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Abstract

Detection of spectral peaks and estimation of their properties, including frequency and amplitude, 

are fundamental to many applications of signal processing. Electroencephalography (EEG) of 

sleep, in particular, displays characteristic oscillations that change continuously throughout the 

night. Capturing these dynamics is essential to understanding the sleep process and characterizing 

the heterogeneity observed across individuals. Most sleep EEG analyses rely on either time-

averaged spectra or bandpassed amplitude/power. Unfortunately, these approaches obscure the 

time-variability of peak properties, require specification of a priori criteria, and cannot distinguish 

power from nearby oscillations. More sophisticated approaches, using various spectral models, 

have been proposed to better estimate oscillatory properties, but these too have limitations. We 

present an improved approach to spectrogram decomposition, tracking time-varying parameterized 

peak functions and dynamically estimating their parameters using a modified form of the iterated 

extended Kalman filter (IEKF) that incorporates discrete On/Off-switching of peak combinations 

and a sampling step to draw the initial reference trajectory. We evaluate this approach on two types 

of simulated examples—one nearly within the model class and one outside. We find excellent 

performance, in terms of spectral fits and accuracy of estimated states, for both simulation types. 

We then apply the approach to real EEG data of sleep onset, obtaining quality spectral estimates 

with estimated peak combinations closely matching the expert-scored sleep stages. This approach 

offers not only the ability to estimate time-varying parameters of spectral peaks but, moving 

forward, the potential to estimate the governing dynamics and analyze their variability across 

nights, subjects, and clinical groups.
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I. INTRODUCTION

Many applications of spectral analysis involve detection and estimation of characteristic 

peaks or functions within background noise, such as audio and speech signal processing, 

magnetic resonance spectroscopy (MRS), and analysis of physiological signals. Moreover, 

in many cases, the composition or properties of the peaks vary in time. For example, 

electroencephalographic (EEG) recordings of the brain during various states, processes, and 

conditions display characteristic time-varying oscillations, which organize functional 

activity and facilitate information transfer between regions [1].

EEG of sleep, in particular, is characterized by patterns of oscillatory activity that change at 

multiple time scales over the course of the night [2]–[7]. These oscillations are classically 

defined by frequency ranges and other properties [8], like duration. Some arise and persist 

over extended periods of time (∼minutes), whereas others are more transient, lasting less 

than a few seconds.

EEG oscillations are not pure sinusoids but variable phenomena and complex waveforms in 

aperiodic background noise. The waveform shapes reflect the underlying neuronal dynamics 

and change with physiological state [9]–[12]. The properties of the resulting broadband 

spectral peaks (e.g., peak bandwidth and shape) correspond to the waveform morphology. 

Likewise, the background noise is believed to reflect the relative excitation and inhibition of 

the underlying neural populations and appears spectrally as a ‘1/f’ decay [13]. When 

visualized as a spectrogram, the oscillations of EEG thus appear as peaks moving on a 

background of noise, as the properties of these peaks (e.g., frequency location, amplitude, 

and bandwidth) and those of the noise background change with time.

In addition to the temporal variability, EEG activity varies spatially across the scalp 

corresponding to the cortical localization of the underlying processes [14]–[16]. Sleep EEG, 

specifically, displays a topographic pattern of oscillatory peak dynamics [5], [17]–[21]. 

Crucially, the peak properties (including frequency location, prominence, and even number) 

are also known to vary widely between individuals [16], [22], and in sleep, often deviate 

substantially from the classical definitions [21], [23], [24]. Moreover, the oscillatory 

properties have been found to change with age [12], [13], [19], [25], [26] and with clinical 

pathology. Alterations and aberrations in sleep EEG oscillations have been found in 

schizophrenia [27], [28], autism [29], epilepsy [30], sleep disorders [31]–[34], stroke [35], 

and neurodegenerative disorders [36], for example.

Sleep is thus a continuous, dynamic process, and modeling and analyzing the full variability 

of sleep EEG oscillations is imperative for understanding the process of sleep and 

identifying pathological biomarkers. Such analyses require an approach that 1. captures the 

spectral shapes and relevant peak properties of the oscillatory activity, 2. tracks the 

continuous changes of the properties of interest throughout the night, 3. identifies the 

(relatively) discrete On/Off-switching of the transient oscillations, and 4. flexibly accounts 

for the intra-subject spatio-temporal variations and inter-subject heterogeneity of spectral 

peaks. Unfortunately, most sleep EEG analyses do not account for this variability, averaging 

over the dynamics and/or applying a priori definitions and criteria across subjects.
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Traditionally, the process of sleep is discretized into five stages—wake, rapid eye movement 

(REM), non-REM (NREM) 1, NREM 2, and NREM 3—based on the presence and 

prominence of strictly defined oscillations. All clinical analyses of sleep EEG are done by 

having an expert technician manually score the entire night’s sleep record into the five 

discrete stages to produce a hypnogram. This is done by visualizing the EEG signals—as 

well as other physiological signals, like electrocardiogram (ECG) and electrooculogram 

(EOG)—in 30 second segments as time-domain traces and assessing the presence/absence of 

the characteristic oscillations according to the clinical definitions [8]. This process is 

extremely time consuming and highly subjective [37], and the resulting hypnogram very 

coarsely discretizes the continuous dynamics of the sleep process.

Quantitative analyses of oscillatory activity in the sleep EEG are most commonly based on 

either average spectra or bandpassed amplitudes. Average spectra are formed by averaging 

over spectral estimates from separate time windows [6], [17], [35], usually based on sleep 

stage. From these spectra, oscillation frequencies, amplitudes, and other properties can be 

determined, but nearly all of the temporal variations are averaged out. Alternatively, the EEG 

signal is bandpassed to the frequency range of interest and instantaneous amplitude or power 

within the band computed [18], [24], [27], [31], [38], e.g., via Hilbert transform. While this 

provides instantaneous amplitude/power estimates, specific frequency and bandwidth 

estimates are unavailable, being instead fixed by the specified range. Thus, both approaches 

obscure, to some degree, the temporal variations of the peak properties, both are susceptible 

to confounding of power/amplitude estimates due to leakage from nearby or overlapping 

oscillations, and both are rely on a priori band definitions and other oscillation criteria that 

do not account for inter-subject heterogeneity. Some analyses, usually those analyzing 

specific detected oscillations, do tailor detection criteria to individual subjects [4], [20], [24], 

[35], [38], [39]. But despite these adjustments, such analyses still impose hard criteria on 

phenomena that do not necessarily follow such demarcations [21]. Automatic oscillation-

detection methods have also been shown to disagree substantially with each other and to 

perform poorly relative to expert scoring [37].

A variety of approaches have been proposed to better estimate the oscillatory properties of 

interest from EEG or other signals. Olbrich and Achermann [40] use windowed-

autoregressive (AR) models to identify oscillatory events and estimate frequencies and 

amplitudes. Tarvainen et al. [41] estimate a state-space autoregressive-moving average 

(ARMA) model for nonstationary EEG. Dubois et al. [42] and Matsuda and Komaki [43] 

use state-space models of time-varying parameterized oscillations, estimated via unscented 

particle filter (UPF) and Kalman smoother (KS), respectively. Yet other approaches have 

been proposed to estimate instantaneous amplitudes and frequencies of signals comprising 

variable sinusoids [44]–[46]. While these approaches perform well at identifying frequencies 

and amplitudes, the underlying AR and sinusoids do not fully capture the spectral shape of 

many EEG oscillations. Moreover, AR parameters are not directly interpretable in terms of 

frequencies and amplitudes, which must be derived. Haller et al. [9] offers a spectral 

decomposition fitting explicitly parameterized peak functions. However, as with the 

windowed-AR of [40], there is no temporal continuity between estimates of separate 

windows. Prerau et al. [47] proposed a particle filter approach to estimate time-varying, 

parameterized peaks of an EEG spectrogram. While this method enables tracking of variable 
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peaks, it encountered several limitations and difficulties. First, the method, like the state-

space approaches of [43]–[46], does not handle the phenomena of peaks quickly turning off 

(disappearing) and on (reappearing), as with sleep spindles in EEG of non-REM sleep. More 

importantly, the high dimensionality of the observations, i.e., the instantaneous spectral 

estimates, quickly leads to degenerate particle weightings.

We propose an improved method for the decomposition of spectrograms into sets of time-

varying parameterized peak functions. We develop and demonstrate this method in the 

context of analyzing sleep EEG, but the method may be applicable to analogous problems in 

other fields, like spectroscopy. Our method augments the state-space model of [47] to 

capture the discrete On/Off-switching of peaks and uses a variation of the iterated extended 

Kalman filter (IEKF) to overcome the degeneracy of the particle filter and estimate the 

varying peak parameters. Because the peaks are parameterized in terms of directly 

interpretable properties, the temporal continuity imposed by the state-space model is 

interpretable as well. The resulting decomposition of the spectrogram provides not only 

improved peak identification over traditional approaches, like average spectra and bandpass 

filtering, but also direct estimation of peak properties and their uncertainties. These 

estimates further enable statistical analyses and comparisons of peak properties over time. 

Characterization of these dynamics, and their variation within and between individuals and 

between patient groups, will not only further our understanding of the process of sleep but 

possibly reveal diagnostic markers.

II. METHODS

We propose using a state-space model to represent a spectrogram as combinations of 

parameterized peak oscillations, where the peak parameters vary smoothly in time and the 

combination of On/Off-peaks changes dynamically as well. The peak parameters and On/

Off-combination are estimated using a modified version of the IEKF and a decomposition of 

the spectrogram so obtained. We demonstrate this method and test its relative performance 

on two types of simulated data. We then apply the method to real EEG data from sleep. 

(Code is available for download in the supplemental material as well as at http://

sleepeeg.org/peaktracking/.)

A. PARAMETERIZED SPECTRAL APPROXIMATION

In this model, at each time t, the instantaneous spectrum yt of the estimated spectrogram, 

evaluated at vector of discrete frequency bins ω, is approximated as the sum of a set of peak 

functions h(i) observed in noise vt,

yt = ∑
i ∈ ℐ

ℎ(i) ω; xt
(i) + vt . (1)

Here, ℐ is the set of available peaks, the h(i) are their respective peak functions, and the xt
(i)

are their respective sets of parameters. The observation noise is assumed zero-mean, E [vt] = 

0, and temporally uncorrelated with covariance E vt1vt2′ = R ⋅ δt1 − t2.
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B. PEAK FUNCTIONS

The model is flexible in terms of the number and types of peak functions that can be 

included. The parameters are generally chosen to be interpretable in terms of location 

(frequency) and shape (amplitude, bandwidth, etc.) of the corresponding peak. Those that we 

have implemented include a Gaussian (with and without harmonics), a shifted-gamma, a 

box-exponential, and an exponential-decay. The parameterized equations of the peaks are 

given in Appendix A.

These peak functions were chosen to represent classically recognized oscillatory peaks in 

sleep EEG. We use an exponential-decay to represent the background spectral density, 

shifted-gammas to represent slow (< 1.5 Hz) and delta-theta (1.5–8 Hz), a Gaussian with 

harmonics to represent alpha (8–12 Hz), a Gaussian to represent sigma (12–16 Hz), and a 

box-exponential to represent the 60 Hz line noise.

C. PARAMETER EVOLUTION AND BOUNDS

The parameters of the peak functions form the state vector xt, varying smoothly over time 

following a random walk,

xt = F ⋅ xt − 1 + wt . (2)

The state noise wt is assumed zero-mean, E [wt] = 0, and temporally uncorrelated with 

covariance E wt1wt2′ = Q ⋅ δt1 − t2. It is further assumed the state and observation noises are 

uncorrelated, E vt1wt2′ = 0. We use a decay factor F = 0.9 · I for the state transition to 

enhance stability of the resulting filter estimates.

Many of the peak parameters are required to be positive (e.g., amplitudes, frequencies, and 

bandwidths). It is often advantageous to further restrict parameters to specified intervals 

(e.g., a specific frequency range for given peak). To achieve this, we employ exponential and 

sigmoid link functions, respectively. Their parameterized equations are given in Appendix B. 

The resulting bounded versions of the dynamic state variables, xt, k = lk xt, k , then 

parameterize the observation peak functions, where k indexes the component state variables 

and their respective link functions.

D. COMBINATIONS OF ON/Off-PEAKS AND THEIRTRANSITIONS

In many applications, like EEG analysis, the oscillation content of a signal may change 

rapidly, with sets of peaks appearing or disappearing, often in particular combinations, 

almost instantaneously. It is, thus, frequently of benefit and interest to allow peaks to turn on 

and off in certain combinations at various times, and to model the transitions between these 

combinations. We model the dynamic On/Off-switching of peaks as a probabilistic discrete 

transition among a set of allowable combinations J. With αt the vector of probabilities of 

being in each combination and Φ the matrix of transition probabilities (i.e., Φj2,j1 is the 

probability of transitioning from combination j1 to j2), the probabilities vary according to

αt = Φ ⋅ αt − 1 . (3)
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For clarity and brevity, we variably refer to the combination of On/Off-peaks as the On/Off-

peaks combo, the On/Off-combo, or even simply the combo. The formation of the combo 

transition matrix Φ is described in Alg. 5 in Appendix C.

E. STATE-SPACE MODEL

Together, the observation and state equations of the state-space model are as follows,

yt = ∑
i ∈ ℐ jt

ℎ(i) ω; xt
(i) + vt, (4)

xt + 1 = F ⋅ xt + wt + 1, and (5)

αt + 1 = Φ ⋅ αt, (6)

where xt, k = lk xt, k  are the bounded peak parameters and ℐ jt  is the set of On-peaks in On/

Off-combo jt. For brevity and clarity moving forward, we denote the overall observation 

function for each combo j by hj (x), where ℎj(x) = ∑i ∈ ℐ(j)ℎ(i) ω; l x(i)  incorporates the 

sub-selection of parameters, the application of link functions, and the summation of peak 

functions, and suppresses the dependence on frequency bins.

F. IEKF WITH DISCRETE SWITCHING AND SAMPLED REFERENCE TRAJECTORY

The peak parameters xt and On/Off-peak combo jt are estimated via a modified form of the 

IEKF. The general IEKF is detailed in references such as [48]. We make two modifications 

to the IEKF—one to handle the discrete switching of the On/Off-combo and one to further 

handle the nonlinearity and improve the convergence. For real-data applications, we also add 

checks to handle non-convergence.

The outline of the approach is as follows. Given the filter estimates for the previous time 

step, the common prediction estimates are obtained. For each On/Off-combo, random state 

samples are drawn from a multivariate Gaussian with mean and covariance given by the 

prediction estimates, and the maximum likelihood draw becomes the initial reference 

trajectory for that combo. Filter estimates are obtained for each combo by the iterated 

updates, starting at their respective initial references. The posterior probability of each 

combo is computed from the total likelihoods and transition probabilities. The new filter 

estimates are then the posterior mode combo and its state and state-error covariance. The 

general steps for the full algorithm are given in Alg. 1.

1) IEKF STEP AND ESTIMATION OF ON/Off-COMBO—The discrete switching of 

the On/Off-combination is handled analogously to adaptive parameter estimation as detailed 

in references such as [49]. At each time t, the IEKF updates are computed separately for 

each combo j to obtain separate prediction and filter estimates of the state and state-error 

covariance of the approximating Gaussian density. In our case, the state equation is linear, so 

the prediction updates of the state and state-error covariance estimates are straightforward 
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xt ∣ t − 1
j = F ⋅ xt − 1 ∣ t − 1

j  and Pt ∣ t − 1
j = FPt − 1 ∣ t − 1

j FT + Q, respectively. Due to the nonlinear 

dependence of the observation function on the state, the filter updates of the state and state-

error covariance estimates, xt ∣ t
j and Pt ∣ t

j , respectively, are approximated by linearizing the 

update equations around a reference trajectory ηt
j. These equations are given in Alg. 3.

Algorithm 1:

Iterated Extended Kalman Filter With Predictive Sampling and Probabilistic Parameter 

Switching
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Algorithm 2:

referenceTrajectory—Max Likelihood

In the basic EKF, the prediction estimate serves as the reference trajectory, ηt
j = xt ∣ t − 1

j . In 

the IEKF, the approximation is improved by iteratively using the resulting estimate as 

subsequent reference and stopping at convergence.

The linearized equations utilize the derivative matrix of the observation function, 

Mj(η) = ∂xℎj(η). The derivatives of the individual peak functions and the link functions with 

respect to their parameters are straightforward to compute. They are included in Appendixes 

A and B.

The filter estimates of the combo probabilities αt ∣ t are computed by taking the observation 

likelihoods,

p yt ∣ jt, y1: t − 1 = ∫xt
p yt ∣ xt, jt, y1: t − 1

⋅ p xt ∣ jt, y1: t − 1 dxt,
(7)

obtained separately from the IEKF for each combo, weighting by the predicted transition 

probabilities, p jt ∣ y1: t − 1 = Φj, ⋅ ⋅ αt − 1 ∣ t − 1, and normalizing,
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p jt ∣ y1: t = p yt ∣ jt, y1: t − 1 p jt ∣ y1: t − 1
∑jt p yt ∣ jt, y1: t − 1 p jt ∣ y1: t − 1

. (8)

Algorithm 3:

fiterUpdate–EKF/IEKF
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Algorithm 4:

modeOnOffCombo

The observation likelihoods are computed as logarithms, ln p yt ∣ jt, y1: t − 1 , and denoted LLt
j

in the algorithms.

While in principle the joint filter density p xt, jt ∣ y1: t  could be computed as a mixture of 

separate Gaussian state estimates, we have found that this performs poorly. Instead, at each 

time step, we select the On/Off-combination with the maximum probability, 

j t ∣ t = argmaxjt p jt ∣ y1: t , and approximate the combo filter probabilities by the 

corresponding indicator vector, αt ∣ t ≈ ej t ∣ t. This selected combo and its associated filter 

estimates then serve as the overall filter estimates, xt ∣ t ≈ xt ∣ t
j t ∣ t and Pt ∣ t ≈ Pt ∣ t

j t ∣ t, and the 
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starting point for all combos at the next time step. The selection of the modal On/Off-combo 

is detailed in Alg. 4.

2) IMPROVED REFERENCE TRAJECTORY—To improve the ability of the iterations 

to converge, we add a step between the prediction and filtering to sample for an improved 

initial reference trajectory. At each time t, for each combination j, we draw Nd = 1000 state 

samples d1:Nd
j  from the common prediction density, N xt ∣ t − 1, Pt ∣ t − 1 , evaluate the 

predicted observations, and take the initial reference trajectory ηt, 1
j  to be the draw of 

maximum likelihood, or equivalently that with minimum sum of square prediction errors. 

The details are given in Alg. 2.

3) MISSING DATA, ARTIFACTS, AND NON-CONVERGENCE—As in any Kalman 

filter application, instances of missing observations are easily handled by skipping the filter 

step and propagating the predictions forward. Real EEG data are often corrupted by brief 

artifacts. These can be handled in off-line analyses by detection and exclusion prior to 

filtering, treating the corresponding time points as missing data. It would further be possible 

to incorporate the detection of artifacts in on-line fashion at the expense of increased 

computation time. At each time, prior to the combo selection, the filter estimates of all 

combos are compared to the prediction estimates. If a prediction estimate is of greater 

likelihood than all filter estimates, then the current observation is treated similarly to being 

an artifact. The corresponding combo is selected and its prediction estimates retained as the 

filter updates. This is a further safeguard against missed artifacts and iterative divergence 

and is indicated in Alg. 4.

G. ALTERNATIVE FILTER ESTIMATES

To evaluate the relative importance of the draws and iterations in improving performance, 

we compare the performance of the above method, referred to as IEKF-d, with that of 

several other related methods. The basic EKF is obtained by omitting the prediction draws 

and only performing the first filtering iteration. An EKF with improved reference trajectory, 

referred to as EKF-d, is obtained by utilizing the draws while only applying the single 

iteration. The standard IEKF uses iterations without drawing the initial reference trajectory.

We also evaluate the possibility of using higher-order terms in the filtering to improve the 

quality of the estimates. The iterations in the filtering step of the IEKF can be viewed as a 

mode optimization via Newton-Raphson with the 2nd-derivatives set to zero. We 

implemented a version of the IEKF that uses the Hessian in the iteration steps to evaluate 

whether its inclusion improved the estimates. This method was tested both without particle 

draws, referred to as IEKF-2, and with particle draws, referred to as IEKF-2d. We also 

implemented a Gaussian 2nd-order EKF, referred to as EKF-2o, following [48]. Lastly, we 

tested whether selecting the draw of maximum posterior filter density, referred to as IEKF-

dm, as opposed to maximum likelihood, improved convergence. The filter update equations 

of these variant methods are detailed in the algorithms in Appendix E. The updates for 

IEKF-2/IEKF-2d are given in Alg. 7. The updates for the EKF-2o are given in Alg. 8. The 
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maximum posterior selection of reference trajectory is included in Alg. 6. All methods share 

the common filtering steps of Alg. 1.

The set of methods compared are thus:

1. Basic EKF—no prediction draws, single filter update (i.e., one iteration).

2. EKF with draws and one iteration.

3. Standard IEKF—no draws, 10 iterations.

4. IEKF with draws and 10 iterations.

5. IEKF with 2nd-derivative and no draws.

6. IEKF with 2nd-derivative and draws.

7. 2nd-order EKF—no draws, single filter update.

8. EKF with draws evaluated at posterior.

H. SIMULATED DATA

We compared the performance of the variant methods by applying them to two types of 

simulated data with variable number of peaks present. Every simulation features a set of 1 to 

5 peaks on an exponential-decay background. The parameters of all peaks, including the 

background, vary in time. The non-background peaks also turn on and off probabilistically. 

The first simulation type is nearly within the generative model class, with the parameters 

following hard-bounded random walks. The second simulation type is well outside with 

underlying model class, with the parameters following pseudo-deterministic patterns, 

including sines, saw-tooths, and steps, of varying periods. One thousand simulations were 

generated for each simulation type and number of peaks. Each simulation consists of 100 

time points and 300 frequency bins, covering a frequency range of 0–100 Hz.

The simulated frequency range was randomly divided into non-overlapping frequency 

intervals that serve as the frequency bounds of each non-background peak. Each non-

background peak is randomly assigned a peak-type as gamma (25%), Gaussian (50%), or 

box (25%), where the number of harmonics for each Gaussian is determined by the upper 

bound of its frequency. All amplitudes were bound between 4 and 20. Bandwidth bounds for 

each peak had a minimum of 3 and a maximum determined by the width of the frequency 

bounds. See the available code for the complete list of parameter bounds and other 

simulation details.

I. STATISTICAL MEASURES

The performance of the variant filters when applied to the simulated data was assessed by a 

set of statistical measures, chosen to evaluate 1. the model fit to the observed spectrogram, 2. 

the accuracy of the state estimates, and 3. the ability to correctly determine the On/Off-

peaks. The model fit to the spectrogram is assessed by three measures computed from the 

filter observation errors, εt ∣ t = yt − ℎj t ∣ t xt ∣ t . The mean observation error measures any 

bias in the model fit. The mean-square of the observation errors reflect the size of the 
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residuals. The Box Q statistic of the observation errors measures two-dimensional 

correlations in the residuals, capturing aspects of non-whiteness. The mean and mean-square 

are computed over all time steps and frequency bins, but the Box Q is computed for 

windows over 4 time lags and ±4 frequency bins.

The accuracy of estimating the underlying state was assessed by two measures. The mean-

square of the state errors, averaged over state variables only for times when the respective 

parameters are truly On, measures the accuracy of the specific filter estimates. The 

probability of the true state values lying within the 95%-filter interval of the state, averaged 

over state variables for all times, measures the more general reliability of filter density in 

capturing the state. The ability to identify On/Off-peaks is measured by computing the 

probability of correct On/Off-determination averaged over all peaks at all times.

Several alternatives to the above measures were also computed to support the robustness of 

the findings. The maximum of the absolute value of the observations errors provides an 

alternative measure of the size of the residuals. An alternative assessment of the correlations 

between observation errors is provided by a Wald statistic of the instantaneous correlations 

across frequency bins (up to 4 neighbors) and the Moran’s I statistic over 3Δt × 4Δω 
windows. The Cohen’s kappa of the On/Off-combo estimation is an alternative measure of 

the ability to identify On/Off-peaks.

The last statistic computed was the run time of the filter estimates. We computed each 

statistic for each filter estimate of each simulation, and compared the distributions (over 

simulations) of these statistics to evaluate the relative performance of the various forms of 

the filter. See the available code for the specific computations of the statistics.

J. EXPERIMENTAL DATA: EEG OF SLEEP ONSET

We applied the IEKF-d (and, for comparison, the basic EKF) to sleep EEG data from a 

single subject from a study previously presented in [50]. We analyzed a single occipital 

channel (O2) recorded during the second night. The data were recorded at 500 Hz and 

downsampled to 200 Hz. The analysis was limited to ∼55 minutes covering the sleep onset 

process. The multitaper spectrogram was computed using 15-second windows with a 7-

second slide, a time-half-bandwidth product of 15 with 29 tapers, and with linear detrending, 

resulting in 2049 frequency bins of width 0.0488 Hz. The frequencies of the observed 

spectrogram were subselected to improve the filter performance. Between 35 Hz and 55 Hz, 

every 5th frequency bin was retained, and between 55 Hz and 65 Hz, every 2nd bin was 

retained. The state-space model used in the IEKF-d comprised an exponential-decay 

background, a gamma slow-oscillation peak, a gamma delta-theta peak, a Gaussian with two 

harmonics for the alpha peak, a Gaussian sigma peak, and a box peak for the 60 Hz line 

noise. The details of the model are given in Appendix F.

The observation noises are independent (i.e., R is diagonal) with Rii = 0.5, except for 

frequency bins between 55 and 65 Hz, where Rii = 3. The peak parameter bounds, diagonal 

state noise covariance Q, initial state x0, and diagonal initial state covariance P0 are given in 

Table 1 in Appendix F. The initial state values for the background parameters, a0, r0, and o0, 

are determined by an iterative nonlinear fit to the first 20 time points of data. (See 
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supplemental code for details.) The available On/Off-peak combos, J, and initial combo 

probabilities, α0, are given in Table 2 in Appendix F. The combo transition matrix Φ is 

formed via Alg. 5 in Appendix C with pon = 0.2, poff = 0.3, and pstay = 0.8.

The model and its hyperparameters were chosen, largely by trial-and-error, specifically for 

the example subject and channel. However, in addition to the temporal dynamics, the 

spectral content of sleep EEG displays spatial variations across the scalp, vast inter-subject 

heterogeneity, and dramatic changes due to age and pathology. These variations can deviate 

widely from the classically defined oscillations and are just beginning to be explored.

The example subject was chosen because their oscillatory activity hews closely to the 

traditional peak definitions. An occipital channel was used because it most prominently 

displays the eyes-closed alpha oscillation indicative of wake and, hence, is where sleep onset 

is most easily observed. And the second-night data was used because the first night of sleep 

studies is for acclimation of the subjects to the study environment.

To further test the robustness of the approach, we applied the IEKF-d, using the same model 

and hyperparameters, to second-night, O2-channel data for the remaining subjects from the 

dataset. The results of three of the additional subjects are presented in the Supplemental for 

comparison. The purpose of this comparison is not a full exploration of the dynamics and 

variations of sleep EEG oscillatory activity, which is outside the scope of this paper, but to 

demonstrate the utility of the proposed approach towards addressing such questions.

III. RESULTS

We evaluated the performance of the proposed IEKF with draws (IEKF-d) by applying it to 

two types of simulated datasets, hard-bounded random walks from (nearly) within the 

underlying model class and pseudo-deterministic patterns from outside the underlying model 

class. We assessed the performance by a set of statistical measures and compared the 

performance to that of a set of related, variant methods. We then applied the IEKF with 

draws to real EEG data of the sleep onset process.

A. SIMULATED DATA

The results for the random-walk simulations are given in Appendix G. Fig. 6 shows the 

IEKF-d estimates for a single simulation of three peaks on an exponential-decay 

background. Fig. 7 shows the distributions of the main statistical measures across the 

simulations for the eight variant filters. And Fig. 8 shows the distributions of the additional 

statistical measures, including the computation times. As may be expected when the 

simulations are essentially within the underlying model class, the filter performance is 

exceptional, particularly for filters utilizing draws, with almost universally correct 

determination of On/Off-peaks and completely white observation residuals.

Because the in-class scenario of these simulations is simpler, and because the near-perfect 

performance impairs finer comparisons of the statistical measures, we forgo further detail of 

the random-walk results and move to fully elaborate the results of the more challenging 

pseudo-deterministic simulations. The same patterns of relative filter performance are seen 
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in the statistical measure distributions for both the random-walk and pseudo-deterministic 

simulations.

Fig. 1 shows the results for a single pseudo-deterministic simulation with three peaks on an 

exponential-decay background—the true simulated spectrogram Fig. 1(A), the spectrogram 

estimated from the IEKF with draws Fig. 1(B), the residuals Fig. 1(C), and the true and 

estimated On-peaks Fig. 1(D). Qualitatively, we see the excellent agreement between the 

true and estimated spectrograms, as well as the overall whiteness of the residuals. The 

agreement between the true and estimated spectrograms requires, not simply accurate 

estimation of the peak parameters, but correct determination of the combination of On/Off-

peaks, which is indeed seen in Fig. 1(D). The true and estimated peak parameters are shown 

in Figs. 1(H)–1(G), where the estimates (dark colored lines) track the true values (solid 

black lines) very well, with the true states almost always within the 95%-confidence interval 

(colored regions). The points of discrepancy primarily occur when a peak is off (dashed 

black lines) and, as would be expected, the estimates revert toward the center of the bounds 

while the uncertainties grow. When the peak turns back on, the estimate and its uncertainty 

collapse to the true value.

Fig. 2 shows the distributions of the statistics computed for the variant methods applied to 

the sets of 1000 pseudo-deterministic simulations with 1–5 peaks on an exponential 

background. In general, we find the IEKF with draws produces the best fits by each statistic 

of all the methods tested. We find that the draws are more important than the iterations at 

improving the quality of the estimation, with all methods utilizing draws producing smaller, 

whiter errors than those without. The iterations do improve the estimation, even for methods 

utilizing draws, though less dramatically, so due to the added computation time, in 

applications where time is critical, the EKF with draws may be preferable. The methods 

utilizing 2nd-derivatives actually showed mixed improvements/degradations in performance.

The distributions of the mean residuals are shown in Fig. 2(A.i). Nearly all methods appear 

zero-mean, with the exception of the basic EKF and EKF-2o, which appear to be negatively 

biased, likely due to the modeling discrepancy of the 0.9 factor in the state transition F and 

the absence of compensatory draws or iterations. In Fig. 2(A.ii), the distributions of the 

MSEs reveal the draws of the reference trajectory greatly improve the quality of the 

estimates. Each filter with draws shows MSE distributions shifted towards zero and with 

smaller variance relative to the analogous filter without draws, i.e., MSEs of the IEKF with 

draws are consistently smaller than those of the IEKF without draws. Comparison of the 

MSE distributions for filters without and with iterations—i.e., the EKF with draws and the 

IEKF with draws, respectively—show the iterations also improve the quality of the 

estimates, though to a lesser extent than the draws. Further comparisons of EKF with 

EKF-2o and IEKF with IEKF-2 show the 2nd-derivatives do slightly improve the quality of 

the estimates without draws, but show negligible improvement over the use of the draws, 

i.e., IEKF-d vs. IEKF-2d. The same patterns are seen when the maximum absolute value is 

used as the statistic, shown in Fig. 5(A) in Appendix G.

The distributions of the Box Q statistic, shown in Fig. 2(A.iii), capture two-dimensional 

correlations in the residuals, a quantitative indicator of non-whiteness. As with the MSE, the 

STOKES and PRERAU Page 15

IEEE Access. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box Q indicates that the draws substantially improve the quality of the estimates, with the 

distributions being shifted towards zero and of lower variance, while the iterations provide 

some, but less, improvement. Again, it appears the use of 2nd-derivatives may offer some 

improvement in the whiteness of the residuals when draws are not involved. The same 

patterns are seen when instantaneous correlations or Moran’s I are used as the statistic, 

shown in Fig. 5(B) and 5(C), respectively, in Appendix G.

A similar pattern of improvements is seen in the statistical measures of the quality of the 

state estimates, the mean square state error Fig. 2(B.i), the probability of the true state falling 

within the 95% confidence estimate Fig. 2(B.ii), and the probability of estimating the On/

Off-status of the peaks Fig. 2(B.iii). The slight exception is that the use of second derivatives 

in the IEKF, i.e., IEKF-2 and IEKF-2d, appears to slightly worsen the state estimates. The 

same pattern is seen when the accuracy of the On/Off-combo determination is assessed by 

Cohen’s kappa, which is shown in Fig. 5(D) in Appendix G.

The distributions of computation time are shown in Fig. 5(E) in Appendix G, where the 

draws are seen to be somewhat computationally more expensive than the iterations. 

Moreover, the evaluation of draws and selection of reference trajectory based on the filter 

posterior mode (EKF-dm) as opposed to the maximum likelihood (EKF-d), shows nearly 

identical performance and computation time, suggesting the filter posterior mode may be an 

equivalent and more principled means of selecting the reference trajectory.

B. EEG DATA OF SLEEP ONSET

Fig. 3 shows the results of application of the IEKF-d to occipital EEG recorded during the 

sleep onset process. Figs. 3(A) and 3(B) shows the hyponogram (scored sleep stages) and 

multitaper spectrogram of EEG data recorded during the sleep onset process, respectively. 

The transition from wake to NREM is very apparent in the spectrogram, as the alpha (8–12 

Hz) oscillation, related to eyes-closed wake, is initially present and disappears and the slow 

and delta-theta (< 8 Hz) peaks, which are the hallmark of NREM sleep, strengthen in power. 

This transition is also indicated by the scored stages. Fig. 3(C) shows the estimated 

spectrogram obtained from the IEKF with draws, Fig. 3(D) shows the residuals, and Fig. 

3(E) shows the estimated On-peaks. Qualitatively, the estimated spectrogram is in excellent 

agreement and the residuals appear white, while the estimated combos are consistent with 

the scored stages.

The parameter estimates of each peak are shown in Fig. 4. These estimates further indicate 

the appropriateness of the decomposition of the spectrogram into the relevant peak 

oscillations, with the estimated alpha amplitude clearly decreasing before the peak 

disappears at sleep onset, when the delta-theta peak appears and its amplitude begins 

increasing. These distinct spectral power changes would be conflated in traditional bandpass 

analysis of alpha amplitude, as the increasing delta-theta power leaks into the alpha band 

following sleep onset. Our proposed method not only produces “cleaner” estimates, but, 

crucially, the direct interpretability of the parameter estimates allows separation of 

overlapping peaks.
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For comparison, the results of applying the basic EKF to the same data are shown in Fig. S1 

in the Supplemental. The performance is adequate but does show a few points of impaired 

tracking, particularly near the quick transitions from ∼3800 s to ∼4200 s, and an extended 

period of large error, where the filter was unable to recover following the artifact at ∼5500 s.

Spectrograms and IEKF-d filter estimates for three additional subjects are shown in Fig. S2 

in the Supplemental. These estimates were obtained using the same model and 

hyperparameters as used for the main subject above. Despite the model and hyperparameters 

not being tuned individually to the additional subjects, the estimates fit the observed 

spectrograms fairly well.

However, we must stress there is a crucial difference between obtaining passable 

spectrogram fits and obtaining decompositions with appropriately interpretable parameter 

estimates. The same model flexibility that enables quality fits can produce estimates with 

“incorrect” peaks, usually due to compensatory changes in parameters. For example, fitting a 

neighboring alpha peak instead of an actual sigma, or using a large, broad delta-theta to 

make up for a poor background. Such errors are not present in the examples here, and the 

state estimates are of reasonable interpretability. But in general, judicious setting of 

hyperparameters, particularly the parameter bounds, is vital to obtaining correctly 

interpretable results.

In fact, due to inter-subject heterogeneity in frequency ranges, prominence, and even number 

of oscillations, one should not expect the hyperparameter settings (nor even the peak 

functions themselves) determined for one individual to be appropriate for another. Similarly, 

intra-subject spatial variation means one should not even expect the model to be applicable 

to other channels from the same individual. The main example subject was chosen because 

their observed peaks adhere closely to the standard definitions. The additional subjects of the 

Supplemental show some deviations in peak locations, particularly those of alpha and sigma, 

but not substantial ones. In this case, the model and hyperparameters are close enough that 

the fits are acceptable and the interpretability of the decompositions are reasonable as well. 

But in general, the hyperparameters, and even the model itself, should be uniquely optimized 

for each dataset.

The full analyses of this variability is, indeed, the motivation and long-term objective of our 

future work, but is well beyond the immediate scope of this presentation. Here, we have 

stressed the criticality of these settings in obtaining interpretable spectrogram 

decompositions and interpretable peak parameter estimates.

IV. DISCUSSION

We have proposed and demonstrated a method to decompose an EEG spectrogram into a set 

of traditionally recognized oscillatory peaks that vary with time. The parameters of the peak 

functions form the continuous-valued state of a state-space model, while the combination of 

On/Off-peaks form a discrete-switching state. The model is estimated using a modified form 

of the IEKF that draws the initial reference trajectory and at each time step determines the 

discrete On/Off-combo.
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The simulation results show the method tracks both the peak parameters and the On/Off-

combo exceptionally well, both within and without the model class. The resulting 

spectrogram estimates show white residuals with little two-dimensional correlations. 

Comparisons with variant methods reveal that the step of drawing the initial trajectory for 

linearization is most responsible for the improvement in the quality of the estimates over a 

basic EKF. The iterations of the IEKF do add further improvement. The second order EKF 

did generally improve the estimates over the basic EKF, but less so than the draws or 

iterations. The use of the second derivative in the iterations of the IEKF, slightly improved 

the quality of the observation estimates, but at the expense of slightly worse state estimates, 

and there is no noticeable improvement when the draws are utilized.

Application of the method to an EEG spectrogram of the sleep onset process found great 

agreement between the observed and estimated spectrograms and estimated On/Off-peak 

combos consistent with the transition from wake to NREM sleep.

A. ADVANTAGES OVER OTHER APPROACHES TO EEG SPECTRAL ANALYSIS

Our method offers several advantages over standard EEG analyses and other previously 

proposed methods. The state-space estimation captures temporal changes lost in time-

averaged spectral estimates and, to some extent, bandpassed amplitudes. Moreover, the 

temporal continuity imposed, not present in windowed methods [9], [40], allows for 

smoother estimates of time-varying properties. Our expanded state-space model even 

includes discrete On/Off-switching of spectral peaks, a feature not captured by other state-

space approaches [43]–[47]. The functional forms of the peaks used in our method result in 

estimates that more closely match the shapes of the spectral peaks observed in the EEG than 

sinusoidal or AR(MA) model estimates [40], [42]–[46].

Crucially, our peak functions are parameterized in terms of variables directly interpretable as 

peak properties, such as location, amplitude, bandwidth, and other shape parameters. 

Coupled with the temporal continuity of the state-space, this means observed changes in 

spectral power are interpretable as well. This is particularly valuable in frequency ranges 

with overlapping bands. Whereas traditional average power and bandpassed amplitude 

estimates require a priori frequency specification and cannot distinguish oscillatory power 

from nearby oscillation leakage, our method allows separability of adjacent peaks.

The resulting representation of the spectrogram is both parsimonious and meaningful. 

Hundreds of frequency bin estimates per time point covering the Nyquist range are captured 

by a couple dozen directly interpretable state variables. Most importantly, our approach 

enables quantitative analyses of the peak parameters and their dynamics. The joint 

uncertainty estimates of the state variables obtained by the Kalman filter allow inference 

over any peak parameters or related quantities. Estimation of the state transition matrices is 

of particular interest and, as discussed below, an aim of future work.

More broadly, our approach offers a means towards more fully capturing the variability of 

locations and shapes of oscillatory peaks in sleep EEG spectrograms. Beyond the spatio-

temporal dynamics, there is wide heterogeneity, across subjects, in frequency location, and 

even number, of spectral peaks. Only recently have analyses begun exploration of this 
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heterogeneity, and it is rarely addressed in analyses of sleep dynamics and comparisons of 

clinical groups. Application of the same peak definitions (i.e., frequency ranges) and other 

criteria across subjects in such analyses can introduce confounds into the estimates and 

undermine comparisons. Our approach, on the other hand, possesses an inherent flexibility 

to analyze each subject and channel individually through the setting of parameter bounds 

and other hyperparameters, and even through selection of the number and type of peaks in 

the model.

Fundamentally, the innovation of this work is the overall structure of the approach. The 

specific model choice and hyperparameter settings can, of course, be adapted to each subject 

and channel. New parameterized peak functions can be utilized, if needed. And any of the 

filter variants, or even more advanced alternatives, can be employed for estimation, 

depending on computational constraints. But the general approach—of forming a low-

dimensional, interpretably parameterized representation of the spectrogram (or other high-

dimensional observations) with a state-space model and estimating the model with a slightly 

modified EKF/IEKF—provides a foundation for future sleep EEG analyses and analogous 

applications in other fields.

B. ESTIMATION CHALLENGES AND IMPLEMENTATION CHOICES

Several aspects of the proposed approach were required to overcome unusual, challenging 

circumstances posed by the problem. The primary difficulty is that faced by the direct 

particle filter of [47]. Because of the large dimension of the observations, using the 

likelihood for reweighting of prediction samples results in immediate collapse to a single 

particle. This challenge is similar to that faced in meteorological and geoscience applications 

[51] with very large dimensional states and observations. In such applications, the state 

dynamics are typically complex and nonlinear, and the finer details of the state density 

estimates of critical import. In our present application, the state dynamics of our current 

model are simple, linear, and the precise characterization of the state density are not of 

immediate necessity. By forgoing a precise density, allowing some “extra uncertainty” in a 

sense, and simply using the IEKF with sampled reference trajectory and Gaussian 

assumption, we are able to not only track the states, but still obtain very precise estimates. 

More sophisticated ensembling, sampling, or reweighting schemes like those discussed in 

[51], [52], or [53] may be workable, possibly offering more robust estimates, but likely at 

the cost of increased computation time.

In real data applications, we have found initialization and setting of hyperparameters, 

particularly the peak parameter bounds, are of great importance. We determined the settings 

used here by trial and error, though, in principle, they could be estimated by EM algorithm 

or sampling methods. These settings were determined specifically for the main example 

subject of Figs. 3 and 4 but applied to all subjects of the dataset, including the additional 

examples shown in Fig. S2 of the Supplemental, for which the estimated fits to the 

spectrograms appear decent. We re-iterate, however, that fitting a spectrogram is not 

equivalent to obtaining a reasonable decomposition, and the selection of an appropriate 

model and its hyperparameters is crucial to obtaining the desired decomposition with 

reasonably interpretable parameter estimates. One should not expect the same model or 
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hyperparameters to be applicable across subjects or different channels from the same 

subject, due to inter-subject heterogeneity and intra-subject spatial variability. The full 

exploration of this variation across subjects and across clinical groups is the motivating 

objective of the current presentation but is far beyond the scope of this work and the subject 

of future analyses.

C. FUTURE IMPROVEMENTS, EXTENSIONS, AND APPLICATIONS

Moving forward, the ultimate aim is, indeed, the exploration and analysis of sleep dynamics 

and its variations across subjects and clinical groups through application of the approach to 

full-night EEGs of larger data sets, i.e., identification and estimation of individual subject 

models and comparison of the estimated states and governing dynamics. Identification of 

hyperparameters will be critical in such endeavors, and the imminent steps will focus on 

implementing methods (e.g., an EM algorithm) to systematically determine appropriate 

values. Computation time is currently somewhat prohibitive for such estimations, especially 

for a full night of sleep EEG. Though we have made some efforts to reduce the computation 

time, there are likely still opportunities for further improvement, such as optimizing the 

parallelization and implementing the filter in the information form. Alternatively, finding a 

workable sampling or ensemble scheme, may also enable simultaneous estimation of 

hyperparameters.

If the computation time is sufficiently improved, other extensions and applications may 

become more practical. For example, it may be possible to include time-varying state and 

observation noise covariances in the model and estimate the covariances adaptively. Or real-

time processing and artifact handling may be viable.

The approach we have proposed allows tracking and estimation of a set of time-varying, 

parameterized peaks. While the motivating application is to sleep EEG spectrograms, and 

the specific parameterized observation functions were chosen to capture the peak properties 

of primary interest in the tracking of sleep dynamics, the approach may be useful for other 

EEG applications (e.g., cross-channel coherograms) or other properties of interest (e.g., 

phase or cross-frequency coupling) through appropriately defined observation functions. 

Similarly, other applications where high-dimensional observations comprise a set of possible 

functions with varying parameters of interest (e.g., spectrograms from MR spectroscopy or 

audio or speech signal processing) may also be possible with properly chosen observation 

functions.

Sleep is a complex, dynamic process, and the underlying neural activity presents in the EEG 

as characteristic oscillations that change over the course of the night. Our approach provides 

a sparse representation of these spectral dynamics and offers the potential to further model 

and analyze of the governing dynamics. Future work will focus on estimation of the 

parameter and combo transition matrices and the analysis of the variability of the dynamics 

across nights, across individuals, and across different patient groups. Such analyses would 

not only offer a better understanding of the sleep process but possibly reveal diagnostic 

markers of pathologies as well.
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APPENDIX A: PEAK FUNCTIONS AND THEIR DERIVATIVES

GAUSSIAN PEAK WITH HARMONICS

The spectral peaks of many classically recognized oscillations can be represented by a 

simple Gaussian,

ℎ(Gauss)(ω; F , A, B) = A exp −(ω − F )2

2B , (9)

with parameters for central frequency F, maximum amplitude A, and bandwidth B.

Some oscillations, such as eyes-closed occipital alpha, will exhibit harmonics in the spectral 

domain. We represent this phenomenon by forming the peak at the fundamental frequency 

and adding similar peaks of decreasing power at subsequent harmonic frequencies.

For the case of a Gaussian peak, the fundamental and its harmonics are of the form

ℎn
(Gauss) = βnA exp −(ω − (n + 1)F )2

2B , (10)

where the power decrease between subsequent harmonics is a multiplicative fraction β ∈ 
[0,1], such that βn is the power of nth harmonic peak as a proportion of the power of the 

fundamental. With N harmonics and n = 0 the fundamental, the overall peak function is

ℎ(Gauss)(ω; F , A, B, β) = ∑
n = 0

N
ℎn

(Gauss), (11)

The partial derivatives of the Gaussian peak with harmonics w.r.t the parameters are

∂ℎ(Gauss)

∂F = ∑
n = 0

N
ℎn

(Gauss) (n + 1)(ω − (n + 1)F )
B (12)

∂ℎ(Gauss)

∂A = ℎ(Gauss) A−1 (13)
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∂ℎ(Gauss)

∂B = ∑
n = 0

N
ℎn

(Gauss) (ω − (n + 1)F )2

2B2 (14)

∂ℎ(Gauss)

∂β = ∑
n = 1

N
ℎn

(Gauss) n
β (15)

SHIFTED-GAMMA PEAK FUNCTION

Broadband peaks with asymmetric tails are observed in the EEG spectrum, e.g., the low-

frequency slow and delta oscillations. Such peaks can be approximated in the form of a 

gamma distribution,

ℎ(Γ)(ω; α, β, O, A) = A β(ω − O)
(α − 1)

α − 1

× exp ( − β(ω − O) + (α − 1) ,

where α and β are the shape and rate parameters of the gamma distribution, respectively, O 
is an additional frequency offset parameter to translate the peak away from the origin, A is 

the maximum amplitude, and the normalization is obtained by evaluating the gamma 

distribution function at the mode, (α − 1)/β. To avoid numerical overflow errors, the 

function is computed as the log of the gamma distribution and then exponentiated.

The α, β, and O parameters are not directly interpretable in terms of the location and shape 

of the peak, but more meaningful ones can be computed from them. We take the frequency 

location F of the peak to be the location of the mode of the shifted gamma distribution, F = 

(α − 1)/β + O, the bandwidth B to be the variance of the gamma distribution, B = α/β2, and 

the skewness S to be that of the gamma distribution, S = 2/ α. Writing the α, β, and O 
parameters in terms of the more meaningful parameters,

α = 4
S2, β = 2

S B , and O = F − 2 B
S + S B

2 ,

we obtain a directly interpretable parameterization of the shifted gamma peak 

ℎ(Γ)(ω; F , A, B, S).

For ease of computation and derivation of the derivatives, we implement the shifted gamma 

peak in terms of the original parameters, (α, β, A, and O). The partial derivatives of the peak 

function w.r.t. the parameters of interest (F, A, B, and S) are obtained by the chain rule
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∂ℎ(Γ)
∂F = ∂ℎ(Γ)

∂O
∂O
∂F

= ℎ(Γ) −(α − 1)
ω − O + β

∂ℎ(Γ)
∂A = ℎ(Γ) A−1

∂ℎ(Γ)
∂B = ∂ℎ(Γ)

∂β
∂β
∂B + ∂ℎ(Γ)

∂O
∂O
∂B

= ℎ(Γ) (ω − O)β3
2α − (α − 1)β2

α + (α − 1)2β
2α(ω − O)

∂ℎ(Γ)
∂S = ∂ℎ(Γ)

∂α
∂α
∂S + ∂ℎ(Γ)

∂β
∂β
∂S + ∂ℎ(Γ)

∂O
∂O
∂S

= ℎ(Γ) −α3/2log β(ω − O)
α − 1 + α

+ β α(ω − O)
2 −

α α2 − 1
2β(ω − O)

BOX-EXPONENTIAL PEAK FUNCTION

Increasing the order of the quadratic term in the exponential of the Gaussian peak produces a 

more rectangular, box-shaped peak,

ℎ(box)(ω; F , A, B, P ) = A exp −(ω − F )P

2B , (16)

where, as for the Gaussian, the parameters F, A, and B, represent the central frequency, 

maximum amplitude, and bandwidth, respectively. The order P is even and determines the 

sharpness of the rectangularity of the peak. It is fixed and not estimated. This peak closely 

approximates the spectral peaks formed of machine-generated sources, such as 60 Hz line 

noise. In the models of 60 Hz noise, we set P = 6. The partial derivatives w.r.t to the 

parameters are

∂ℎ(box)

∂F = ℎ(box) P (ω − F )(P − 1)

2B (17)

∂ℎ(box)

∂A = ℎ(box) A−1 (18)

∂ℎ(box)

∂B = ℎ(box) (ω − F )P

2B2 (19)

EXPONENTIAL-DECAY FUNCTION

We model background spectral activity using an exponential-decay function,
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ℎ(decay)(ω; a, r, o) = a(1 − r)ω + o,

where the parameters a, r, and o represent the power scaling, decay rate, and baseline offset, 

respectively. The partial derivatives w.r.t. the parameters are

∂ℎ(decay)
∂a = (1 − r)ω

∂ℎ(decay)
∂r = − ωa(1 − r)ω − 1

∂ℎ(decay)
∂o = 1

APPENDIX B: LINK FUNCTIONS AND THEIR DERIVATIVES

Some of the peak parameters are mathematically restricted to a certain range of values, e.g., 

greater than zero. Additionally, it often improves estimation, enhancing the consistency and 

interpretability of the peaks, to place physiologically-principled bounds on some parameters. 

We use link functions to impose these restrictions.

ONE-SIDED EXPONENTIAL FUNCTION

A one-sided exponential link function,

lexp(x; s, o) = s exp(x) + o, (20)

STOKES and PRERAU Page 24

IEEE Access. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 5:

comboTransitionMatrix
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Algorithm 6:

referenceTrajectory—Max Filter Posterior

restricts the value of a variable x to be strictly greater than or less than a given offset value o, 

where the sign s ∈ {−1,1} determines the direction of the restriction. The first and second 

derivatives are given by

dlexp
dx = d2lexp

dx2 = s exp(x) . (21)

BOUNDED SIGMOID FUNCTION

A sigmoid link function,

lsig(x; a, b) = (b − a) 1
1 + exp( − x) + a, (22)

restricts the value of a variable x between upper and lower asymptotic bounds, b and a, 

respectively. Denoting the standard sigmoid function by σ (x) = (1 + exp(−x))−1, the first
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Algorithm 7:

filterUpdate—IEKF With 2nd Derivative

Algorithm 8:

filterUpdate—2nd Order EKF

Data: xt ∣ t − 1, Pt ∣ t − 1, yt, ℎj, ∂xℎj, ∂xxℎj, R
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Result: xt ∣ t
j , Pt ∣ t

j , LLt
j

For ease of notation, η ≐ xt ∣ t − 1 and P ≐ Pt ∣ t − 1

M ∂xℎj(η)

Θ ≐ Ωm , a Ny × 1 vector, where

Θm ∑k, l
NxPk, l ∂xkxlℎm

j (η)

Ω ≐ Ωm, n , a Ny × Ny matrix, where

Ωm, n ∑k, l, p, q
Nx ∂xkxlℎm

j (η) Pl, pPk, q ∂xpxqℎn
j(η)

Y G MPt ∣ t − 1MT + R + 1
2Ω

z yt − ℎj xt ∣ t − 1 − 1
2Θ

xt ∣ t
j xt ∣ t − 1 + Pt ∣ t − 1MT Y G −1z

Pt ∣ t
j Pt ∣ t − 1 − Pt ∣ t − 1MT Y G −1MPt ∣ t − 1

LLt
j − 1

2zT Y G −1z − 1
2 ln det Y G −

Ny
2 ln(2π)

derivative is

dlsig
dx = (b − a)σ(x)(1 − σ(x)), (23)

while second derivative is

d2lsig
dx2 = (b − a) σ(x) − 3σ2(x) + 2σ3(x) . (24)

APPENDIX C: TRANSITION MATRIX FOR COMBINATION OF ON/Off-PEAKS

The transition matrix Φ for the On/Off-combo jt ∈ J with probabilities αt can be any viable 

discrete transition matrix. In principle, Φ could be estimated, but here we use a fixed value. 

It is reasonable for the combo transition probabilities to be related to the probabilities of 

individual peaks to turn on and off, pon and poff. Additionally, it is helpful to be able to 

specify the overall degree of “stickiness” in the combos pstay. So the diagonal elements of Φ 
are set as pstay, while the remaining probabilities are determined by pon and poff, but 

normalized to equal 1 − pstay. Pseudo-code is given below. For the filter estimates and the 

random walk simulations we use values pon = 0.2, poff = 0.2, and pstay = 0.9.
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TABLE 1.

Model and parameter bounds used for sleep EEG analysis.

Peak Type Dyn. Param. Min Max Q x0 P0

Bkgrd. Decay 0

a 0 50 1 a0 0.5

r 0 0.5 1 r0 0.5

o - - 1 o0 0.5

Slow Gamma 1

F 0 1.5 0.1 0 0.1

A 1 50 0.1 0 0.1

B 0.1 5 0.1 0 0.1

S 0.5 1.9 0.1 1 0.1

δ–θ Gamma 1

F 1 8 0.1 0 0.1

A 1 10 0.1 0 0.1

B 4 50 0.1 −3 0.1

S 0.5 1 0.1 1 0.1

α Gauss+2 1

F 8 12 0.1 0 0.1

A 5 50 0.1 0 0.1

B 0.5 3 0.1 0 0.1

β 0 0.7 0.1 0 0.1

σ Gauss 1

F 12 16 0.1 0 0.1

A 1 50 0.1 0 0.1

B 0.5 3 0.1 −3 0.1

60 Hz Box(6) 0

F 55 65 0.1 0 0.1

A 1 50 0.1 0 0.1

B 0.5 10 0.1 0 0.1

TABLE 2.

Available On/Off-peak combos, J, and initial combo probabilities, α0, used for sleep EEG 

analysis.

Wake N1 N2/N3

Background 1 1 1 1 1 1

Slow 0 1 0 1 1 1

Delta-Theta 0 0 0 0 1 1

Alpha 1 1 0 0 0 0

Sigma 0 0 0 0 0 1

60 Hz 1 1 1 1 1 1

α0 0 1 0 0 0 0
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APPENDIX D: ALTERNATIVE INITIAL REFERENCE TRAJECTORIES

Alg. 6 is the alternative initialization of the reference trajectory, used in the IEKF-dm, that 

selects the draw of maximum filter posterior density. For those filter variants without draws

—the EKF, IEKF, and IEKF-2—the reference trajectory is initialized by the direct 

assignment of the prediction estimate. This is achieved in either Alg. 2 or 6 by setting Nd = 

1.

APPENDIX E: ALTERNATIVE FILTER UPDATES

The general filtering algorithm of the proposed approach is given in Alg. 1 in Sec. II-F, 

along with the EKF/IEKF filter updates in Alg. 3. Two alternative filter updates were were 

also implemented and tested: an IEKF that treats the filter step as a mode optimization 

utilizing the 2nd-derivatives, with filter updates given in Alg. 7; and a 2nd-order EKF with 

Gaussian approximation, following [48], with filter updates given in Alg. 8.
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FIGURE 5. 
Additional statistical measures of filter performances when applied to 5000 simulated 

spectrograms of 1–5 peaks on an exponential-decay background with parameters varying 

pseudo-deterministically. EKF (dark blue), EKF-d (green), IEKF (red), IEKF-d (light blue), 

IEKF-2 (purple), IEKF-2d (orange), EKF-2o (teal), IEKF-dm (magenta). (A) Maximum 

(over time and frequency) of the absolute value of the filter residuals. This is an alternative 

to mean-square as a measure of the variability of the residuals. (B) Logarithm of the Wald 

statistic of the cross-frequency correlations of the filter residuals. (C) Moran’s I statistic of 
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the two-dimensional correlations of the filter residuals. The Wald and Moran’s I statistics are 

alternatives to the Box Q as a measure of correlations in the residuals. (D) Cohen’s kappa of 

estimates of the On/Off-combos. This is an alternative to the probability of correct On/Off-

peak determination as a measure of the accurate identification of On/Off-peak combos. (E) 

Computation time of filter estimates.

APPENDIX F: MODEL, PARAMETERS, BOUNDS, AND INITIALIZATIONS 

FOR SLEEP EEG ANALYSIS

Table 1 details the model used for the analysis of real EEG data from sleep onset. This 

includes the peaks, their type, whether they are allowed to dynamically switch on and off 

(Dyn.), their parameters (Param.), the parameter bounds (Min and Max), the parameter state 

variances (Q), and the initial parameter expected values (x0) and variances (P0). Table 2 lists 

the set of available On/Off-peak combinations, indicates their approximate sleep stage 

representation, and specifies the initial On/Off-combo probabilities (α0).
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FIGURE 6. 
Random walk example. (A) Simulated spectrogram of three peaks—two Gaussian (one with 

harmonics) and one gamma—on an exponential-decay background, with peak parameters 

following hard-bound random walks. (B) Filter estimate of the spectrogram obtained from 

IEKF-d. (C) Residual spectrogram, i.e., the difference between the spectrogram and the filter 

estimate. (D) Indicators of true On-peaks (black lines) and estimated On-peaks (colored 

lines). (E)–(H) IEKF-d filter state estimates of peak parameters. True parameter values are 
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shown in black (solid when peak is On, dashed when peak is Off). Filter estimates and the 

95%-confidence intervals are indicated by the colored lines and regions.

FIGURE 7. 
Statistical measures of filter performances when applied to 5000 simulated spectrograms of 

1–5 peaks on an exponential-decay background with parameters following random walks. 

EKF (dark blue), EKF-d (green), IEKF (red), IEKF-d (light blue), IEKF-2 (purple), IEKF-2d 

(orange), EKF-2o (teal), IEKF-dm (magenta). (A.i) Mean (over time and frequency) of the 

filter residuals. Most of the filters appear zero-mean, as expected. The exceptions are the 

EKF and EKF-2o, which do not utilize draws or iterations and show a slight negative bias, 

likely due to the “model mis-specification” of the 0.9 state transition factor. It is also clear 

the draws greatly reduce the variance of the filter residuals. (A.ii) Logarithm of the mean 

(over time and frequency) of the square filter residuals. Again, the draws alone produce a 

greater reduction in residual variance than the iterations alone (e.g., EKF-d vs. IEKF), but 

the iterations do add further improvement (e.g., IEKF-d vs. EKF-d) (A.iii) Logarithm of the 

two-dimensional Box Q statistic of the filter residuals. (B.i) Logarithm of the mean (over 

time and peak parameters) of the filter state errors, restricted to times when the respective 

peaks are On. (B.ii) Probability of the true state values lying within the 95%-confidence 
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interval of the filter state estimates. (B.iii) Probability of correctly determined On/Off-status 

of all peaks at all times.

APPENDIX G: ADDITIONAL RESULTS AND FIGURES

This subsection contains additional results and figures.

Fig. 5 shows alternative statistical measures for the filter estimates of the sets of pseudo-

deterministic simulations. Like the mean-square of the observation residuals in Fig. 2(A.ii), 

the maximum of the absolute values in Fig. 5(A) is a measure of the extent of the variability 

of the observation errors. Like the two-dimensional Box-Q statistic of the observation 

residuals in Fig. 2(A.iii), the Wald statistic of the instantaneous correlation across 

neighboring frequency bins in Fig. 5(B) and the Moran’s I statistic in Fig. 5(C) are measures 

of correlations in the observation errors. And like the probability of correct On/Off-peak 

identification in Fig. 2(B.iii), the Cohen’s kappa statistic of the On/Off-combos selection in 

Fig. 5(D) is a measure of successful determination of the discrete state.

The patterns of relative filter performance are comparable to the analogous statistics, with 

the draws providing the most improvement in estimation accuracy and the iterations offering 

further improvement. The use of second derivatives provides a small improvement in 

observation errors, but with greater variability and somewhat worse performance on state 

and combo estimation.

Fig. 6 shows the results for a single random walk simulation with three peaks on an 

exponential-decay background—the true simulated spectrogram Fig. 6(A), the spectrogram 

estimated from the IEKF with draws Fig. 6(B), the residuals Fig. 6(C), the true and 

estimated On-peaks Fig. 6(D). Because the simulation is nearly within the underlying model 

class, the performance is even better than for the pseudo-deterministic simulation, with 

excellent agreement between the true and estimated spectrograms, white residuals, and the 

correct determination of the combination of On/Off-peaks at each time. The true and 

estimated peak parameters are shown in Figs. 6(H)–6(G), where the estimated states (dark 

colored lines) track the true states (solid black lines) almost exactly. The true states are 

almost always within the very narrow 95%-confidence intervals (colored regions), and the 

points of discrepancy occur when a peak is off (dashed black lines) and the estimates revert 

toward the center of the bounds.
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FIGURE 8. 
Additional statistical measures of filter performances when applied to 5000 simulated 

spectrograms of 1–5 peaks on an exponential-decay background with parameters following a 

random walk. EKF (dark blue), EKF-d (green), IEKF (red), IEKF-d (light blue), IEKF-2 

(purple), IEKF-2d (orange), EKF-2o (teal), IEKF-dm (magenta). (A) Maximum (over time 

and frequency) of the absolute value of the filter residuals. This is an alternative to mean-

square as a measure of the variability of the residuals. (B) Logarithm of the Wald statistic of 

the cross-frequency correlations of the filter residuals. (C) Moran’s I statistic of the two-
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dimensional correlations of the filter residuals. The Wald and Moran’s I statistics are 

alternatives to the Box Q as a measure of correlations in the residuals. (D) Cohen’s kappa of 

estimates of the On/Off-combos. This is an alternative to the probability of correct On/Off-

peak determination as a measure of the accurate identification of On/Off-peak combos. (E) 

Computation time of filter estimates.

Figs. 7 and 8 show the statistical measures for the filter estimates of the sets of random walk 

simulations. The patterns of relative filter performance are comparable to those for the 

pseudo-deterministic simulations, with the draws providing the most improvement in 

estimation accuracy and the iterations offering further improvement. The use of second 

derivatives provides a small improvement in observation errors, but with greater variability 

and somewhat worse performance on state and combo estimation.
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FIGURE 1. 
Pseudo-deterministic example. (A) Simulated spectrogram of three peaks—one Gaussian 

with harmonics, one gamma, and one exponential-box—on an exponential-decay 

background, with peak parameters following pseudo-deterministic patterns. (B) Filter 

estimate of the spectrogram obtained from IEKF-d. (C) Residual spectrogram, i.e., the 

difference between the spectrogram and the filter estimate. (D) Indicators of true On-peaks 

(black lines) and estimated On-peaks (colored lines). (E)–(H) IEKF-d filter state estimates of 

peak parameters. True parameter values are shown in black (solid when peak is On, dashed 
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when peak is Off). Filter estimates and the 95%-confidence intervals are indicated by the 

colored lines and regions.
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FIGURE 2. 
Statistical measures of filter performances when applied to 5000 simulated spectrograms of 

1–5 peaks on an exponential-decay background with parameters varying pseudo-

deterministically. EKF (dark blue), EKF-d (green), IEKF (red), IEKF-d (light blue), IEKF-2 

(purple), IEKF-2d (orange), EKF-2o (teal), IEKF-dm (magenta). (A.i) Mean (over time and 

frequency) of the filter residuals. Most of the filters appear zero-mean, as expected. The 

exceptions are the EKF and EKF-2o, which do not utilize draws or iterations and show a 

slight negative bias, likely due to the “model mis-specification” of the 0.9 state transition 

factor. It is also clear the draws greatly reduce the variance of the filter residuals. (A.ii) 

Logarithm of the mean (over time and frequency) of the square filter residuals. Again, the 

draws alone produce a greater reduction in residual variance than the iterations alone (e.g., 

EKF-d vs. IEKF), but the iterations do add further improvement (e.g., IEKF-d vs. EKF-d). 

This same pattern of relative performance is also apparent in the other measures. (A.iii) 

Logarithm of the two-dimensional Box Q statistic of the filter residuals. (B.i) Logarithm of 

the mean (over time and peak parameters) of the filter state errors, restricted to times when 

the respective peaks are On. (B.ii) Probability of the true state values lying within the 95%-

confidence interval of the filter state estimates. (B.iii) Probability of correctly determined 

On/Off-status of all peaks at all times.
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FIGURE 3. 
Sleep onset process. (A) and (B) Hypnogram and multitaper spectrogram, respectively, of 

occipital EEG recorded during the transition from wake to sleep. The eyes-closed wake-

alpha peak (∼10 Hz) and its two harmonics are initially present before disappearing at 

around 3750 seconds at the transition to sleep. At that point the slow (< 1.5 Hz) and delta-

theta (1.5–8 Hz) power increase, indicative of NREM sleep. The transient increases of sigma 

(∼14 Hz) power, suggestive of sleep spindles, also occur for the remainder of the 

spectrogram time. (C) Filter estimate of the spectrogram obtained from IEKF-d, using a 

model with an exponential-decay background, a gamma slow peak, a gamma delta-theta 

peak, a Gaussian-with-two-harmonics alpha peak, and a box 60 Hz peak. (D) Residual 

spectrogram, i.e., the difference between the spectrogram and the filter estimate. (E) 

Indicators of estimated On-peaks.
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FIGURE 4. 
Sleep onset process—estimated parameters. (A) Slow gamma peak. (B) Delta-theta gamma 

peak. (C) Alpha Gaussian peak with two harmonics. (C) Sigma Gaussian peak without 

harmonics. (D) 60 Hz box peak. (E) Exponential-decay background. Filter estimates and the 

95%-confidence intervals are indicated by the colored lines and regions. Grey bars indicate 

when each peak was estimated to be On.
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