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Abstract

The side effects of cancer therapy on normal tissues limit the success of therapy. Generation of reactive oxygen species
(ROS) has been implicated for numerous chemotherapeutic agents including doxorubicin (DOX), a potent cancer
chemotherapeutic drug. The production of ROS by DOX has been linked to DNA damage, nuclear translocation of p53, and
mitochondrial injury; however, the causal relationship and molecular mechanisms underlying these events are unknown.
The present study used wild-type (WT) and p53 homozygous knock-out (p532/2) mice to investigate the role of p53 in the
crosstalk between mitochondria and nucleus. Injecting mice with DOX (20 mg/kg) causes oxidative stress in cardiac tissue
as demonstrated by immunogold analysis of the levels of 4-hydroxy-29-nonenal (4HNE)-adducted protein, a lipid
peroxidation product bound to proteins. 4HNE levels increased in both nuclei and mitochondria of WT DOX-treated mice
but only in nuclei of DOX-treated p53(2/2) mice, implicating a critical role for p53 in causing DOX-induced oxidative stress in
mitochondria. The stress-activated protein c-Jun amino-terminal kinase (JNKs) was activated in response to increased 4HNE
in WT mice but not p53(2/2) mice receiving DOX treatment, as determined by co-immunoprecipitation of HNE and pJNK.
The activation of JNK in DOX treated WT mice was accompanied by Bcl-2 dissociation from Beclin in mitochondria and
induction of type II cell death (autophagic cell death), as evidenced by an increase in LC3-I/LC-3-II ratio and c-H2AX, a
biomarker for DNA damage. The absence of p53 significantly reduces mitochondrial injury, assessed by quantitative
morphology, and decline in cardiac function, assessed by left ventricular ejection fraction and fraction shortening. These
results demonstrate that p53 plays a critical role in DOX-induced cardiac toxicity, in part, by the induction of oxidative stress
mediated retrograde signaling.
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Introduction

Research on mitochondria has evolved from emphasizing

bioenergetics to studying biogenesis, the genetic functions of

mitochondrial DNA (mtDNA), and diseases associated with

mitochondrial dysfunction. Although these areas continue to be

investigated vigorously, a new era in mitochondrial research has

emerged that concerns the role of this organelle in intracellular

signaling.

p53, an important tumor suppressor gene, is recognized as the

guardian of the genome because it regulates the transcription of

numerous genes that code for life and death processes. However,

during the last decade, the transcription-independent activity of

the p53 protein has emerged as an important mechanism by which

p53 modulates mitochondrial function. p53 interacts with various

proteins in the outer membrane as well as in the matrix of the

mitochondria, including bcl-2-associated X protein (Bax), Bcl2,

p53 up-regulated modulator of apoptosis (PUMA) [1], polymerase

gamma [2], and manganese superoxide dismutase (MnSOD) [3]

It is well documented that free radical-mediated oxidative stress

plays a pivotal role in the cardiac toxicity of Doxorubicin (DOX)

[4]. We have shown that overexpression of human MnSOD, a

primary antioxidant enzyme located in the mitochondrial matrix,

protects against DOX-induced cardiac injury, suggesting that the

DOX-induced cardiac injury is related to the effect of DOX on

cardiac mitochondria [4]. However, the pathways that mediate the

observed protective effect of MnSOD remain unknown.

ROS are highly reactive and, when generated close to cell

membranes, oxidize membrane phospholipids (lipid peroxidation),

which can lead to the generation and accumulation of lipid
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peroxidation products, such as malondialdehyde, 4-hydroxy-2-

nonenal (4HNE), acrolein and F2-isoprostanes. 4HNE is a highly

reactive and specific diffusible end-product of lipid peroxidation

and is known to induce/regulate various cellular events such as

proliferation and growth inhibition [5], T cell apoptosis [6] and

activation of signaling pathways [7]. Proteins are major targets of

4HNE, which can trigger multiple modifications of the protein

structure. 4HNE has a high affinity towards cysteine, histidine and

lysine residues forming direct protein-adducts and thereby altering

protein function.

Autophagy (Greek: ‘to eat oneself’) is an intracellular event in

which a cell digests its own constituents. The term ‘‘autophagic cell

death’’ describes a form of programmed cell death morphologi-

cally distinct from apoptosis and presumed to result from excessive

levels of cellular autophagy [8]. In classical apoptosis, or type I

programmed cell death, there is early collapse of cytoskeletal

elements but preservation of organelles until late in the process. In

contrast, in autophagic, or type II, programmed cell death there is

early degradation of organelles but preservation of cytoskeletal

elements until late stages.

Recent studies have demonstrated interactions between the

autophagic and apoptotic pathways. The Bcl-2 family has been

implicated in the crosstalk between apoptosis and autophagy [9].

Other apoptosis-related proteins such as p53 have also been shown

to play a role in autophagy [10]. Beclin1, a mammalian autophagy

gene, was originally identified as a bcl-2-interacting protein [11].

Members of the beclin1 and Bcl-2 family serve as a point of crosstalk

between the autophagic and apoptotic pathways. Beclin1 directly

interacts not only with bcl-2 but also with other anti-apoptotic

proteins of the bcl-2 family such as bcl-xL [9]. Cardiac bcl-2

overexpression also inhibits autophagy in murine heart cells [12].

This present study focuses on an understanding of the molecular

mechanisms underlying DOX-induced cardiac toxicity. It identi-

fies p53 as a candidate in augmenting retrograde signaling leading

to cardiac injury by using genetic manipulations, functional tests,

ultrastructural analyses, and biochemical assays.

Results

Absence of p53 selectively reduces DOX-induced
oxidative damage in the mitochondria

ROS are so reactive that they exist in tissues for only short

periods of time, which makes measuring them difficult. One

approach to solving this problem is to rely on biochemical assays of

oxidatively damaged products. A major problem with these assays,

however, is that the oxidatively damaged products are susceptible

to further in vitro oxidation, which hinders accurate measurement

of levels of oxidatively damaged products in cellular organelles and

in specific cell types from complex tissues. To circumvent this

problem, the Oberley [13] laboratory and others have developed

techniques to localize and quantify oxidatively damaged products

using specific antibodies coupled with electron microscopy

procedures. Two previous studies have validated the immuno-

morphologic approaches presented herein by documenting good

agreement between biochemical and immunomorphologic analy-

ses in an experimental model of oxidative stress (iron nitrilotria-

cetate-induced injury of rat kidney [14] and analysis of oxidative

damage in skeletal muscle of aging rhesus monkey [15]).

We have previously shown that DOX causes significant oxidative

damage manifested by increased levels of 4HNE adducted protein

levels in mitochondria [16,17]. Recent studies suggest that p53 plays

an important role in maintaining mitochondrial function, but it is

not known whether the oxidative stress status of the nucleus and

mitochondria are differentially affected by p53.

To directly address this issue, we examined the levels of 4HNE-

protein adducts in cardiomyocytes of WT and p53(2/2) mice using

quantitative ultrastructural immunogold analysis techniques. As

illustrated in Figure 1A, gold labeling of 4HNE-protein adducts

was infrequently found in cardiomyocyte mitochondria and

cytoplasm of saline treated WT and p53(2/2) mice (Figure 1A,

subpanel a and b). An increase in 4HNE-modified proteins

labeling was observed in mitochondria of cardiomyocytes from

DOX-treated WT but not p53(2/2) mice (Figure 1A, subpanel c

and d). Quantification of 4HNE immunoreactive protein adducts

in cardiomyocytes of DOX treated WT mice demonstrated a

significant increase in mitochondria (Figure 1C), cytoplasm

(Figure 1B) and nuclei (Figure 1D) in comparison with saline

controls. A significant increase was also observed in the nuclei

(Figure 1D) but not in cytoplasm (Figure 1C) or mitochondria

(Figure 1D) of DOX-treated p53(2/2) mice in comparison with

saline treated controls. Interestingly, cardiomyocytes from saline-

treated p53(2/2) mice exhibited higher levels of 4HNE-protein

adducts in the mitochondria in comparison with saline-treated

WT mice (Figure 1C) while levels in cytoplasm (Figure 1B) and

mitochondria (Figure 1C) from DOX-treated p53(2/2) mice were

significantly lower than those in WT mice similarly treated. These

results confirm our previous observations regarding the effect of

DOX on mitochondrial 4HNE levels [18]. The results demon-

strate that p53 plays a major role in increasing mitochondrial

4HNE after DOX treatment.

4HNE induces JNK activation and Bcl-2 phosphorylation,
and triggers autophagic cell death

JNKs are involved in activation of caspases [19,20], but their

role is not uncomplicated. JNK activation could be either

upstream [20] or downstream [19] of cell death activation,

depending on cell type and death-initiating agents. We therefore

evaluated whether DOX treatment increases JNK in mitochon-

dria as a result of 4-HNE increase, using a phospho-specific

antibody that recognizes dual site phosphorylation of JNK at

Thr183 and Tyr185 (Figure 2A). While the total levels of JNK

were equivalent in both genotypes under identical treatment

conditions, little phosphorylated JNK was detected in p53(2/2)

mice treated with DOX. In contrast, a high level of phosphor-

ylated JNK was detected in WT mice treated with DOX. The WT

but not p53(2/2) mice treated with DOX exhibited increased

levels of Bcl-2 phosphorylation (Figure 2B) and its associated

protein beclin1 (Figure 2C). Beclin1-Bcl-2 co-immunoprecipitation

results suggest that the increased phosphorylation of Bcl-2 inhibits

interaction with Beclin1, which is most evident in WT mice

treated with DOX (Figure 2D).

Activation of the JNK pathway has been associated with

induction of type II death (autophagic cell death). To verify the

role of p53 in DOX-induced autophagic cell death at a

biochemical level, the conversion of LC3-I to LC3-II, an indicator

of autophagy activation, was assessed by immunoblot analysis

using LC3 antibody (Figure 3A). LC3-II cleavage product was

significantly increased (p,0.001) in DOX-treated WT compared

to the p53(2/2) mice similarly treated. The role of p53 in type II

death was assessed also by c-H2AX as a biomarker for DNA

damage (Figure 3B),in DOX-treated WT, but not in p53(2/2)

mice.

p53 contributes to DOX-induced cardiac injury
To verify that the observed changes in biochemical markers are

accompanied by cardiac injury, we examined the ultrastructural

morphology of cardiac tissues, including mitochondrial injury

associated with lysosomal degradation of mitochondria, loss of

p53 and Mitochondrial Retrograde Signaling
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cristae, degeneration of mitochondria, peri-mitochondrial swelling

and disruption of mitochondrial membranes (Figure 4A). Quan-

tification of subcellular injury demonstrated a significant increase

of cardiomyocyte mitochondria injury in both WT and p53(2/2)

mice hearts following DOX treatment (Figure 4B). However, the

levels of total cellular and mitochondrial damage in WT

cardiomyocytes were significantly greater than in the p53(2/2)

cardiomyocytes similarly treated (p,0.05) (Figure 4B). Thus, the

results from ultrastructural analysis suggest that p53 plays a role in

exacerbating DOX-induced mitochondrial injury in cardiac

tissues.

Echocardiography detects a decline in cardiac function in

patients who have received an infusion of DOX [21] as part of

chemotherapy. We and others have demonstrated that three to

five days after an injection of DOX, cardiac function significantly

declines in WT mice [22,23]. WT mice treated with DOX showed

a significant decrease (p,0.05) in the LV%EF (Figure 4C) and

LV%FS (Figure 4D), but the p53(2/2) mice similarly treated did

not. These results demonstrate that the lack of biochemical

changes in p53 deficient mice is accompanied by a significant

reduction of DOX-induced structural damage and cardiac

dysfunction.

Discussion

p53 is regarded as the guardian of the genome with the

capability of regulating many life and death processes, but whether

it plays a role in regulating retrograde signaling is unexplored. The

best known function of p53 is its action as a transcription factor.

p53 can activate or suppress expression of its target genes in a

number of ways. The typical targets of p53, such as GADD45,

p21, PUMA, BAX, and SCO2, are involved in DNA repair, cell

cycle progression, metabolism and apoptosis. Under physiological

conditions, cellular p53 is kept at a low level by an autoregulatory

loop with MDM2, a p53 target that mediates p53 ubiquitination

and subsequent degradation by the 26S proteosome [24]. Upon

exposure to various forms of stress, such as DNA damage,

oncogenic activation, hypoxia, mitotic apparatus dysfunction,

telomere erosion, energy stress or oxidative stress, p53 coordinates

cellular responses through both transcription-dependent and

-independent mechanisms. These responses prevent or repair

genomic damage, or eliminate cells when damage is beyond

repair.

The present study identifies a novel mechanism by which p53

activation selectively enhances DOX-induced oxidative stress in

mitochondria, which is manifested by an increase in the level of

4HNE-adducted proteins in the mitochondria. Under physiolog-

ical conditions, 4-HNE may act as a signaling molecule to

maintain normal cellular functions [25]. Because of the reactivity

of this and other aliphatic and aromatic aldehydes, cells have

developed mechanisms to detoxify these molecules [25]. Accumu-

lation of 4HNE, which can induce cellular injury, may be caused

by deficiencies in the process of toxic product elimination.

Oxidative stress increases HNE-adducted proteins. This increase

is partially reduced by the conjugation of HNE with GSH that

forms the glutathione conjugate of HNE (GS-HNE) [26], which is

Figure 1. Absence of p53 selectively reduces DOX-induced oxidative damage in the mitochondria. A. Representative immunogold
electron micrographs using antibody against 4HNE protein adducts in cardiomyocytes. Electron dense beads indicate positive staining for 4HNE
protein adducts (arrow). Left ventricular tissues from WT (a) and p53(2/2) (b) mice treated with saline demonstrate low labeling of 4HNE in
mitochondria (M) and myofilaments (Myo) (a and b). Significant increase in labeling of 4HNE protein adducts was observed in both mitochondria and
myofilaments of the WT mice hearts (c) but not in the p53(2/2) mice (d) treated with DOX. Scale bar, 1 mm. B, C, and D. 4HNE-immunoreactive protein
adducts were quantified in cardiomyocyte cytoplasm (B), mitochondria (C) and nuclei (D) for both WT and p53(2/2) mice treated with saline and DOX.
Labeling density is expressed in gold beads/mm2. All graphs represent the Mean 6 SEM for each group. *p,0.05 when compared with saline treated
mice of the same genotype, # p,0.05 when compared with WT mice similarly treated.
doi:10.1371/journal.pone.0018005.g001
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a substrate of the multidrug resistant associated protein, MRP1

[27]. Perfusion of the rat heart with HNE leads to the formation

and efflux of GS-HNE [28], suggesting a role for MRP1 in the

clearance of GS-HNE from cardiac tissue. We have previously

observed that MRP1 likely mediates the saturable efflux of the

glutathione conjugate of HNE observed upon infusion of HNE to

the perfused heart [29] that protects the cardiomyocytes.

However, under conditions of oxidative stress, accumulated

4HNE modifies and regulates enzymes involved in mitochondrial

energy production [30], which results in the increased ROS

Figure 2. DOX induces HNE adduction with pJNK and Bcl-2 phosphorylation, and triggers autophagic response. A. PhosphoJNK was
detected by immunoprecipitation using a polyclonal goat anti-HNE antibody followed by Western blot analysis with a rabbit polyclonal Thr183/
Tyr185 phosphorylation specific JNK antibody. Quantitative analysis represents the Mean 6 SEM (n = 5) in each group; *p,0.001 as compared to
other groups. B. Western blot analysis of p-Bcl2 in cardiac mitochondria from WT and p53(2/2) mice treated with saline or DOX and quantitative
analysis represents the Mean 6 SEM n = 5 in each group; *p,0.001 as compared to other groups. C. Western blot analysis of Beclin1 in cardiac
mitochondria from WT and p53(2/2) mice treated with saline or DOX and quantitative analysis represents the Mean 6 SEM n = 5 in each group;
*p,0.001 as compared to other groups. D. Co-immunoprecipitation of Beclin1 with Bcl-2 in cardiac mitochondria from WT and p53(2/2) mice treated
with saline or DOX and quantitative analysis represents the Mean 6 SEM n = 5 in each group; *p,0.01 as compared to other groups.
doi:10.1371/journal.pone.0018005.g002

Figure 3. p53 triggers autophagy and cell death. A. Biochemical marker for cardiac injury by autophagy. Western blot analysis of autophagy
marker (LC3) expression in heart tissue homogenates from WT and p53(2/2) mice treated with saline or DOX. Quantitative analysis represents the
Mean 6 SEM n = 5 in each group; #p,0.001 as compared to other groups. B. Western blot analysis of gamma H2AX marker for cell death in heart
tissue nuclear extracts from WT and p53(2/2) mice treated with saline or DOX. Quantitative analysis represents the Mean 6 SEM n = 5 in each group.
#p,0.001 as compared to other groups.
doi:10.1371/journal.pone.0018005.g003

p53 and Mitochondrial Retrograde Signaling
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generation [31] and diminished protein degradation [32] that may

activate autophagic pathways.

The JNK1 signaling pathway has been shown to regulate

autophagy in both Drosophila and mammalian cells in response to

not only starvation but also ER stress and cytokine stimulation

(e.g., IL-2, TNFa) [33]. The diversity of stress stimuli capable of

triggering JNK1-mediated autophagy is consistent with the

hypothesis that autophagy regulation is intricately intertwined

with numerous other cellular stress response programs mediated

by JNK1 signaling. Despite the known link between JNK1 and

autophagy induction, the mechanism by which JNK1 activation

leads to autophagy induction remains undefined. In the present

study, we show that activation of JNK by 4HNE is rapid and

sustained suggesting that sustained activation and phosphorylation

of JNK may be needed for 4HNE-induced type II programmed

cell death. The JNK1 signaling pathway is associated with Bcl-2

phosphorylation, which leads to disruption of the Bcl-2/Beclin1

complex and activation of Bcl-2 inhibition of Beclin1-dependent

autophagy. Our finding shows that the level of phospho-Bcl-2 is

increased while the level of Bcl-2 is reduced in DOX-treated p53

wild-type mice which are consistent with the p53-mediated

increase in activated JNK1 in DOX-treated mice. This possibility

is further confirmed by the finding that in p53(2/2) mice, there is

no increase in JNK1 activation or Bcl-2 phosphorylation.

It is possible that autophagy may have a protective role in tissue

remodeling [10], However, our results suggest that autophagy

induced by DOX treatment is not protective to cardiac tissues

because the absence of autophagy in DOX-treated p53(2/2) mice

is accompanied by the reduced cardiac injury observed morpho-

logically and functionally.

In conclusion, the present study demonstrates that treatment

with DOX causes oxidative stress in cardiac tissue as evidenced by

immunogold staining of 4HNE-adducted protein. The 4HNE

levels were increased in both nuclei and mitochondria of WT

DOX-treated mice but only in nuclei of DOX-treated p53(2/2)

mice. JNKs were activated in response to increased 4HNE in WT

Figure 4. p53 contributes to DOX-induced cardiac injury. A. Representative electron micrographs demonstrating cardiomyocyte injury and
morphometric quantification of subcellular injury in cardiomyocytes in WT and p53(2/2) mice. WT (a) and p53(2/2) (b) mice treated with saline
demonstrated normal ultrastructure of heart muscle with cardiomyocytes showing numerous mitochondria (M), prominent myofilaments (Myo) and
lipids (Lip). WT (c) and p53(2/2) (d) mice treated with DOX demonstrated the following pathologic changes: lysosomal degradation of mitochondria
(asterisk), mitochondria with loss of cristae (arrow), peri-mitochondrial swelling (double arrow), disruption of mitochondrial membranes (arrowhead),
and mitochondrial degeneration (d); scale bar, 1 mm. B. Pathologic changes were quantified for saline and DOX treated mice in the mitochondria and
total cellular area (excluding nuclei). Quantification of damage for each specific compartment is expressed in the ratio of damaged area versus the
total area. All graphs represent the Mean 6 SEM for each group. *p,0.05 when compared with saline treated mice of the same genotype, and
#p,0.05 when compared with WT mice treated with DOX. n = 6 or 7. C & D. Left ventricular function, assessed by percentage of ejection fraction
(LV%EF) (C) and fractional shortening (LV%FS) (D), is expressed in percentage of change from basal levels caused by saline and DOX three days after
injections for WT and p53(2/2) mice. All bar graphs represent the Mean 6 SEM for each group. #p,0.05 when compared to all three other groups.
n = 6–11.
doi:10.1371/journal.pone.0018005.g004

p53 and Mitochondrial Retrograde Signaling
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mice but not in p53(2/2) mice after DOX treatment. The

activation of the JNK pathway by 4HNE was accompanied by

induction of autophagic cell death as indicated by an increase in

LC3-I/LC-3-II ratio and c-H2AX in DOX treated WT mice

(Figure 5). The absence of p53 significantly reduced mitochondria

injury and DOX-induced cardiac toxicity, suggesting that p53

plays a critical role in mediating DOX-induced cardiac toxicity, in

part, by the induction of oxidative stress mediated retrograde

signaling.

Materials and Methods

Animals
Heterozygous mice (p53(2/+)) were maintained in our labora-

tory to produce p53(2/2) and wild-type (WT) littermates. p53(2/2)

mice are in the C57BL/6 background and were initially generated

in the laboratory of Dr.Tyler Jacks at the Center for Cancer

Research and Department of Biology, Massachusetts Institute of

Technology, Cambridge, MA. The targeted disrupted p53 genes

do not produce p53 protein, since 40% of their gene coding region

is eliminated by the induced mutation [34]. Male mice between 10

and 12 weeks old were used in all studies. All animal experimental

procedures were approved by the Institutional Animal Care and

Use Committee of the University of Kentucky.

DOXorubicin treatment and tissue collection
Mice were treated with a single dose of 20 mg/kg of

DOXorubicin-Adriamycin (DOXOrubicin HCl, from Bedford

Laboratories, Inc., Bedford, OH) (DOX) or saline via intraperi-

toneal injection (IP). Three days after treatment, mice were

anesthetized using Nembutal\sodium solution (65 mg/kg) (Abbott

Laboratories, North Chicago, IL). The heart was excised and

immediately processed for ultrastructural studies or frozen in

liquid nitrogen for molecular and biochemical studies.

Immunogold detection of 4HNE
Samples for staining were obtained from the same tissues used

for ultrastructural examination (described above). Procedures to

detect 4HNE were followed as previously described by Oberley

et al. [13] and Nithipongvanitch et al. [35].

Mitochondrial extract preparation
Heart mitochondria were isolated as described previously by

Mela and Seitz [36] and [37]. Briefly, the hearts were collected,

rinsed in ice-cold isolation buffer (0.225 M mannitol, 0.075 M

sucrose, 1 mM EGTA, pH 7.4), and cut into small pieces. The

heart tissue was washed three times with the isolation buffer to

remove any residual blood and homogenized at 500 rpm with a

chilled Teflon pestle in a glass cylinder with 10 strokes. The

homogenate was centrifuged at 480 g at 4uC for 5 min in a Sorval

SS 34 rotor. The resulting supernatant was filtered through a

double-layered cheesecloth and centrifuged at 7700 g at 4uC for

10 min. Supernatant was saved to check for leakage from

mitochondria using MnSOD, a mitochondrial matrix enzyme.

The pellet was rinsed with 0.5 mL of the isolation buffer with

gentle shaking to remove the ‘‘fluffy layer’’ (damaged mitochon-

dria) on top of the pellet. The wall of the centrifuge tube was

cleaned with cotton swabs to remove lipids. The pellet was washed

by gentle resuspension in 3 mL isolation buffer using the smooth

surface of a glass rod and centrifuged at 7700 g at 4uC for 10 min.

Figure 5. p53 enhances DOX-induced cardiac injury, in part, via enhancement of oxidative stress in mitochondria. The absence of p53
selectively prevents DOX-mediated increase in oxidative stress indicators, including 4HNE-adducted proteins in mitochondria but not in the nucleus.
DOX-induced p53-dependent increased oxidative stress in mitochondria is associated with sustained activation of JNK1 and subsequent
phosphorylation of Bcl-2 and release of beclin from the Bcl-2-beclin complex resulting in detrimental effect of autophagy (cellular injury).
doi:10.1371/journal.pone.0018005.g005

p53 and Mitochondrial Retrograde Signaling
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The supernatant was saved to check again for leakage from the

mitochondria. The washing was repeated once. The resulting

mitochondria were collected for further analysis. The purity of

mitochondria was examined using Lamin A (nuclear protein) and

IkB-a (cytoskeletal protein) by Western blotting. Protein content in

the lysate was determined by BCA protein assay (Pierce, Rockford,

IL).

Immunoprecipitation and immunoblotting
Frozen hearts were homogenized with lysis buffer (10 mM Tris–

HCl pH 7.2, 1%Nonidet P-40, 158 mM NaCl, 1 mM EDTA,

50 mM NaF, 1 mM PMSF, 10 mg/ml aprotinin, 10 mg/ml

leupeptin, 1 mM sodium orthovanadate, 10 mM sodium pyro-

phosphate) and lysates centrifuged at 16,0006g for 10 min.

Immunoblotting (40 mg protein/well) was performed according to

Odyssey infrared imaging system (LI-COR, Lincoln, NE) with

antibodies against LC3, Beclin1, c-H2Ax and Bcl-2 (Cell Signaling

Technology, Danvers, MA) and actin (Santa Cruz Biotechnology,

Santa Cruz, CA) as the loading control. Secondary antibodies

were conjugated with Alexa680 (Molecular Probes, Carlsbad, CA)

or IRdye800 (Rockland Immunochemicals, Gilbertsville, PA), and

detected and quantified using the Odyssey infrared imaging system

(LI-COR, Lincoln, NE).

For immunoprecipitation, 250 mg of protein was taken and

antibodies (2.5 mg/ml) were incubated for 2 h at 4uC with protein

G-conjugated agarose beads (30 ml) and then washed five times

with lysis buffer. To immunoprecipitate endogenous HNE and

endogenous p-JNK, anti-HNE immunoprecipitates were subjected

to SDS-PAGE and phospho-JNK (pJNK; Thr183/Try185) (Santa

Cruz Biotechnology, Santa Cruz, CA) was detected by immuno-

blot. Similarly for Beclin1 and endogenous Bcl-2, anti-Beclin1

immunoprecipitates were subjected to SDS-PAGE, and Bcl-2 was

detected by immunoblot analysis.

Ultrastructural examination of cardiac tissues
Left ventricle tissues were processed for electron microscopic

analysis followed by quantification of mitochondria, cytoplasm,

and total cellular area damage using strict criteria for each

compartment injury and image analysis techniques as previously

described by Chaiswing et al. [18].

Cardiac function assessment
Echocardiography measurements were taken at three days after

a single IP injection with 20 mg/kg DOX or saline with a high-

frequency 30 MHz probe (Vevo 660, VisualSonic, Toronto,

Ontario).

Statistical analysis
For cardiac function assessments, each group was individually

analyzed using paired t-test to compare before and after

treatments for each parameter. A percentage of change was

calculated within each group for those parameters that were

significantly different in the previous statistical test. Percentage of

change from functional studies, morphometric quantitation from

pathology, immunoreactive protein detection of 4HNE adducts,

and all the enzymatic assays were analyzed using one-way

ANOVA followed by Newman Keuls post-test (GraphPad

Prism-4). A p value of less than 0.05 was considered a significant

difference.
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