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Livestock epidemics have the potential to give rise to significant economic, welfare, and 
social costs. Incursions of emerging and re-emerging pathogens may lead to small and 
repeated outbreaks. Analysis of the resulting data is statistically challenging but can 
inform disease preparedness reducing potential future losses. We present a framework 
for spatial risk assessment of disease incursions based on data from small localized 
historic outbreaks. We focus on between-farm spread of livestock pathogens and 
illustrate our methods by application to data on the small outbreak of Classical Swine 
Fever (CSF) that occurred in 2000 in East Anglia, UK. We apply models based on con-
tinuous time semi-Markov processes, using data-augmentation Markov Chain Monte 
Carlo techniques within a Bayesian framework to infer disease dynamics and detection 
from incompletely observed outbreaks. The spatial transmission kernel describing 
pathogen spread between farms, and the distribution of times between infection and 
detection, is estimated alongside unobserved exposure times. Our results demonstrate 
inference is reliable even for relatively small outbreaks when the data-generating model is 
known. However, associated risk assessments depend strongly on the form of the fitted 
transmission kernel. Therefore, for real applications, methods are needed to select the 
most appropriate model in light of the data. We assess standard Deviance Information 
Criteria (DIC) model selection tools and recently introduced latent residual methods of 
model assessment, in selecting the functional form of the spatial transmission kernel. 
These methods are applied to the CSF data, and tested in simulated scenarios which 
represent field data, but assume the data generation mechanism is known. Analysis of 
simulated scenarios shows that latent residual methods enable reliable selection of the 
transmission kernel even for small outbreaks whereas the DIC is less reliable. Moreover, 
compared with DIC, model choice based on latent residual assessment correlated better 
with predicted risk.

Keywords: spatial epidemics, kernel transmission functions, Markov chain Monte carlo, risk assessment, latent 
residuals, deviance information criterion
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1. inTrODUcTiOn

The livestock epidemics of foot-and-mouth disease (FMD) in the 
United Kingdom (UK) in 2001 (1) and of classical swine fever 
(CSF) in the Netherlands in 1997 (2, 3) were characterized by 
their widespread spatial extent and significant impact on the 
agricultural sector. The 2001 FMD outbreak affected all UK live-
stock farms and is estimated to have a cost total of £8 billion (4) 
whereas the CSF epidemic in Netherlands totalized a short-term 
economic impact over £1.1 billion (5).

The desire to mitigate such impacts for future livestock-disease 
incursions has increased focus on preparedness for emerging 
and re-emerging pathogens (6, 7) and highlighted the need for 
quantitative tools to support such efforts (8, 9).

A key step in controlling livestock-disease incursions is to 
quantitatively assess the risk of localized disease spread from 
infected to susceptible farms. Control strategies can then make use 
of such risk assessments, for example they can be used to decide 
on which farms surrounding confirmed infected premises to 
impose control measures (10, 11). Quantitative study of historical 
epidemics has the potential to make such risk assessment faster 
and more robust, enabling more rapid and reliable response than 
possible if waiting for sufficient data to accrue during an ongoing 
epidemic (12). Tools to enable analysis of historic outbreaks thus 
may provide information critical to control operations prompted 
by future incursions of emerging or re-emerging diseases. Data 
on large outbreaks such as those described above have been 
shown to enable quantification of various epidemiological (13), 
economic (14, 15), and logistical (16) aspects of disease spread. In 
turn, these studies have contributed to the design of novel, more 
cost-efficient, control strategies against future epidemics (17–20). 
Fortunately large outbreaks, such as those described earlier, are 
rare and incursions of emerging or re-emerging disease typically 
lead to small and often repeated localized outbreaks (21). In this 
paper, we will investigate the quality of inference possible from 
data on small outbreaks.

Model-based inference can be conceptualized as a two-stage 
process; estimate the parameters for each of a set of given models 
and then rank or choose between the different models. Subsequent 
risk assessment can then be based on the model that best fits the 
data, or suitably weighted outputs from a set of models.

Over recent years, a number of authors have developed 
Bayesian inferential tools to enable statistically rigorous 
parameterization of discrete state continuous time Markov and 
semi-Markov processes (DCTMPs) from noisy and incomplete 
observations typical of field data, e.g., disease detections from 
real world epidemics (22–27). These inference tools are flexible 
in that they can be applied to a wide range of model structures 
and epidemic scenarios. Discrete state continuous time Markov 
and semi-Markov processes are well suited to modeling a diverse 
range of epidemiological systems. Their continuous time nature 
enables more accurate representation of the transmission process 
than discrete time models, and their discrete state space is ideally 
suited to represent epidemic spread between individuals, e.g., 
farms classified into distinct disease classes, susceptible, infected, 
etc. The inference tools for such models make use of data-
augmentation approaches to account for missing information 

(such as the times individuals become infected) which are treated 
as additional parameters to be inferred. Information (including 
uncertainty) on key quantities obtained from Bayesian inference 
is encoded in the so-called posterior, which is the joint distribu-
tion of model parameters (describing processes such as transmis-
sion between hosts and disease progression within an infected 
host) and missing data, e.g., the infection and transition times 
conditional on the observed data and modeling assumptions. 
Markov Chain Monte Carlo (MCMC) methods are typically used 
to draw samples from the posterior, and from these samples it 
is straightforward to calculate quantities of interest such as the 
probability, under some defined scenario, that a given farm will 
become infected at some future date. It is important to note that 
such predictions reflect the uncertainty inherent in the inference 
and therefore indirectly the quality of the data. It can be shown 
that reliability of inference for a given process (e.g., transmission) 
increases with the number of associated events (e.g., infections) 
occurring during the observation period. In general, this sup-
ports the intuition that uncertainty in inference will depend on 
the quantity of data available, and that uncertainty in inferences 
based on small outbreaks will be greater, and the reliability of the 
estimates more limited, than for large outbreaks.

Although theory underlying model choice in a Bayesian 
framework is well established (28, 29), its implementation is 
often impractical, especially for missing data problems where, as 
of interest here, latent variables are used for data augmentation. 
Reversible jump MCMC (30) in principle allows calculation of 
the so-called Bayes factor comparing two models but suffers 
implementation issues (31). For example, to compare a newly 
proposed model with earlier models requires the rerunning (and 
often recoding) of the inference procedure for at least one earlier 
model. In practice, the only model selection tool in widespread 
use for DCTMPs applied to epidemiological modeling is the DIC, 
or Deviance Information Criteria (32–34). DIC is a Bayesian 
model selection method which tries to balance model complexity 
with fit to data (35). However, there are increasing concerns with 
regards to discriminatory performance (36) particularly in the 
presence of latent variables, such as infection times, where there 
is no unique definition of DIC (37). A complimentary approach 
to model choice is that of model assessment where statistics are 
constructed to detect inconsistencies between model assump-
tions and the real world processes being modeled (38, 39). Novel 
diagnostics tools for assessing the fit of DCTMP model, known 
as latent residuals, have recently been developed by Lau et al. (40) 
and have proven to be efficient in identifying misspecification of 
model components in the context of spatio-temporal models for 
disease spread. This approach allows indirect model comparison, 
but also has the important benefit of indicating in what manner 
a given model may be inadequate, thereby providing insights 
into ways for improvements. The application of latent residuals 
for DCTMPs to small outbreaks has yet to be tested (40), and 
model comparison based on data from small outbreaks is likely 
to be challenging given the potential difficulties described above 
associated with inference for individual models from such data.

In this paper, we focus on the spatio-temporal modeling 
of disease spread between farms and subsequent detection of 
infected premises, conducting inference from data on detection 
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times only. We focus on the model choice problem of selecting 
the appropriate functional form describing between-farm disease 
transmission. Local between-farm transmission is generally 
mediated by multiple processes influenced by a wide range of 
factors including human behavior and characteristics of the 
livestock-disease system in question. However, typically these 
factors are not quantified and overall local spatial spread is often 
summarized to be a function of the straight-line distance between 
farms, modeled by the so-called “kernel transmission function.” 
In the context of CSF, Mintiens et al. (41) examined risk factors 
associated with the occurrence of neighborhood infections 
during the 1994 Belgium outbreak and found that intensity of 
neighboring herds was the most significant factor. Staubach et al. 
(42) established a distance-dependent risk function based on 
data obtained from real outbreaks. Building on this earlier work, 
Backer et al. (20) modeled between-farm spread of CSF using the 
kernel transmission function (described later as K2, see Section 
2.1) but modulated the kernel by the infectiousness of the infected 
farms (infectiousness defined by the number of infectious indi-
viduals on farm). The same transmission kernel was considered 
by Boender et al. (43), but they also included the influence of farm 
size in order to determine both the distance dependence and the 
farm-size dependence of the between-farm transmission risk of 
CSF during the Dutch 1997/1998 epidemic. As we subsequently 
show, identifying the correct kernel is critical in effective support 
of policy and decision-making for disease control since it can 
affect the risk profile of farms that are candidates for control.

In summary, this manuscript is organized as follows:

 1. We first focus on the methodology describing the set of models 
that are mainly different in the kernel transmission functions 
used. These models’ parameters are inferred in the Bayesian 
framework and two model selection tools are applied, namely 
DIC and latent residuals.

 2. Having inferred parameters from the various models, we 
quantify the posterior risks associated with each premise by 
simulating repeated epidemics using posterior estimates as 
initial conditions.

 3. The reliability of the methods are shown using simulated 
data and applied to field data on the small CSF outbreak that 
occurred in 2000 in East Anglia, UK (44).

2. MaTerials anD MeThODs

2.1. Model structure
We use a stochastic spatio-temporal Susceptible-Infectious-
Removed (SIR) epidemic model to assess local between-farm 
spread and farm-level detection and control of a disease. The 
underlying model framework is a continuous time discrete state-
space semi-Markov process. In our model, individuals represent 
spatially distinct locations, e.g., farms, characterized by a discrete 
set of disease states (S, I, and R). The population is assumed 
initially fully susceptible prior to an initial incursion of disease 
into a single farm (the index case). Susceptible farms (in state 
S) subsequently become infected via local contacts with infected 
farms (in state I). Once infected, each farm remains in state I 

until its infectious status is detected and controls imposed. It is 
assumed that controls are introduced immediately upon detec-
tion and are completely effective. Therefore, once detected farms 
enter a restricted or controlled state (state R) in which they are 
removed from (i.e., play no further role in) the epidemic.

2.1.1. Detection and Control
The description of the R state assumes that effective control is 
rapid following detection which is a reasonable assumption for 
a range of disease systems (9, 45). In the context of FMD or CSF 
outbreaks in the UK, total depopulation of the infected premises 
is carried out within 24 h of the reporting of on-farm detection 
(1, 44). The infectious period for an infected farm can therefore be 
reasonably approximate as the period between the date of infec-
tion and the date at which the farm in question is reported as 
infected. The detection of disease is considered non-Markovian 
since the probability of detection is not constant but varies as a 
function of time since infection, e.g., as the number of on-farm 
cases changes. Here, we assume that the infectious period of the 
disease follows a gamma distribution with shape α and rate γ.

2.1.2. Secondary Infection
In the situation where farm i is infected and infectious (i.e., 
in state I) and farm j is susceptible (i.e., in state S), the rate at 
which j enters state I (i.e., becomes infected/infective) due to 
transmission from farm i, is βij = β0hij. Here, β0 is the maximum 
rate of contact whereas hij is a kernel function that can involve 
individual-specific characteristics. In the case of a distance kernel 
function, the contact rate varies as a function of the Euclidean 
(straight line) distance between farms. The shape of the kernel 
can significantly impact the spatial spread and development of 
epidemic processes (46, 47). In order to evaluate the effect of the 
kernel selection on outbreak risk assessment, we considered four 
different forms for the kernel function hij:
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where ρ(i, j) denotes the Euclidean distance between individuals 
or sites i and j (i, j ∈ {1, 2, … N}). These functions represent a broad 
range of kernel functions found in the literature to characterize 
local spread in the analysis of spatial epidemics. For example, the 
exponential kernel K1 was used for modeling the spread of the 
citrus tristera virus (48) and the spread of citrus greening (49). 
The kernel K2 was used to model the between-farm spread of the 
CSF in the Netherlands by Backer et al. (20) and Boender et al. 
(43). The kernels K2 and K4 were used to model the spread of 
FMD in Japan (50) and in Netherlands (51) and are parameter-
ized in such a way they capture short-range spread. The Cauchy 
kernel K3 is a special case of K2 for τ = 1 and was considered by 
Kypraios (52), and as a description of the dispersal of an invasive 
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non-native vascular plant by Lau et al. (40). K3 allows more for 
long-range infections compared to the others as it presents the 
heaviest tail among all four. Full model specification as given in 
Section S1.1 in Supplementary Material.

2.2. Bayesian inference
Here, we assume that available data consist of the time at which 
individual premises were detected as infected, and the geoloca-
tions not only of these premises, but all susceptible farms. In this 
analysis, we assume the times at which individuals are infected 
are not observed, since this information is typically not avail-
able in outbreak situations. However, such information could be 
incorporated in our framework if it were available.

Missing infection times make the likelihood for the SIR model 
intractable and render the use of frequentist approaches for 
inference less than straightforward. However, developments in 
data-augmentation MCMC allow Bayesian inference of both the 
parameters and missing infection times. The approach adopted 
is similar to that of Jewell et al. (25) which builds on the seminal 
work of Gibson and Renshaw (22) and O’Neill and Roberts (23). 
Full details on the model fitting framework and procedures are 
provided in Sections S1.2 and S1.3 in Supplementary Material.

Briefly, we considered the joint posterior distribution of the 
model parameters θ and infection times I given the data, i.e., the 
detection times R. Using Bayes’ theorem, this can be expressed as

 π π π( ) ( ) ( )θθ θθ θθ, | ∝ , | ,I R R I  (1)

where π(R, I|θ) is nothing more than the probability of obtaining a 
given joint realization of detection and infection times (I, R) from 
a simulation of the model given parameter values θ. Sometimes 
referred to as the complete data likelihood, this can be calculated 
based only on the definition of the model. π(θ) is the joint prior 
distribution of the parameters and is specified in light of any 
information available before the data R is observed. If samples 
{(θk, Ik): k = 1 … L} can be drawn from the posterior distribution 
expressed in equation (1), then it is possible to calculate almost 
any statistic of interest. For example, marginalizing over I would 
result in estimating the distribution θ|R, whereas marginalizing 
over θ would result in estimating I|R. We note that the latent 
space, here corresponding to the set of infection times only, can 
be readily expanded to consider information such as the trans-
mission tree, i.e., “who-infects-who.” Moreover, the framework 
can also be expanded to consider other disease categories such 
as an exposed state.

Here, we employ Markov Chain Monte Carlo (MCMC) meth-
ods to draw samples from the posterior distribution specified in 
equation (1) only up to constant of proportionality. More specifi-
cally, we make use of a Metropolis–Hastings (53) within Gibbs 
algorithm (54) together with simple non-centering techniques 
(27). Full details of the sampling algorithms are provided in 
Section S1.3 in Supplementary Material.

2.3. Model selection
Model selection is a challenging aspect of inference, especially 
for models with latent variables and where data are limited. In 
this study, we employ two contrasting model selection tools 

from the literature to select among our four spatial kernels,  
K1, …, K4, which model fits best our data. In particular, we use the 
deviance information criterion (DIC (35)) and Bayesian latent  
residuals (40).

Although widely used and measuring the trade-off between 
the model fit and complexity, DIC is recognized to have issues 
such as non-invariance to reparameterization, lack of consist-
ency, no basis on a proper predictive criterion (36), and multiple 
definitions in the presence of latent variables (37). In this study, 
we used two formulations of DIC for latent variable models (37): 
DIC1 is computed accounting for the full likelihood, i.e., the data 
augmented likelihood, whereas DIC2 is computed on a partial 
likelihood of the observation process conditional on the latent 
variables. We note that DIC1 and DIC2 correspond respectively 
to DIC4 and DIC8 in Celeux et al. (37). In either case, interpreta-
tion of DIC is straightforward with the smallest value taken to 
indicate which model performs the best. In practice, however, 
only differences of magnitude 10 or more between models are 
usually considered as indicative of significant differences in 
model fit (55).

By contrast, Bayesian latent residuals based on non-centered 
reparameterisations of discrete state-space continuous time semi-
Markov process have recently been proposed as an approach to 
assess the fit of different components of the model, thereby focus-
ing attention on aspects of the model that need improvement (40). 
For example, the infectious link residuals (ILRs) considered here 
are specifically designed to detect misspecification of the spatial 
transmission kernel. These are constructed by expanding the set 
of latent variables sampled from the posterior distribution to 
include both infection times and also the donors of infection, i.e., 
the transmission tree. This information then allows inference of a 
random variable, an ILR, that, under the assumption the model is 
correct has a uniform U(0, 1) distribution (40). Evidence of non-
uniform distribution of the ILRs indicates a misspecification of 
the kernel function. Recall that the data consist only of detection 
times and the infection times are unknown. Each set of infection 
times estimated within the MCMC algorithm (i.e., drawn from 
the posterior distribution) corresponds to a set of residuals. Each 
of these sets of residuals is subjected to an Anderson–Darling test 
to assess whether it conforms to a uniform U(0, 1) distribution 
or not. Therefore, there are exactly the same numbers of p-values 
as there are samples from the posterior distribution. We record 
the proportion of p-values, e.g., Pr(p < 5%), that are less than a 
confidence level, e.g., 5%. In the case that the proportion is similar 
to the confidence level, we take that as indicative that the model 
is not inconsistent with the data; more formally there is not suffi-
cient evidence to reject the model. A high proportion of p-values 
greater than the 5% level (i.e., Pr(p < 5%) large) is interpreted as 
evidence against the chosen form of the kernel.

To evaluate the performance of these model selection and 
assessment tools, we apply them within a simulation study frame-
work where the true data-generating model is known. See Section 
2.5 for full details of the simulated scenarios considered. For each 
iteration of the simulation study, we simulate an epidemic and 
generate a data set (detection times only) using the Gillespie 
algorithm (56) under a specified kernel. Each dataset is fitted to 
the models defined in Section 2.1 using MCMC, not only with 
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the kernel used to simulate the epidemic, but also with alterna-
tive kernels. Model selection and assessment tools based on DIC 
and latent residuals are used to assess each of the fitted models as 
described above. Full details of the model selection tools used are 
provided in Section S1.4 in Supplementary Material.

2.4. risk Quantification
In order to make the results of inference more directly relevant 
to the development of disease control, we construct posterior 
predictive distributions that quantify farm-level risk. To do so, 
we start by drawing a large number of independent samples from 
the joint posterior distribution for each model variant (i.e., each 
kernel). For each kernel, and a fixed set of initial conditions, these 
sampled parameter values are used to simulate multiple realiza-
tions of an epidemic using the Gillespie algorithm from which we 
record the infected sites and event times. From the large number 
of simulated epidemic realizations obtained, distributions are 
calculated for each kernel by evaluating the proportion of realiza-
tions in which each premise becomes infected at any given point 
in time. Such posterior predictive distributions can be used to 
produce heat maps showing the spatial distribution of farm-level 
infection risk (see further in section: Results) at a given point in 
time. The heat maps are produced at a length of times sufficient 
to capture the early phase and small scale epidemics’ behavior.

An alternative approach to visualizing this information is to 
summarize the simulated epidemics by looking at the average 
proportion of infected farms (farm-level prevalence) as function 
of time. However, interpreting such average between-farm preva-
lences is complicated by the fundamental characteristics of dis-
ease transmission in SIR epidemics. In particular, it is well known 
that when the basic reproduction rate R0 > 1 disease spreads on 
average, but that the final size distribution for a stochastic SIR 
epidemic model is bimodal, showing that some epidemics die-out 
before becoming large, while others grow to affect a large propor-
tion of the population (8, 57) (see Section S2.1.3 in Supplementary 
Material). Given that the mean of a bimodal distribution is not a 
meaningful summary statistic, we use the mean of the final size 
distribution as a boundary defining small and large epidemics. 
This enables us to calculate the probability of obtaining small and 
large outbreaks and plot average between-farm prevalence as a 
function of time for both small and large outbreaks, as predicted 
under each of the four kernels.

2.5. simulation studies
To assess the reliability of parameter inference and model selection 
and to evaluate the effect of final epidemic size, we generate data 
sets based on the Gillespie algorithm (56), introducing the disease 
via a single randomly selected primary (index) case located in a 
closed population of N = 201 farms in a square of sides [0, 2,000] 
km (corresponding to an average density of 5 × 10−5 farms per 
102 km2) and using a fixed set of parameters for each scenario 
considered. The simulation studies described below are divided 
into simulation study 1 which focuses on single data sets gener-
ated using two contrasting kernels, and study 2 which explores 
coverage properties of our inference procedure using data sets 
generated from multiple realizations of each of these scenarios. 
Bayesian inference is applied to every simulated data set to fit 

models based on all four kernels (K1, K2, K3, K4), and the model 
selection procedures described above are applied to every data set 
to discriminate between the kernels.

2.5.1. Simulation Study 1a
We first simulate a single realization of the epidemic assuming 
that the mechanism of disease spread is described by kernel 
K1. More specifically the characteristics of underlying infection 
process are β0  =  0.35, K1  =  exp{−0.008ρ(i,j)} with an initial 
condition in which all farms are susceptible except for a single, 
randomly selected primary case. The infectious period follows a 
Ga(5, 5) distribution. A total of nR = 43 removed individuals were 
recorded together with their removal times.

2.5.2. Simulation Study 1b
A single data set of detection times is generated from a simulation 
using kernel K2 instead of K1. The detection time distribution and 
initial conditions are as in study 1a but here, β0 = 400, K

i j2
1

1
2

1 5

=
+( ),

.
ρ ( )

,  
and nR = 44 removal times were obtained.

2.5.3. Simulation Study 2a
Different outbreak sizes are considered in order to assess 
goodness-of-fit and evaluate the performance of model selection 
tools as epidemic size increases. Simulations are performed to 
obtain n = 30 realizations for each epidemic size category of [6, 
10], [11, 15], [16, 20], [21, 25], [26, 30], [31, 35], [36, 40], and 
[41, 45]. For each realization, a data set of detection times was 
recorded. For each randomly selected incursion event, the spread 
of the disease was simulated using kernel transmission function 
K1 with the same parameterization used in simulation study 1a. 
Considering only small (≤45 infected farms) completed epidem-
ics, we subsequently inferred all parameters of interests (as well as 
posterior distributions of infection times for infected premises), 
and computed all three measures of goodness-of-fit (DIC1, DIC2, 
ILR) under the hypothesis that the spread of the disease follows 
a kernel transmission function with a shape either K1, K2, K3, or 
K4. For each scenario, coverage properties (i.e., the number of 
times the true parameter values fall within their respective 95% 
credible intervals) are recorded for each size category described 
above.

2.5.4. Simulation Study 2b
To evaluate the resilience of our conclusions given to the shape of 
the kernel transmission function of the data generation process, 
an analogous procedure to that described for study 2a was car-
ried out considering data generated using K2 (i.e., instead of the 
kernel transmission function K1) with the same parameterization 
as used in simulation study 1b.

2.6. Field Data
In 2000, the UK experienced an outbreak of CSF across the region 
of East Anglia (44). Unlike in the Netherlands where the CSF 
outbreak has been detected in various areas of the country (58), 
the UK outbreak was only detected in the region of East Anglia, 
with n = 16 farms found infected in the 3 month-long outbreak. 
Records of the pig population at the time show that N = 1,703 pig 
farms were present in the affected area and were considered at risk 

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


TaBle 1 | computed Dic1 and Dic2 values and the proportion of p-values 
less than 5% obtained from testing the distribution of ilrs when fitting 
model variants K1, …, K4 to simulated data from scenarios 1a (a) and 1b 
(b).

(a) simulation study 1a: true kernel, K1

Dic1 Dic2 Pr(p < 5%)

K1 266 761 6.42%
K2 274 23,741 36.88%
K3 285 630 90.99%
K4 273 39,486 39.29%

(b) simulation study 1b: true kernel, K2

Dic1 Dic2 Pr(p < 5%)

K1 239 371 34.79%
K2 227 494 4.43%
K3 252 362 89.61%
K4 394 489 4.64%

Bold font indicates the smallest values for the DICs and Pr(p < 5%) bringing out the 
selected model by each tool.
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(44). This represents an approximate average population density 
of 6.08 per 102 km2. Although all pig farms in the UK could be 
considered at risk, inferred transmission distances are small 
relative to the area occupied by the above subpopulation, and 
all infected premises are contained comfortably in the defined 
region and the risks for farms outside the subpopulation consid-
ered are considered negligible given their distances to the infected 
farms and the inferred transmission kernels (see Results section), 
unless sources of infection exist other than those considered in 
the modeling framework used here. The inferences presented 
below would therefore be essentially unchanged by accounting 
for a larger at risk population.

All parameters of interest including infection times were 
inferred using data describing farm locations and the time 
at which each premises was detected and reported infected. 
Control interventions consisted of depopulation of infected 
premises within 24 h of reporting of disease detection. Inference 
was conducted, and all model selection criteria and measures 
of goodness-of-fit computed, under the hypothesis that spread 
of the disease was described by the spatial SIR model described 
above with each of the kernel transmission functions K1, K2, K3, 
or K4. Although CSF is highly contagious and may result in the 
death of young animals, clinical sign are non-specific and can 
result in failed diagnosis and a long period of undiagnosed spread 
(59). Consistent with the literature (20), we therefore assumed 
that a minimum of 8 days was required for infected premises to be 
detected. Therefore, during the fitting procedure, the infectious 
period was assumed to follow a left-truncated gamma distribu-
tion. Full details are available in Section S1.1 in Supplementary 
Material.

3. resUlTs

3.1. Testing inference Methods with 
simulated Data
We first make use of simulated data to assess the performance of 
inference and model selection procedures and risk assessments 
based on them. Initially the focus is on inference from individual 
epidemics, but latterly we explore coverage properties, as a func-
tion of outbreak size, by considering performance on data from a 
representative ensemble of epidemics.

3.1.1. Inference from Single Epidemics
Posterior means for model K1 parameters, under simulation study 
1a, were 0.396 (95% credible interval 0.169, 0.761), 6.251 (2.638, 
11.631), 0.00771 (0.00540, 0.01031), and 4.907 (1.986, 9.190), 
respectively, for β0, γ, τ, and α. All 95% credible intervals overlap 
with the underlying parameters values used to generate the data, 
suggesting our inference framework is able to recover appropri-
ate parameterizations when there is no mismatch between the 
data-generating mechanism and fitted model. This is also the 
case for simulation study 1b which replaces kernel K1 with K2 
and inference for β0, γ, τ, α, and d yields estimates 714.576 (59.319, 
2,809.770), 7.931 (3.298, 13.429), 2.016 (1.639, 2.411), 5.567 
(2.228, 9.782), and 2.237 (0.699, 4.717), respectively. Assessments 
of convergence of the outputs of the MCMC sampler reveal no 

evidence of lack of convergence as shown by the auto-correlation 
functions in Section S2.1.1 in Supplementary Material.

Table  1 shows the values obtained for each of the model 
selection tools implemented when assessing the fit of model vari-
ants based on each of the four transmission kernels. The correct 
kernel was identified when considering the ILRs making use of 
the measure Pr(p < 5%), the proportion of p-values less than 5% 
based on the latent residuals, and using DIC1. It is also worth not-
ing that analysis of the residuals suggests an equally good fit for K2 
and K4 in simulation study 1b. By contrast, DIC2 led to selection of 
the incorrect kernel in both situations, preferring K3 rather than 
either K1 or K2. This finding is consistent with previous studies 
(40) and highlights that using DIC2 may generate selection bias.

To evaluate the implication of such miss-selection on predicted 
risk associated with different premises, we construct posterior 
predictive probabilities of infection under all kernels (corre-
sponding risk maps are shown in Section S2.1.4 in Supplementary 
Material). Comparing across kernels there are clear differences in 
risk levels predicted for many locations. K3 predicts highest risk 
of infection for all farms while predicted risk under K2 and K4 
decreases for extreme locations, whereas the predicted risk under 
K1 falls off much faster with distance from the index case.

Figure 1 shows separately for both small and large outbreaks, 
how the average proportion of infections, i.e., the total number of 
cases divided the total number of farms within the area, evolves 
through time under different kernels. Small (large) outbreaks are 
defined as those less (greater) than the posterior mean epidemic 
size (see methods). The between kernel differences in the poste-
rior predicted average proportion of infected premises through 
time, are very noticeable for small epidemics, and still visible, but 
to a lesser extent, for large epidemics.

We also evaluated the posterior predicted risk of a small as 
opposed to a large outbreak. Under simulation study 1a small 
epidemics occur 61.87% of times for K1, 58.59% for K2, and 
52.88% and 59.12% for K3 and K4, respectively. Similar propor-
tions are obtained under simulation study 1b except for small 
difference in K3 with 57.18%, while other proportions are 60.39%, 
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FigUre 1 | Posterior predicted average proportion of premises infected as the epidemics evolve in time (days). On each graph, the lines correspond to 
the results obtained when kernels K1 − K4 are fitted to data. The column on the left shows results using data from simulation study 1a and is divided into predicted 
outbreaks that are (a) small or (c) large. The column on the right shows results from simulation study 1b, stratified for (B) small or (D) large predicted outbreaks. 
The size of outbreaks was classified as either small or large based on final outbreak sizes being smaller or larger than the mean of the final size distribution (see text 
for details).
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K3 produced the most extreme predictions of risk. However, this 
was also the model least favored when testing model assumptions 
using the ILRs, but was not consistently ranked by DIC1. In simu-
lation study 1b, analysis of ILRs leads to selection of two models, 
i.e., with kernels K2 and K4, and these models produced almost 
identical posterior predicted risk profiles in terms of expected 
proportion of infected farms. This similarity is not evident in their 
DIC1 scores. These results suggest that model selection based on 
the ILRs may be better able to identify differences in posterior 
predicted risk profiles than DIC.

3.1.2. Coverage Properties and Effect of  
Outbreak Size
To generalize our findings, we considered epidemics generated 
with either a K1 or K2 kernel function and evaluated how inferences 
(description in section Bayesian Inference) and model selection 
tools (details given in section Model selection) considered may 
perform as a function of the epidemic size and across multiple 
realizations of the epidemic process (see sections Simulation 
study 2a and Simulation study 2b). Coverage properties of our 

59.03%, and 58.83% for K1, K2, and K4, respectively. It is also worth 
noting that in both simulation studies 1a and 1b, the observed 
epidemics on which inference is based are classed as small, but 
these lie at the upper end of the final size distribution for small 
epidemics according to the outbreak size classification used here. 
Inference from these single outbreaks therefore captures the true 
underlying bimodal nature of the outbreak risk associated with 
the SIR dynamic (see Section S2.1.3 in Supplementary Material). 
In terms of assessment of risks associated with future incursions 
this means that the probability of obtaining an outbreak similar 
in size to the observed outbreak is relatively low.

The posterior predicted estimates of future outbreaks produce 
rather different risk assessments depending on the kernel used 
to fit the data, suggesting that reliable model choice is of key 
importance.

In assessing the model selection criteria studied here several 
key points are noteworthy. First, the ability of DIC2 to identify the 
correct model is poor, whereas DIC1 and the ILRs do so in both 
simulation study 1a and 1b. Second, different kernels lead to dif-
ferent predicted risk. For example, the model variant with kernel 

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


FigUre 2 | Probabilities of correctly selecting the right model using latent residuals (lr), Dic1, and Dic2 in the case of (a) simulation study 2a (using 
K1 to simulate the data) and (B) simulation study 2b (using K2 to simulate the data). Both graphs show that the LR perform better (higher probabilities) in 
selecting the right kernels than the DICs as the epidemic size increases.
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inference procedure from multiple realizations are explored and 
available in Section S2.2 in Supplementary Material. The cover-
age rates obtained show that the true parameters are contained 
approximately 95% of the time in their corresponding credible 
intervals. However, the rates are higher for the parameters of 
the infectious period distributions where informative priors are 
used on the shape parameter as in Kypraios (52) and Streftaris 
and Gibson (60). The uncertainty of the estimates reduces as the 
epidemic size increases.

For each epidemic size category, Figure  2 plots the pro-
portion of simulated data sets from which each of the model 
selection criteria successfully identifies the correct kernel. 
Figure 2 shows that, although inferences of model structure are 
reasonably accurate for small epidemics, increasing epidemic 
size increases the accuracy with which the underlying infection 
process is identified. However, this depends on which measures 
of goodness-of-fit are used. While the DIC measures contradict 
each other, the latent residuals typically distinguish between 
the kernels and select the correct model used to simulate the 
outbreak (e.g., Figure 2A). However, for the smallest outbreaks, 
DIC1 has the best record (e.g., Figure 2B), but as epidemic size 
increases, the reliability of the latent residuals quickly improves 
and outperforms both DIC1 and DIC2. For epidemic sizes 
greater than 20, ILRs identify the correct model in at least 90% 
of cases. In all situations considered, DIC2 provided contradic-
tory results to DIC1, maintained a low success rate in choosing 
the true model, which for scenario 2b actually declined with 
outbreak size.

Figure  2B illustrates the resulting patterns from simulation 
study 2b which uses models based on K2 to generate the data. This 
plot shows results for fitting only K1–K3, and K4 is not considered 
since as we saw above K2 and K4 are difficult to discriminate, but 
lead to similar risk assessments. Including both here, therefore 
gives a biased view of the model selection process (see Section S3 
in Supplementary Material). To better understand why these ker-
nels are not efficiently discriminated, we explored the effect of the 
density of the population at risk. Results (details shown in Section 

S3 in Supplementary Material) show that increasing the density of 
farms provides more information about short-range transmission 
(i.e., more short-range transmissions occur) allowing differences 
between K2 and K4 to be distinguished. For realistic range of 
parameters, K2 and K4 can have similar long-range behavior or 
similar short-range behavior, but not both and therefore can 
agree when fitted to data which largely excludes short-range 
transmission, as is the case when the population density is low. 
These results highlight the critical importance of population 
density in the local spread of disease. They also explain the effect 
seen here where we are unable to discriminate between kernels 
K2 and K4 using simulated data from a low density population 
(5 × 10−5 per 102 km2), but are able to detect differences between 
these kernels when fitting to field data below (see section Classical 
Swine Fever epidemic) where the density of farms is considerably 
higher (6.08 per 102 km2).

3.2. classical swine Fever epidemic
We now apply the inference and model selection methodologies 
described above to field data from a small scale outbreak of CSF 
in East Anglia, UK in 2000.

As described in section Materials and Methods, stochastic 
spatio-temporal models were fitted to the CSF outbreak field data 
(see section Field data for details) using each of the kernels K1–K4. 
This process yielded estimates of a number of quantities that are 
difficult to measure directly including the unobserved infection 
times, the infectious period distribution and the transmission 
kernel. In general, the inferred infection times agree well with 
the independent estimates obtained through contact tracing 
procedures during control activities as shown in Section S2.4 in 
Supplementary Material. The average infection times suggest that 
infections from first to last infected farm happen in an interval of 
approximately 65 days and around 9 farms were infected before 
the first detection.

As expected, the inferred transmission kernel functions all 
decay as a function of distance but vary according to the fitted 
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FigUre 3 | Posterior predicted average proportion of premises infected plotted as a function of time. On each graph, the lines correspond to the results 
obtained when kernels K1 − K4 are fitted to the CSF data with final sizes (a) smaller or (B) larger than the mean of the final size distribution.
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form. Posterior medians and their corresponding 95% credible 
intervals of the kernel transmission function are plotted on a 
log-scale under the four different kernels, with details on model 
goodness-of-fit and convergence in Section S2.4 in Supplementary 
Material. K1 seems to decay fastest with the widest 95% credible 
interval. As before K2 and K4 look very similar in terms of median 
shape and credible interval and seem to allow for close range 
transmission, while K3 decays very slowly and presents the small-
est 95% credible interval. By contrast, choice of the transmission 
kernel has little impact on the inferred infectious period (Section 
S2.4 in Supplementary Material).

We now evaluate the impacts of each kernel on posterior 
predicted risks. Figure 3 displays the mean posterior predicted 
proportion of infected farms as a function of time. Predictions 
of this risk measure under K3 anticipate a larger number of 
infected premises, both in the case of small and large outbreaks, 
when compared with predictions based on the other kernels. 
The predictions under the remaining kernels are similar, and 
once again the differences between K2 and K4 are particularly 
small. As before, small (large) outbreaks are defined here as 
those where the final epidemic size is smaller (larger) than the 
mean of the final size distribution. The similarity between K2 
and K4 and the relative difference of predictions under K3 also 
hold for the inferred probabilities of a small outbreak, which 
are 65.45%, 66.17%, 63.75%, and 66.17%, respectively, under 
kernels K1, K2, K3, and K4. As with the simulation studies, the 
observed epidemic was classified as small but with the propor-
tion of infections observed in the real epidemic greater than the 
average size predicted for small outbreaks (see plot in Section 
S2.5 in Supplementary Material).

Figure  4 further illustrates the importance of kernel choice 
by plotting risk maps of the probabilities of infection of each 
farm for a disease incursion. While farms close to the index case 
seem to present the highest risks of infection across all maps, the 
risk profiles of farms look different as we get further from the 
index case under each kernel. Figure 4 shows that predicted risks 
under K3 are the highest for farms situated at the largest distances 

from the index case because of its long right tail. At intermedi-
ate distances, the risks of farms under kernel K1 are actually the 
greatest, but predicted risk is the lowest and decreases quickly for 
long distances compared to the other kernels. Kernels K2 and K4 
predict visually similar risk with a consistent pattern of observed 
cases in terms of spatial extent and intensity of infection within 
the high risk area.

It is worth noting that most observed cases during the real 
CSF outbreak have a relatively high risk profile with an average 
probability of infection by t = 90 days of {0.52, 0.46, 0.46, 0.45} 
under K1, K2, K3, and K4, respectively, while the average risk across 
all farms is {0.41, 0.36, 0.40, 0.35}, i.e., a difference of {0.11, 0.10, 
0.06, 0.10}. The different risk predictions under the four kernels 
are further quantified in Table 2 which shows the number of farms 
with expected posterior probability of infection by t = 90 days less 
than 0.15, between 0.35 and 0.45, and greater than 0.45. Most 
farms showed probability of infection between 0.35 and 0.45 for 
K3 while predictions under K1 show more farms in this highest 
risk category. These figures also reveal relatively subtle differences 
in predicted risk under K2 and K4. The contrasting risk profiles 
explored above provide a further demonstration of the impor-
tance of kernel choice in predicting risk and therefore in terms of 
the design of disease control programs. Therefore, we now turn 
to our model selection methods.

As previously, we used DIC1 and DIC2 and the latent residual 
methodology to assess the suitability of the four kernel transmis-
sion functions in light of the available data. The latent residuals 
method gave a preference to K2, followed in order of choice by 
K4, K1, and K3, respectively, as shown in Table 2. From a purely 
model assessment perspective, there is some evidence against all 
the kernels using the latent residuals since Pr(p < 5%) is greater 
than 5% in all cases, but this is hardly surprising given the relative 
simplicity of the models used. However, in terms of model selec-
tion, K2 is preferred. DIC1 agrees with the latent residuals method 
in the choice of K2 as the preferred kernel but the assessments 
are not in the same order for the other kernels. By contrast, DIC2 
values do not show significant differences between kernels.
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4. DiscUssiOn

The potential for large scale livestock epidemics to give rise to 
significant economic, welfare, and social costs (see, e.g., Ref (4, 
5)) emphasizes the need for quantitative assessment (8, 9) of 
the risks associated with emerging and re-emerging pathogens. 
There is potential to use small localized outbreaks of emerging 
or re-emerging pathogens to inform such risk assessments before 
a large outbreak occurs. The key challenge addressed in this 
paper is to use data from small localized historic outbreaks (21) 
to inform quantitative risk assessment. We show that rigorous 
risk assessment based on small outbreaks can be achieved by 
combining state of the art methods for statistical inference in 
stochastic epidemic models. Moreover, this methodology was 

tested using simulated scenarios and by application to data on a 
small outbreak of CSF in East Anglia, UK (44).

We have shown that data-augmentation MCMC techniques 
(23, 25, 27) can be applied to continuous time models in order 
to generate Bayesian estimates of key characteristics of between-
farm epidemics using data from small outbreaks consisting of 
farm locations and times at which disease is detected on farm. 
These estimated characteristics, impractical or difficult to measure 
directly, include unobserved exposure times, the distribution of 
times between exposure and disease detection, and the so-called 
transmission kernel describing the nature of spatial spread of 
disease between farms.

Analysis of inferences based on simulated data scenarios 
shows that when the fitted model has the same form as that used 
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TaBle 2 | summary of model fit and risk assessments based on the csF data: the results are provided for each kernel K1 − K4 as indicated in the first 
column.

Dic1 Dic2 Pr(p < 5%) n(risk > 0.45) n(risk ∈ (0.35, 0.45)) n(risk < 0.15)

K1 429 156 27.78% 866 395 72
K2 317 157 10.67% 105 954 1
K3 353 156 32.83% 1 1,466 0
K4 411 158 19.47% 15 933 1

The next two columns indicate the computed DIC1 and DIC2 values with their smallest values under K2 and K3, respectively. The following column reports the proportion of p-values 
less than 5% (Pr(p < 5%)), resulting from testing the distribution of ILRs at each MCMC iteration, with the smallest proportion occurring under K2. The other columns show the 
number of farms falling in defined intervals of probabilities of infection at time t = 90 days under the four kernels.
Bold font indicates the smallest values for the DICs and Pr(p < 5%) bringing out the selected model by each tool.
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to generate the data, inferred parameter estimates are reliable 
even when using data from relatively small outbreaks, and the 
precision of such estimates increases with outbreak size. Fitted 
models can be used to conduct risk assessments of future outbreak 
scenarios that account for the uncertainty in parameter estimates. 
Such predicted risks are said to be drawn from a posterior predic-
tive density and can be used to inform disease control efforts, 
e.g., targeting high risk farms (18, 61). Therefore, the method has 
the potential to inform the design and implementation of control 
measures such as the size of control zones used as part of wider 
movement restrictions and the geographically targeted use of 
vaccine and removal operations (17, 50, 62).

However, when analyzing real disease outbreaks all imple-
mentable models are, to varying degrees, approximations of the 
underlying system (63). We therefore considered scenarios in 
which the data were generated using a known model, and then 
used as the basis of inference for a set of models which varied 
according to the functional form of the spatial transmission ker-
nel. Since the resulting risk assessments were found to be depend-
ent on the structure of the model being fitted, model choice has 
important implications for such disease control policies.

Although risk assessment could be based on a weighted 
average across the set of models considered, here we focused 
on criteria used to select a single best-fit model. In particular, 
we considered two forms of the Deviance Information Criteria 
(DIC) and model selection based on analysis of so-called latent 
residuals (see methods for details). DIC is not uniquely defined 
for inference problems involving latent variables, e.g., missing 
exposure times, and we considered two variants, DIC1 and DIC2 
(37). Latent residuals are designed to assess the fit of particular 
model components and we focused on Infectious Link Residuals 
(ILRs) to test the appropriateness of the form of the kernel 
density function (40). The set of fitted models included the data-
generating model thus enabling an objective assessment of these 
model selection procedures. Multiple simulated replicate data 
sets for a range of outbreak sizes were generated and fitted so 
that coverage properties of inferences could be determined and 
reliability of model selection procedures assessed as a function of 
outbreak size.

For the scenarios considered it was found that DIC2 was 
unreliable, but that model selection based on either DIC1 or ILRs 
achieved high levels of reliability even when using data from 
relatively small outbreaks. For outbreak sizes of 11–15 and above, 
model selection based on ILRs out performed that based on DIC1. 
For outbreaks with more than 20 cases, there is at least 90% of 

chance of selecting the correct kernel using ILRs, increasing to 
100% for outbreaks with 31–35 cases or greater. However, reli-
ability falls off with outbreak size and for data sets containing 
6–10 cases, analysis of ILRs identified the data-generating model 
in a little over 50% of cases. In this very low data regime, DIC1 was 
seen to give slightly more reliable model selection.

Ranking of models based on ILRs was more closely correlated, 
in comparison with DIC based assessments, with predicted risks 
under future disease incursion scenarios. For example, we found 
that two of the four transmission kernels considered in this study 
provided similar fits to the data especially when the density of 
farms was low and the number of short-range transmissions 
limited. In such scenarios, it was found that the kernel K4 and 
a generalized form of the Cauchy kernel K2 that captures short-
range spread, predicted very similar risk profiles. Moreover, this 
similarity was reflected in model rankings based on the infec-
tious link residuals, but not in DIC values. When farm density 
was higher a greater number of short-range transmissions were 
inferred and differences between K4 and K2 were evident in both 
rankings based on ILRs and in the posterior predicted risk pro-
files. In the case of field data on CSF, we found subtle differences 
in the risk profiles predicted under these two kernels, and this was 
flagged by analysis of the ILRs. However, the similarity between 
predictions under these models was not reflected in their DIC 
scores.

We have illustrated our approach using a particular set of 
between-farm epidemic models applicable to CSF outbreaks. 
However, the methodology is flexible and could be applied to 
a broad range of models, e.g., incorporating additional disease 
classes, multiple diagnostic tests, or the modeling of specific 
routes of infection. Here, we considered kernel transmission 
functions based on Euclidean distance and in many cases, the 
detailed information needed to parameterize more specific routes 
of infection may not be available. Euclidean distance-based ker-
nel transmission functions have been extensively used by many 
authors (48–52) and according to Savill et  al. (64), Euclidean 
distance is better predictor of transmission risk than shortest and 
quickest routes via road, and appropriate to most regions except 
where major geographical features intervene.

We tackled the challenging problem of extracting useful 
information from a knowledge of just the location of the sus-
ceptible population of farms and farm-level case detection data 
obtained from observations of small sized epidemic outbreaks 
(16 cases for the CSF epidemic). We have shown that using 
such limited data it is possible to perform reliable inferences 
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and quantify disease risks associated with individual farms. The 
work reported here focused on SIR epidemic models. In the 
case of CSF within individual animals, there is evidence of an 
exposed class, E, suggesting that for an individual level model an 
SEIR model would be more appropriate (20). However, in this 
paper the farm was taken to be the basic epidemiological unit 
since information was only available describing the infectious 
status of whole farms and following Stegeman et al. (58) farms 
were categorized according to an SIR framework. Definition 
of the exposed state at the whole farm level is somewhat 
problematic since exposed individuals may be moved between 
farms and therefore spread infection. We note that in modeling 
between-farm transmission, Boender et al. (43) do not consider 
an exposed farm state explicitly but do modulate for farm size. 
An interesting focus of future work could be a formal statistical 
assessment of SEIR versus SIR models of between-farm spread. 
However, in the small outbreak setting this would be challeng-
ing given the limited information available in the data. Other 
authors have sought to tackle limitations in observed case data 
by developing approaches that combine phylogenetic informa-
tion with the case detections to increase the power of estimates 
(65–67). However, the methods presented here are applicable 
in the many situations where suitable phylogenetic data is not 
available.

The underlying methods described in this paper are generic 
and could be applied to a wide range of disease scenarios includ-
ing other livestock diseases. However, while the methodology is 
generic it is critical to tailor models to the scenario of interest to 
represent key aspects of the disease dynamics and the available 
data. For example, such models could account for the role of 
wildlife in disease transmission, but in practice how this could be 
achieved is dependent on the extent to which data is available on 
the prevalence of the focal pathogen in the wildlife host (or hosts). 
In the absence of such data, it is likely that at best it may be possi-
ble to estimate a background infection rate from wildlife sources. 
Another interesting possibility would be to simultaneously model 
the spread of multiple pathogens including interactions between 
them, but again this would only yield meaningful estimates if 
suitable data were available.

In conclusion, we have developed a toolkit to reliably 
assess risks from potential future disease incursions using 
observational data from historic outbreaks that can be applied 
to support policy decisions relevant to contingency planning 
for emerging and re-emerging pathogens. We have shown 
that epidemic models based on discrete state continuous time 
Markov and semi-Markov processes and data-augmentation 
MCMC techniques enable reliable and rigorous statistical infer-
ences and probabilistic risk assessments based on data from 
relatively small between-farm outbreaks. Moreover, recently 
introduced model assessment methodology based on latent 
residuals (40) enables candidate models to be ranked, on the 
basis of their fit to the available data, in a manner that is more 
reliable than standard DIC approaches (35, 37). We tested this 
toolkit in the data limited regime using both simulated data 

and by application to a real world outbreak of CSF with only 
16 infected farms.

Our approach is designed to make the best possible use of the 
data available from even very small historic outbreaks. However, 
it is important to realize that such data may provide a biased 
view of future incursions. For example, if the region in which the 
historic outbreak occurred is not representative of the regions for 
which risk assessments are needed, then estimates obtained, e.g., 
of rates of transmission need to be applied with suitable caution. 
Nonetheless, our approach does provide a rational and statisti-
cally rigorous approach to extracting information on disease 
dynamics and transmission characteristics that are difficult, costly 
or impossible to measure directly. The quantification of such 
characteristics and associated uncertainty provides a practical 
and rational basis for the quantitative assessment of risks under 
future pathogen incursions.
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