodeficient mouse tissues. In this study, by using the lab-assembled mixture of human and mouse cells with different
mixing ratios as a benchmark, we developed and evaluated a new method, SPA (shared peptide allocation), for protein
quantitation by considering the unique and shared peptides of both species. The results showed that SPA could provide
more convenient and accurate protein quantitation in human–mouse mixed samples. Further validation on a pair of gastric
PDX samples (one bearing FGFR2 amplification while the other one not) showed that our new method not only sig-
nificantly improved the overall protein identification, but also detected the differential phosphorylation of FGFR2 and its
downstream mediators (such as RAS and ERK) exclusively. The tool pdxSPA is freely available at https://github.com/Li-
Lab-Proteomics/pdxSPA.
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Introduction

Patient-derived xenograft (PDX) is an animal model po-
pularly used in cancer research, in which a patient’s primary
tumor tissue is engrafted directly into an immunodeficient
mouse. Compared with cell line-based xenografts, PDX
could better maintain the fidelity of original tumors, in-
cluding heterogeneity and tumor microenvironment [1−6].

PDXs can resemble the drug-sensitivity patterns of the
patients from which they derive, which may be used to
predict clinical outcomes [5,7−10].

With the development of mass spectrometry (MS), can-
cer proteome analysis becomes popular in precision medi-
cine, providing quantitative measurement of proteins and
methodology to complement genomics [11−17]. Mean-
while, PDX sample is gradually used for proteome analysis,
which provides a new view for cancer research [16,18−23].
In an integrated omic analysis of lung cancer, Li et al. [20]
carried out genomics, transcriptomics, and proteomics
analyses of 11 groups of non-small cell lung cancer
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(NSCLC) samples, and discovered that the patterns formed
by metabolism proteins were highly recapitulated between
primary tumors and PDXs by unsupervised clustering. In
addition, Huang et al. [19] performed quantitative proteome
and phosphoproteome profiling across 24 breast cancer
PDX models, and identified multiple druggable protein
events that were unique from the genome data, demon-
strating the ability of MS-based PDX proteomics to identify
therapeutic targets.

It should be emphasized that when the patient tumor
tissue is engrafted to an immunodeficient mouse, the en-
dothelial cells and fibroblasts from the host mouse take the
place of human stromal components [24]. Hence, the PDX
sample is a mixture of human cancerous tissue and murine
tissue. The percentage of human-originating cells varies
among different PDX tissues, and it is not easy to be de-
termined, especially for MS-based proteomics analysis. The
bottom-up strategy is the most common way for proteome
profiling byMS, which means that the tissue is digested into
peptides prior to MS analysis [25]. Due to the high
homology of human and mouse proteins, a relatively high
proportion of peptide sequences are shared by human and
mouse. Therefore, the species of these peptides cannot be
unequivocally determined, which may even lead to the
misinterpretation of some mouse-unique peptides as human
peptides. Some studies using PDX model perform database
searching against human proteome sequences alone, such as
an integrated omics analysis in lung cancer [20]. Although
MS data have been searched against human–mouse com-
bined (HM) database in most current PDX proteome stu-
dies, only the human-specific peptides are considered for
further analysis and quantification [18,19]. However,
omitting the peptides shared by two species could lead to
great information loss, and thus the sensitivity of protein
identification decreases dramatically. How to assign the
shared peptides to taxa and how to use these data in quan-
titation are still challenging in PDX proteome data trans-
lation. Recently, Saltzman et al. [26] reported an algorithm
gpGrouper for peptide grouping and protein quantitation at
gene product level, in which the shared peptides between
two species are distributed based on unique peptide peak
ratios. However, the quantitation of those proteins, in which
all the peptides are shared by human and mouse, has not
been addressed yet. Due to the high homology between
human and mouse, these kinds of proteins comprise not a
small proportion in the identified proteins by MS/MS.

In this study, using the lab-assembled mixtures of human
and mouse cell lysates with different proportions as PDX
sample mocks, we proposed and assessed a new peptide
quantitation method named SPA (shared peptide alloca-
tion). The new method makes reasonable allocations of the
human–mouse shared peptides to improve the MS data in-
terpretation of PDX samples. We proved that both false
positive and false negative peptide identification existed

when we used the human protein database alone or used the
HM database with human-unique (HU) peptides picked up.
We compared different strategies assigning peptides to hu-
man and mouse through searching against the HM database.
The comparison results suggested that SPA is a good choice
to balance the sensitivity of protein identification and the
precision of protein quantitation. Moreover, SPA can pro-
vide an accurate estimation of the overall mixing ratio of
tumor cells in PDX samples. We did further test on a pair of
gastric PDX samples, one bearing FGFR2 gene amplifica-
tion while the other one not. Via our new strategy, we
identified 23% more proteins than those identified in the
usual way. Especially, tens of proteins involved in vital
signaling pathways were uniquely identified in our new
strategy. The analysis results suggested that our new
strategy is feasible and could help to improve the reliability
and analysis depth of PDX proteome data. SPA is im-
plemented by Python and is freely available at https://gi-
thub.com/Li-Lab-Proteomics/pdxSPA.

Results

Construction of a proteome benchmark dataset

To simulate the protein lysate of PDX tissues, we artificially
generated four human–mouse protein mixtures with dif-
ferent ratios as a benchmark dataset. We used AGS cells (a
type of human gastric adenocarcinoma cell line) to re-
present human cancerous tissue in a PDX sample and used
mouse fibroblast (MEF) cells to resemble the murine ele-
ments. The two lysates were mixed at different ratios
(Figure 1). The percentages of human proteins in these four
mixtures were 60% (SET60), 70% (SET70), 80% (SET80),
and 90% (SET90). Equal amounts of mixtures were di-
gested by trypsin and then fractionated via house-packed
C18 tip into six fractions. Four samples were manipulated in
parallel to reduce random effects. Technical replicates of
MS analysis were performed.

Peptide identification with different searching databases

To evaluate database selection in proteomics analysis in
PDX samples, we compared the peptide identification re-
sults using HM database with the results using human da-
tabase alone. All acquired MS/MS data files (.raw) of four
standard testing sets were processed with MaxQuant based
on Andromeda search engine. Homo sapiens and Mus
musculus protein databases from UniProt were combined to
form a new cross-species database (HM database). Then we
performed peptide identification of the four mixture sam-
ples by searching against human database alone or against
HM database. All parameters were the same except for the
database selection. The false discovery rate (FDR) cutoffs
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of peptide and protein were set as 0.01.
We classified the identified peptides searched against

HM database into three categories: 1) human-unique (HU):
amino acid sequences existing in human proteins uniquely;
2) human–mouse shared (SH): amino acid sequences shared
by human and mouse proteins; 3) mouse-unique (MU):
amino acid sequences uniquely mapped into mouse proteins
but not present in humans. For a given MS/MS spectrum
identified as a human peptide sequence against human da-
tabase, it is possible to be explained as a SH or MU peptide
with higher confidence when searching against HM data-
base.

Based on the number of the peptide spectrum matches
(PSMs) listed in Table 1, we found that approximately 60%
PSMs, which had been assigned to human using human
database alone, were SH ones with higher confidence. More
importantly, there were hundreds of spectra of MU peptides
“mismatched” to human peptide sequences in each dataset.
Taking the results of SET60 as an example, we found that
992 spectra from the results against human database were
re-assigned as MU peptides more confidently (Table S1). A

mismatched example was shown in Figure 2. The spectrum
(scan No. 3029) in SET60 was identified as GAQEVGER
when we used human database alone (Figure 2A). However,
when we used HM database, this spectrum was identified as
QGAEIDGR with higher match score, and was MU (Figure
2B).

Obviously, for protein quantitation of PDX samples, the
indistinguishable and mismatched spectra will lead to biases
and errors for quantitation if human protein database rather
than HM database was used. Thus, we performed a further
peptide identification against HM database. On average,

Figure 1 The construction of standard testing sets and the strategy of human proteome quantitation for PDX model
Lysates of AGS cells and MEF cells were mixed at certain ratios to form four standard testing sets. Mixtures were digested by trypsin and fractionated via
house-packed C18 tip, followed with LC–MS/MS analysis. Data were searched against the human protein database or HM database for sequential
evaluation. MEF, mouse fibroblast; LC–MS/MS, liquid chromatography coupled to tandem mass spectrometry; HM, human–mouse combined; HU,
human-unique; SH, human–mouse shared.

Table 1 No. of PSMs identified using different protein databases

Standard
dataset

No. of PSMs using
human database

No. of PSMs using HM database

HU SH MU (mismatched)

SET60 126,368 40,870 83,521 992
SET70 130,204 46,120 82,395 838
SET80 122,692 46,124 75,319 605
SET90 122,295 50,258 71,293 314

Note: PSM, peptide spectrum match; HM, human–mouse combined; HU, human-
unique; SH, human–mouse shared; MU, mouse-unique.
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56,395 peptides were identified in each sample. The pro-
portions of HU, MU, and SH peptides in four testing sets are
shown in Figure 3. With the increase of the percentage of
human proteins in each sample, the number of identified
HU peptides increased also, while the number of MU
peptides decreased. When looking at the SH peptides, we
found that more than half of the identified peptides were
shared by human and mouse. Severe information loss could
not be avoided if we only use HU peptides and discard SH
peptides directly in protein quantitation. However, how to
use these SH peptides remains a problem.

New algorithm for accurate protein quantitation of
PDX models

A major challenge of protein quantitation in PDX models is
to assign the shared peptides between human and mouse

appropriately. Here we describe a new method named SPA
for quantifying the MS data from the PDX models, espe-
cially focusing on the quantitation of the SH peptides.

We made descriptive statistics of the standard testing sets
and then found that the ratio of the sum of HU peptide
intensity (IHU) to the sum of MU peptide intensity (IMU)
could best mimic the prior mixing ratio in each of standard
testing sets. We assumed that the SH peptides could be
allocated based on this ratio. Therefore our strategy is as
follows: 1) sort the peptides into three categories: HU, MU,
and SH; 2) calculate the individual ratio ri of HU intensity to
MU intensity for each protein, as well as the overall ratio r
of the sum of HU intensity (IHU) to the sum of MU intensity
(IMU) in the sample, representing the overall ratio of human
proteins to mouse proteins in mixture. The individual and
overall human-to-mouse ratios have the following form: ri =
IHU / IMU and r = Sum(IHU) / Sum(IMU); 3) allocate the

Figure 2 A spectrum example in human database and HM database
A. Spectrum matching result against the human database. B. Spectrum matching result against HM database. C. Detailed information on peptide translation
of the same spectrum against two databases. PEP, posterior error probability.
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intensity of SH peptides according to the human-to-mouse
intensity ratio. Finally, for a given human protein, its in-
tensity equals HU peptide intensity (IHU) plus the human

part from the SH peptides. The overview of the strategy is
shown in Figure 4A.

Through our new strategy, the overall human-to-mouse

Figure 3 The proportions of HU, MU, and SH peptides in total peptide identification against HM database
Peptides identified in four standard testing sets against HM database were sorted into HU, MU, and SH groups. The percentage and number of peptides of
certain category within each standard testing set are shown.

Figure 4 Strategy for PDX MS data quantitation
A. The workflow of SPA strategy. MS data of PDX samples were searched against HM database and peptides were sorted into three categories according to
sequence uniqueness. SH peptides were allocated according to the ratio of summed HU peptide intensity to summed MU peptide intensity. HU peptides,
combined with human proportion from SH peptides, were used for protein assembling and quantitation. B. Quantitation of mixing ratios of human proteins
to mouse proteins for the proteome benchmark dataset via SPA. Ratios of summed HU peptide intensity to MU peptide intensity, ratios of summed HU and
SH peptide intensity to MU peptide intensity, and the overall human-to-mouse ratios by SPA for four standard sets were calculated, respectively. The
percentages of the identified proteins assigned to HU, MU, and SH were colored into orange, blue, and gray, respectively.
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ratios in four testing sets were 60%:40%, 70%:30%,
81%:19%, and 91%:9%. Compared with our set ratios, the
deviations were all within 1.5% (Figure 4B). It was clear
that the ratio of the sum of HU intensity to the sum of MU
intensity fitted the theoretical mixing ratio well.

Next, we assessed SPA about the recall in protein iden-
tification and the precision in protein quantitation. We se-
lected all the gene-unique peptides, which matched to a
single gene. Then we quantified proteins by their respective
gene symbols with the sum of the intensity of gene-unique
peptides, in which about 58% peptides are SH peptides.
Presently, the most common strategy for PDX proteome
data analysis is assembling proteins using HU peptides. Our
new strategy is to assemble proteins using not only HU
peptides but also SH peptides. In four testing sets (SET60,
SET70, SET80, and SET90), 3713, 4008, 4039, and 4270
proteins were separately identified via HU strategy, while
we got 5508, 5605, 5530, and 5568 proteins using SPA.
This result suggested that our new strategy SPA can reduce
information loss and increase the sensitivity of protein
identification significantly.

We evaluated the quantitation performance of SPA by

comparing the expression of proteins identified in SET60
and SET90 datasets. After total intensity normalization, the
theoretical ratio of a protein’s intensities in SET90 vs.
SET60 should be 1.5 (Log2 1.5 ≈ 0.58). We calculated and
plotted the ratios of protein intensity in two datasets (Figure
5A–E). Here we tested three strategies to assign the SH
peptides. The first one (labeled as X-SPA) was to assign the
SH peptides based on the individual human-to-mouse ratio
ri, which can vary significantly among different proteins.
Only for proteins having both HU and MU peptides, all the
SH peptides belonging to the certain protein were allocated
at this individual ratio. This strategy is similar to
gpGrouper [26]. The second one (labeled as S-SPA) was to
assign the SH peptides using X-SPA if both HU and MU
peptides were identified; otherwise, assign the SH peptides
based on the overall human-to-mouse ratio r. The third one
(labeled as SPA) is a simplified way, by which the SH
peptides were assigned based on the overall ratio r in the
quantitation of all proteins. Moreover, we performed com-
parisons with the other two existing methods for assigning
the SH peptides. One was using HU peptides only in protein
quantitation (labeled as HU); the other one was to assign all

Figure 5 Comparison and evaluation of five quantitation strategies
A. The HU strategy (a traditional method). B. The HU + SH strategy. C. X-SPA. D. S-SPA. E. SPA. F. The number of quantifiable proteins in five
strategies.
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SH peptides to human (labeled as HU + SH). As shown in
Figure 5A–E, we found that SPA and S-SPA showed better
performance than the others as the median ratios of these
two methods are quite close to the theoretical value 0.58.
The standard variation (SD) of ratio estimation in SPA was
the smallest, indicating that SPA is more stable for protein
quantitation. Using SPA and S-SPA, more SH peptides were
used for protein assembly, and therefore the number of
quantifiable proteins increased in comparison with HU and
X-SPA strategies (Figure 5F).

In conclusion, among these five strategies shown in
Figure 5, both SPA and S-SPA are acceptable in the
accuracy and stability of ratio estimation. Therefore, SPA
would be a better choice.

Validation on real PDX samples

In addition to the benchmark dataset, we further validated
our new strategy for peptide and protein quantitation in real
complex PDX data. FGFR2 amplification in gastric cancers
shows an association with poor prognosis, and it leads to the
expression change of protein FGFR2 and the activation of
its downstreammediators [27−31]. Here, we analyzed a pair
of gastric PDX samples derived from two patients, one
bearing FGFR2 amplification while the other without
FGFR2 amplification (control).

Label-free quantitation was used when we searched MS
raw data against HM database. In total, 89,936 peptides
were identified. Again, we sorted these peptides into three
categories: HU peptides (n = 37,967), MU peptides (n =
12,725), and SH peptides (n = 39,244). The ratios of
Sum(IHU) and Sum(IMU) in case and control samples were
1.86 and 1.78, respectively, which means that the purities of
these two PDX tumor samples were just around 65%. To
assemble the proteins, we selected the gene-unique peptides
for protein quantitation. Finally, we got 7336 proteins using
SPA, while we got 5940 proteins using HU peptides only in
protein quantitation (the HU strategy mentioned above)
(Figure 6A, left panel). Our new strategy increased the
number of total identified proteins by 23.5%. We used the
lab-available antibodies to test the expression levels of three
proteins in two PDX tissue lysates, including PTEN, KRAS,
and MEK1 (also known as MAP2K1). These proteins were
identified by our new strategy SPA, but could not be de-
tected by the HU strategy (a traditional method). The fol-
lowing-up Western blot result showed that these proteins
were indeed expressed in these PDX samples (Figure S1).
In addition, these proteins had higher expression levels in
FGFR2 amplification sample than in the control sample,
which was consistent with our qualification result via SPA
(Figure S1; Table S2). With concern about the bias to lower
intensity in peptide identification that possibly led by our
strategy, we plotted the fold changes (FGFR2 amplification

vs. control) and the average intensities of all identified
proteins using the HU and SPA strategies. We found that the
distribution patterns were quite similar (Figure S2).

Next, we analyzed the differentially expressed proteins in
the FGFR2 amplification sample compared to the control
sample, and set 3-fold change as a relatively strict standard.
According to the Venn diagram, we found that most differe-
ntially expressed proteins (> 3-fold change or < 0.33-fold
change) could be identified via both strategies (Figure 6A,
left panel). Of importance, among 1396 ‘additionally ob-
tained’ proteins by SPA, 267 proteins were up-regulated in
the FGFR2 amplification sample while 238 proteins were
down-regulated (Figure 6A, left panel). Further enrichment
analysis showed that up-regulated proteins were involved in
several key biological processes including signal transduc-
tion and extracellular matrix organization (Figure 6A, right
panel). Proteins such as MEK1, SOS1, and TGFBR2, were
among this list. The enrichment analysis also suggested that
down-regulated proteins participated in transcription
regulation and glutamate secretion (Figure 6A, right panel).
The gene set enrichment analysis also showed the strength of
our new strategy, in which the important signaling pathways
were detected with much higher sensitivity (Figure S3).

The phosphorylation level would be changed due to
FGFR2 amplification. Based on the characteristic of our
PDX samples, we additionally analyzed the global phos-
phoproteome data and obtained 916 phosphorylated pro-
teins uniquely identified via our new strategy. We took
protein FGFR2 and its downstream mediators as an
example (Figure 6B). The phosphorylation of several pro-
teins such as GRB2 and ERK1/2 were exclusively identified
and quantified by our new strategy. Of note, we found that
protein ERK1/2 was activated in FGFR2 amplification
sample, which was consistent with the reported
characteristic of FRFG2-amplified gastric cancer [32]. This
result further demonstrate the power of our new strategy to
rescue more peptide information and provide more accurate
protein quantitation in PDX model.

Discussion

In this study, we presented a new strategy for peptide/protein
quantitation of PDX proteome data in order to address the
existing problems and improve the precision of data analysis.
We started with a distinctive experiment design that we arti-
ficially created a series of human and mouse protein mixtures
with known percentages of human proteins. After comparing
and evaluating several strategies, we established and re-
commended our new quantitation strategy SPA. Our results
showed that no obvious quantitation bias was observed in
SPA. Also this strategy helped to increase quantifiable
proteins by near 35%. The calculated human protein ratios by
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SPAmatched the prior ratios well, suggesting the reliability of
our strategy. Additionally, compared with the previous way by
which only HU peptides were retained, our method rescued
some proteins including the SH peptides with relative high
quantitation accuracy, and reduced information loss. Our re-
sults strongly suggested that the peptides shared by human
and mouse should not be omitted.

In the evaluation of SPA’s performance in protein
quantitation, we made a comparison of five potential
methods. For X-SPA, it is the most theoretically accurate
method, as the SH peptides are allocated at the exact ratio of
each protein. However, from our scatter plot, we found that
the ratio was underestimated and the variation was
relatively large. As the human-to-mouse ratio of each pro-
tein should be calculated, missing or inaccurate intensity
measurement of low abundant or other certain peptides may

impact this ratio’s calculation.
SPA is a reliable and feasible method for data processing.

Also, with the usage of most SH peptides, it could increase
the number of the identified and quantifiable proteins, and
also improve the precision in protein quantitation. Since a
human-to-mouse ratio was used in SPA as a global scalar for
the allocation of SH peptides, some proteins, which share all
of the identified sequences between human and mouse but
are only expressed in mouse tissues in fact, will
unavoidablybe considered as “human proteins/peptides”.
Using HU peptides alone for protein assembly can avoid
this problem. However, such method (i.e., the HU strategy
in our study) would lead to drastic loss of those truly human
expressed proteins, which share the same sequences to their
corresponding mouse proteins. Moreover, as shown in our
data, these proteins, whose identified peptide sequences are

Figure 6 Protein identification and quantitation of two gastric PDX samples via two strategies
A. Venn chart of the protein identification and quantitation results (FGFR2 amplification vs. control) via the HU strategy and SPA. B. Phosphorylation
levels of protein FGFR2 and representative downstream mediators via two strategies.
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shared by human and mouse, consist of a significant 30% of
all the proteins identified (Figure 5F); simply ignoring them
would lead to a huge information loss and inefficient usage
of the proteomics data. Based on the nature of proteome, we
believe that these fake human proteins consist of a very
small proportion. The impact of these proteins would be
even more negligible in a typical PDX model study as
people usually only consider the differentially expressed
proteins between the PDX samples.

At last, we applied the new strategy to a gastric tumor
PDX sample with FGFR2 amplification and a paired ne-
gative control respectively. The improvement in protein
identification and quantitation demonstrated the power of
the newmethod very well, which keeps the consistence with
the prior knowledge about FGFR2 amplification. However,
more biological replicates should be added if we want to
justify the biological changes and explore the underneath
molecular mechanism of a specific PDX model.

In summary, the analyses in both the benchmark dataset and
the real PDX data suggest that our strategy has several ad-
vantages for PDX proteomics analysis. First, SPA is helpful to
correct the impact of purity difference in different samples, but
also to rescue more proteins in identification. Second, com-
pared with the traditional strategy using HU peptides only and
other peptide-allocation methods, our approach shows higher
accuracy in protein quantitation, and is more user-friendly in
the calculation. From a systematic view, our method shows
advancement in protein identification and quantitation, which
would further help efficient PDX data mining.

Materials and methods

Sample preparation and protein extraction

Mixture of human and mouse proteins

AGS cells (a type of human gastric adenocarcinoma cell
line) and MEF cells from American Type Culture Collec-
tion (Rockville, MD) were separately cultured in DMEM
medium (Catalog No. 10569-010, ThermoFisher Scientific,
Waltham, MA) supplemented with 10% fetal bovine serum
(Catalog No. 04-121-1A, Biological Industries, HaZafon,
Israel). When cell confluence reached about 90%, cells
were digested by trypsin and collected. After pre-cold PBS
wash, cells were suspended in lysis buffer (8 M Urea in
100 mMNH4HCO3, protease inhibitor cocktail, pH 8.0) and
stayed on ice for 30 min. Sonication was used to disrupt
DNA aggregation. Both lysates were centrifuged at
21,130 g at 4 °C for almost 10 min. Then the supernatants of
AGS and MEF cells were transferred to the clean centrifuge
tubes, respectively, and protein concentrations were de-
termined by bicinchoninic acid (BCA) assay (Catalog No.
P0010, Beyotime Biotechnology, Shanghai, China).

For a series of human–mouse protein mixtures, we firstly

diluted both of the AGS and MEF lysates to the con-
centration of 5 mg/ml. For SET60, 24 μl AGS lysate and
16 μl MEF lysate were mixed. Similarly, SET70 consists of
28 μl AGS lysate and 12 μl MEF lysate; SET80 consists of
32 μl AGS lysate and 8 μl MEF lysate; SET90 consists of
36 μl AGS lysate and 4 μl MEF lysate.

PDX samples

PDX animal samples were generated from primary gastric
cancer tissues. The samples were provided and validated by
Crown Bioscience (Beijing, China) in strict accordance
with the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health. Two cryopulverized
PDX tissues (one bearing FGFR2 amplification and the
other one not) were used for further proteome analysis.
These two PDX samples were washed with pre-cold PBS
twice and then mechanically sectioned into tiny fragments
before lysis. Tissues were suspended in lysis buffer and
stayed on ice for about 30 min. Then the lysates were so-
nicated for 5 min (3-s sonication and 5-s interval as a cycle)
for complete lysis. The supernatants were transferred to new
Eppendorf tubes after centrifugation at 21,130 g at 4 °C for
almost 10 min, and protein concentrations were determined
by BCA assay. The paired PDX samples were treated in
parallel to eliminate manipulation error.

In-solution trypsin digestion

Cell lysates were incubated with 5 mM dithiothreitol (DTT)
at 56 °C for 30 min. After reduction, the lysates were al-
kylated by 15 mM iodoacetamide (IAA) at room tempera-
ture in the darkness for 30 min, and quenched with 30 mM
cysteine for another 30 min. The protein solutions were
diluted in 2 M Urea with 100 mM NH4HCO3 (pH 8.0) and
then digested with Sequencing Grade Modified Trypsin
(Catalog No. V5111, Promega, Madison, WI) at 1:50 (w/w)
trypsin-to-protein ratio at 37 °C for 16 h. To complete the
digestion cycle, trypsin was then added at 1:100 (w/w)
trypsin-to-protein ratio at 37 °C for another 4 h. Peptide
desalting was conducted via SepPak C18 cartridges (Catalog
No. 186006325, Waters, Milford, MA) and the eluted so-
lution was vacuum dried before fractionation.

Peptide fractionation

The human–mouse protein mixtures were fractionated using
house-packed C18 columns. C18 beads were resuspended in
acetonitrile (ACN) and transferred onto top of previously
equilibrated C18 StageTips, and then washed by 150 μl buffer
A [98% H2O, 2% ACN, pH 10 (adjusted by NH4OH)].
Tryptic peptides were dissolved in 80 μl buffer A and loa-
ded onto the C18 beads twice. The flow through was retained
and marked as E1. The combined peptides were
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sequentially eluted with 4%, 8%, 12%, 16%, 20%, 24%,
28%, 32%, 40%, 60%, and 80% buffer B [98% ACN, 2%
H2O, pH 10 (adjusted by NH4OH)], and marked as E2 to
E12, respectively. The eluted peptides were combined to
form six fractions.

For PDX samples, the desalted peptides were fractio-
nated by Agilent 1100 HPLC system with XBridge C18

column (4.6 mm × 100 mm, 130 Å pore size, 3.5 μm par-
ticle size; Catalog No. 186003033, Waters). Peptides were
separated with a gradient of 2%–100% buffer B (98% ACN,
2% H2O, pH 10.0) at a rate of 0.6 ml/min in 60 min. The
peptides were combined into ten fractions. Each fraction
was vacuum dried in SpeedVac (ThermoFisher Scientific)
for further MS analysis.

LC–MS/MS data acquisition

The fractions of four human–mouse protein mixtures were
analyzed on Q Exactive (ThermoFisher Scientific). Lab-
made reversed-phase C18 pre-column (4 cm length, 75 μm
ID, 5 μm particle size) and C18 analytical column (16 cm
length, 75 μm ID, 3 μm particle size) were used for online
desalting and peptide separation. For each fraction, peptides
were dissolved in Mobile phase A [H2O with 2% ACN and
0.1% fatty acid (FA)] and then loaded onto the pre-column.
Peptides were separated with Mobile phase B (ACN with
2% H2O and 0.1% FA) under a linear gradient from 5% to
35% for 30 min and from 35% to 80% for 10 min at a flow
rate of 300 nl/min. The eluted peptides were ionized via
nano-electrospray ionization (NSI) source and introduced to
Q Exactive. The resolution of intact peptides with m/z
350–1600 for Orbitrap was set as 70,000 at m/z 200. The 16
most intense ions, whose intensity was higher than 2 × 104,
were further selected and fragmentized by higher-energy
collision dissociation (HCD) with normalized collision
energy of 28%. The resolution of ion fragments was set as
17,500 at m/z 200. The dynamic exclusion duration was
60 s. The isolation window was set as m/z 2 and automatic
gain control (AGC) was on. Technical replicates were
performed.

The fractions of gastric PDX samples were analyzed on
Fusion (ThermoFisher Scientific). Full MS spectra (from
m/z 350 to m/z 1300) were acquired with the resolution
120,000 at m/z 200 in profile mode. For full scan, AGC
targets were set as 5.0 × 105 within the maximum injection
time of 50 ms and for MS/MS scan, AGC targets were set as
7.0 × 103 within the maximum injection time of 35 ms. Data
dependent mode was set as top speed and the most intense
precursor ions were fragmented by HCD with normalized
collision energy of 32%. MS/MS spectra were detected by
ion trap and ion trap scan rate was set as rapid. Dynamic
exclusion duration was set to 60 s. The fractions of these
two samples were subjected to MS sequentially. Two

technical replicates for each sample were conducted.

Data processing

Database searching

All the acquired MS/MS raw data were processed with
MaxQuant (version 1.5.3.8) based on Andromeda search
engine [33].

Peptides were identified against the HM database which
contained the sequences of UniProt human (proteome ID:
UP000005640, last modified in Oct, 2015) and UniProt
mouse (proteome ID: UP000000589, last modified in Oct,
2015), and enabled contaminants and reversed sequences.
For comparison, some data were additionally searched
against UniProt human database. The search results were
filtered to a 1% FDR at the peptide and protein levels.
Trypsin/P was specified as the digestion enzyme, and
maximum missing cleavage was set as 2. Precursor error
tolerance was set as ± 10 ppm with fragment ion ± 0.02 Da
for Q-Exactive and fragment ion ± 0.5 Da for Fusion.
Modification parameters were as follows: carbamidomethyl
(C) as the fixed modification, oxidation (M) and acetylation
(Protein N-terminus) as variable modifications.

For each standard testing set, as two technical replicates
were conducted under the same MS condition, the raw data
were labeled as experiment “R1” and “R2”, respectively.
Match between runs was ticked and set with a minimum
window of 0.7 min.

For PDX samples, label-free quantitation mode was
chosen with default parameters and “match between runs”
was set with a minimum window of 0.7 min.

The files “peptide” and “evidence” generated from
software MaxQuant were used for subsequent analysis.
Data were processed with R language. For “peptide” file,
the peptides labeled as contaminant or reverse were re-
moved before other procedures. Peptide intensity was used
for peptide and protein quantitation.

Comparison of peptides identified in human database and
HM database

We used the spectra ID and score in “evidence” file pro-
duced by MaxQuant for subsequent processing. We re-
garded a spectrum as a MU peptide in HM database, only if
its search score is higher than the corresponding score in
human protein database.

Protein assembling and quantitation

Gene-unique peptides which were matched to only one
gene were selected for protein assembly. The intensities of
all respective peptides were summed up as protein in-
tensity. As technical replicates were performed, we took the
average to represent the protein expression value. The
protein expression values were normalized by the summed
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intensity of each sample that reflects the total abundance
(Table S2).

PDX sample analysis

Column “intensity” of each peptide in “peptide.txt” was
used for peptide quantitation and protein assembling. Total
intensity normalization was performed to adjust the differe-
nce of total peptide amounts in two samples (the same
strategy used in standard testing set normalization). As for
the phosphorylation data, the intensity of phosphopeptides
was normalized to the abundance of the parent protein,
which reflects the changes in relative phosphorylation of
the protein without confusion by changes in expression of
the protein itself [13]. Missing values were filled with
minimum number 100,000. Proteins were assembled via
the HU strategy or SPA. The fold change was calculated for
each protein via the average intensity in the FGFR2 am-
plification sample dividing by that in the control sample.
Then we chose proteins with more than 3-fold change or
less than 0.33-fold change for subsequent enrichment
analysis. Enrichment analysis was performed using DAVID
6.8 tools with the total H. sapiens genome as the back-
ground [34,35].

Code availability

The tool pdxSPA is freely available at https://github.com/
Li-Lab-Proteomics/pdxSPA.

Data availability

All MS raw data have been deposited to the PRIDE [36]
partner repository (ProteomeXchange: PXD008611) which
are publicly accessible at http://proteomecentral.proteo-
mexchange.org/cgi/GetDataset.
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