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Abstract: Digital cameras obtain color information of the scene using a chromatic filter, usually a
Bayer filter, overlaid on a pixelated detector. However, the periodic arrangement of both the filter ar-
ray and the detector array introduces frequency aliasing in sampling and color misregistration during
demosaicking process which causes degradation of image quality. Inspired by the biological structure
of the avian retinas, we developed a chromatic LED array which has a geometric arrangement of
multi-hyperuniformity, which exhibits an irregularity on small-length scales but a quasi-uniformity
on large scales, to suppress frequency aliasing and color misregistration in full color image retrieval.
Experiments were performed with a single-pixel imaging system using the multi-hyperuniform
chromatic LED array to provide structured illumination, and 208 fps frame rate was achieved at
32 × 32 pixel resolution. By comparing the experimental results with the images captured with
a conventional digital camera, it has been demonstrated that the proposed imaging system forms
images with less chromatic moiré patterns and color misregistration artifacts. The concept proposed
verified here could provide insights for the design and the manufacturing of future bionic imaging
sensors.

Keywords: multi-hyperuniform; single-pixel imaging; frequency aliasing; color misregistration

1. Introduction

Both spatial and spectral information provides us crucial knowledge of the world.
Chromatic digital cameras obtain spatial and spectral information simultaneously by plac-
ing an absorbing color-filter array (a.k.a. the Bayer filter) on top of a detector array [1],
because photoelectronic sensors are only sensitive to light intensity, regardless of its wave-
length. Due to technical limitations and commercial considerations, the elements of the
pixelated detectors, as well as those of the filter arrays, are usually arranged in a Cartesian
geometry. Such periodic arrangement of both the detector array and the Bayer filter ar-
ray introduces artificial effects decreasing the fidelity of the captured images. Frequency
aliasing, which converts frequencies above the Nyquist limit into moiré fringes during
the optical sampling, is one such effect. Color misregistration, which causes inauthentic
color shifts during the demosaicking process, is another. Many post-processing algorithms
have been proposed [2–9] to suppress these artificial effects in the captured images, which
increase the computational burden on imaging system. However, these effects could be
avoided or suppressed if raw image data could be sampled in a different manner with low
cost.

The evolution of species is governed by neither technical limitation nor commercial
consideration, but environmental requirements, and environment requires diurnal animals
to evolve eyes which can obtain images with high fidelity and dynamic performance.
Some researches about human retinas showed that arrangement of the photoreceptors
is random and uniform, which is able to yield images with better reconstruction quality
by suppressing frequency aliasing [10]. The similar structures exist in the avian vision
system as well. Recent biological investigations have found that birds, being the vertebrate
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with the most sophisticated vision, have retinas consisting of five types of cones, each of
which independently exhibits a disorder on small-length scales but a quasi-uniformity
on large scales [11,12]. The fantastic structure of correlated disorder is known as hype-
runiformity [13], and the fact that such arrangement can obtain high fidelity images is
explained by the theory that a slight irregularity in the optical sampling arrangement can
avoid frequency aliasing [14]. It has been shown that the evolution of the avian vision
system may be most sophisticated among all animals. Another biological research [15]
shows that the birds can achieve continuous imaging with up to 145 fps frame rate. A
recent hyperuniform sampling experiment [16] further verified the feasibility of the the-
ory. However, the experiment was performed with a single-pixel imaging [17–21] system
using a digital-micromirror-device which is commonly used in many applications [22,23].
While the sampling patterns were designed to be hyperuniform, the micromirrors forming
the patterns were arranged in Cartesian coordinates and displayed at an up-to-22 KHz
modulational rate. Consequently, the frequency aliasing in the sampled image was not
suppressed completely and the system cannot perform high dynamic tasks.

In this paper, we addressed that the periodic sampling caused frequency aliasing and
color misregistration by utilizing a customed chromatic LED array in which red-green-blue
luminous points formed a multi-hyperuniform arrangement [11], that is, luminous points
of one color form a hyperuniform point pattern, and all points together, regardless of their
colors, exhibit hyperuniformity as well. Such arrangement of the chromatic LED array
was designed to mimic the multi-hyperuniform structure of the chicken retina system [12].
Optical sampling using multi-hyperuniformity was performed experimentally via a single-
pixel imaging system. The high-speed hyperuniform LED array developed in this work,
which have a maximum illumination rate of 2.5 MHz, can effectively improve the dynamic
performance of the imaging system. Both numerical and experimental results indicated
that the images retrieved by multi-hyperuniform sampling contained less chromatic moiré
patterns at high frequencies and less color misregistration artifacts at the edge of color
transition, where the proposed imaging system achieved 208 fps frame rate in experiment.
The work is different from the methods of optimizing interpolation algorithm, which can
solve these artificial effects in hardware through a simple imaging system. The proof-of-
principle system demonstrated here might push us one step closer to the biomimetic digital
camera which the imaging community aimed to invent for so long.

2. Theory

Hyperuniform structure exists in not only avian retinas but also physical systems
such as crystal [24], or even the large-scale structure of the universe [13]. The property of
a hyperuniform system can be quantified as the density fluctuation in its corresponding
point patterns. For a 2D point pattern with hyperuniform distribution, the variance of the
number of points σ2(R) within a circular domain S is approximately proportional to the
R [13] i.e.,

σ2(R) =
〈

N2
S

〉
− 〈NS〉2 ∝ R (1)

where Ns is the number of points contained in S, and angular brackets represent an
ensemble average. R is the radius of a circular observation window. Equation (1) indicates
that the variance of the hyperuniform point patterns grows more slowly than the area of the
domain, while for any statistically homogeneous and isotropic point pattern, the variance
cannot grow more slowly than the area of circle S or other strictly convex domains [25,26].

A special hyperuniformity, known as multi-hyperuniformity [11], contains more than
one type of points. For example, five types of cone photoreceptors exist in chicken retina:
violet, blue, green, red species to sense color and double species to detect luminance. The
point patterns of these five types of cones are arranged individually and never occurred in
the near vicinity of other cones of the same type, which ensure each cone pattern achieves
a much more uniform arrangement [11]. All types of photoreceptors grow simultane-
ously with the constraints of cell size, and such competing interactions ensure that all
cone patterns are arranged in a hyperuniformity. Multi-hyperuniform structure contains
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multiple point species where both the total population and the individual point types are
simultaneously hyperuniform. It is worth noting that the overall point arrangement in
multi-hyperuniform obey Equation (1) as well, which means that the point patterns are
independent with each other and display hyperuniform in total whether the individual
species is removed or not. Such multi-hyperuniform structure is believed to be the main
reason that birds have the most sophisticated vision of any vertebrate. It would be inter-
esting to exploit the concept in optical sampling by using such geometry, and here it was
performed in the manner of structured illumination in a single-pixel imaging scheme.

A chromatic LED array was developed, in which its red-green-blue luminous points
were arranged in multi-hyperuniformity. Specifically, a hyperuniform point pattern was
generated by a ‘cell-growing’ random procedure based on a regular hexagonal geome-
try [16]; the green luminous points, being the center of the LED chips, were then arranged
following the hyperuniform point pattern, as shown in Figure 1a. As the red-green-blue
luminous points in an LED chip have a fixed geometry (Figure 1b), a periodicity would
exist in the LED array if each chip were arranged in the same manner. Therefore, an extra
irregularity was introduced by rotating the LED chip of the ith column and the jth row
with a randomly generated angle θij (Figure 1c). The LED array, as shown in Figure 1d, was
fabricated by placing 32 × 32 LED chips on corresponding positions and integrating them
on the printed circuit board, where the red-green-blue luminous points on each chip have
center wavelengths of 632 nm, 518 nm, and 468 nm, respectively. It is worth mentioning
that, for the purpose of variance σ2(R) estimation and further numerical simulation, the
multi-hyperuniform arrangement were generated on an underlying Cartesian grid of 544
× 544 pixels with one pixel corresponding to 0.1 mm × 0.1 mm. The actual LED array,
however, was not limited by Cartesian coordinates. Recent research has found that the
quantities of five types of cones are different in avian retina, where the double cones were
the most abundant cone type (40.7%) followed by green (21.1%), red (17.1%), blue (12.6%)
and violet (8.5%) single cones. Due to the fixed arrangement of R-G-B channels of each
LED chip, the three channels have the same spatial density on the multi-hyperuniform
LED array with 32 × 32 chips.
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To evaluate the hyperuniformity of the chromatic LED array, as in the calculating
process in [11], the variances σ2(R) were computed directly for each monochromatic point
patterns separately, and for overall point pattern, as shown in Figure 2. Specifically, for each
R value, 2500 circular domains S were randomly placed in the pattern without overlapping
the system boundary. The maximum radius was chosen to be Rmax = L/2, limited by the
pattern size L. The variances of each pattern were fitted (dashed lines in Figure 2) using the
fitting function:

σ2
(

R
D

)
= P

(
R
D

)(
1 + Q cos

(
π

2
R
D

+
π

3

))
(2)

where a cosine term represented that the patterns were originated from the regular hexago-
nal arrangement [16], the window size R is normalized by the averaged points’ distance
D = 17 for monochromatic point patterns and D = 5.67 for overall point pattern. According
to the previous research [11], the structural properties of individual and overall point pat-
terns could be obtained in the same manner, so the Equation (2) is suitable for hyperuniform
evaluation of chromatic LED point array.
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Figure 2. Number variance σ2(R/D) of all monochromatic point patterns and the overall point pattern,
and their corresponding fitting curves.

The parameters of the fitting curves in Figure 2 are listed in Table 1. The fitting curves
and their fitting parameters, listed in Table 1, indicated that the variances of all four pat-
terns grew proportionally to R rather than R2, which met the criterion of hyperuniformity
described by Equation (1). Each monochromatic luminous point pattern exhibits hyper-
uniformity individually, and combined as an overall point pattern, the LED array remains
hyperuniform, therefore, the arrangement of the LED array was multi-hyperuniform.

Table 1. Fitting coefficients for different types of point patterns.

Green Red Blue Overall

P 0.4675 0.5932 0.5725 0.5663
Q 0.1274 0.0271 0.0335 0.1505

It is worth mentioning that Q is the coefficient for the cosine term in Equation (2),
representing the hexagonal geometry. In Table 1, coefficient Q of the green point pattern
is larger than the red and blue ones because the latter ones had an extra random rotation
introduced during the generation of the pattern, meaning the red and blue point patterns
had a larger deviation from the regular hexagonal geometry than the green point pattern.
The parameter P is a coefficient for fitting curves.
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3. Numerical Simulations

Numerical simulations were performed using a multi-hyperuniform sampling point
pattern, which was generated based on the multi-hyperuniform LED array. The point
pattern, having a 544 × 544 underlying pixel grid, contained 3072 sampling points, 1024
for red, green, and blue each. Figure 3a showed a partial area of the arrangement with 4
red, 4 green, and 4 blue points. Each LED luminous point, not strictly a point, had the size
of 6 pixel grids, representing its 0.3 mm × 0.2 mm physical size.
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For comparison, two other types of sampling patterns were also used in the numerical
simulation. The regular LED pattern, a part of which was shown in Figure 3b, represented
that the LED chips were arranged in a regular geometry. The regular LED pattern also
contained 3072 sampling points, 1024 for red, green, and blue each. The Bayer pattern, a
part of which was shown in Figure 3c, is a common arrangement used in conventional
chromatic digital cameras. The Bayer pattern, having a 1:2:1 ratio of red, green, and blue
points, contained 3072 sampling points which consisted of 768 red, 1536 green, and 768
blue points.

To ensure that the comparison is fair, the three sampling patterns had the same number
of sampling points and the same size of underlying pixel grid, therefore, the same sampling
frequency and the same field-of-view for the optical sampling.

In numerical simulation, a group of 35 chromatic images, whose pixel resolution is
544 × 544, were used as the objects. Each chromatic image I was under-sampled by the
three sampling patterns, and a demosaicking algorithm [4,5] was applied to the under-
sampled monochromatic data of red, green, and blue to reconstruct the chromatic image I’.
There are many sophisticated demosaicking methods for various applications [6–8] and
the gradient-based interpolation algorithm [9] was applied in this work. The gradients of
different directions are calculated according to the sampling structure, which can ensure
for selecting the proper direction to estimate the missing pixel values of the images. This
algorithm is efficient to reduce the pseudo color of color-transition area in reconstructed
images for three sampling patterns without much time cost. It is worth mentioning that the
demosaicking algorithm used here is not best for three sampling structures but valid and
simple, which can ensure the fair comparison of image reconstruction with three sampling
patterns. There are some complicated algorithms to improve the quality of images as well,
which would cause more time costs of imaging. It is verified that the multi-hyperuniform
sampling structure could be used to improve the image quality in a hardware way without
more computational burden.

The qualities of reconstruction images were evaluated using the root mean square
error (RMSE) between each original image I and its reconstruction I’ as:

RMSEchannel =

√
∑m,n

i,j=1 (I′channel(i, j)− Ichannel(i, j))2

m× n
(3)
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where m = n = 544 were the pixel resolution of the images, and channel, being red, green,
or blue, represented the monochromatic data of different channels. The final RMSE is the
averaging value of the RMSEs for three monochromatic channels, i.e.,

RMSE =
R,G,B

∑
channel

RMSEchannel/3 (4)

Both original images and the reconstructions were normalized to the same scale.
The RMSEs of all resulting images, sorted in descending order of multi-hyperuniform

pattern RMSEs, are shown in Figure 4. In most cases, 33 out of 35, the proposed multi-
hyperuniform pattern yielded the best resulting images among the three sampling patterns.
The average RMSE for all 35 images reconstructed from multi-hyperuniform sampling,
being 0.1214, is the smallest of the RMSEs yielded from the three sampling patterns. Regular
and Bayer patterns each yielded the lowest RMSE in two cases, where the original images
contain large blocky areas with no color transitions and high-frequency details. The slight
degradation of image quality by using multi-hyperuniform sampling in such cases, was
predicted by the fact that the irregularity in optical sampling degrades image quality [27].
The RMSEs of the reconstructed images by multi-hyperuniform structure demonstrate the
improvement of the image quality on a pixel-wise level.
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For considering larger-scale features of reconstructed images, the structural similarity
(SSIM) between each original image I and its reconstruction I’ is calculated as:

SSIM(I′channel , Ichannel) =

(
2µIchannel µI′channel

+ c1
)(

2σIchannel ,I′channel
+ c2

)(
µ2

Ichannel
+ µI′channel

+ c1

)(
σ2

Ichannel
+ σ2

I′channel
+ c2

) (5)

where, µ is the average value of images, σ2 is the variance of images, c1 and c2 are constants.
σI,I′ is covariance of I and I’, c1 = 0.01 and c2 = 0.03 are constants for ensuring the
validation of this equation. The meaning of the channel is the same as the previous
calculation process. The final SSIM is the averaging value of the SSIMs for three channels,
i.e.,

SSIM =
R,G,B

∑
channel

SSIM(I′channel , Ichannel)/3 (6)
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The SSIMs of all images reconstructed are shown in Figure 5, where image indexes
are consistent with the results in Figure 4. The averaging SSIM for all 35 images from
multi-hyperuniform sampling is the largest compared with other results yielded from
regular and Bayer sampling. The two images with the large block can be reconstructed
better by regular sampling pattern and their indexes are the same with the two cases where
we find lower RMSEs by using regular and Bayer patterns in Figure 4. The SSIMs of the
reconstructed images demonstrate that image quality can be improved on larger-scale
features by multi-hyperuniform sampling as well.
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Since aliasing errors are usually caused by insufficient sampling, it is necessary to
compare the proposed sampling with other random sampling strategies. The blue-noise
sampling strategy is another random strategy, which is derived by the human vision system.
This method is used here and the reconstruction results are listed in Figures 6 and 7. The
points in blue-noise sampling pattern are arranged randomly but the distances of any
two adjacent points are uniform, which causes the reconstructed images to be close to the
results using multi-hyperuniform sampling structure.

Due to the fact that different images have different power distribution of image
spatial frequency [28,29], more various scenes are used for comparisons, where the recon-
structed images of artificial scenes and natural scenes are obtained by different patterns in
Figures 6 and 7. In Figure 6, it is obvious that less color misregistration artifacts and moiré
fringes were observed in reconstructed images by multi-hyperuniform sampling pattern
compared with the other structures. It is worth noting that the color misregistration could
be considered as one of the small-scale features and the chromatic moiré fringes could be
treated as one of the large-scale features. The RMSEs and SSIMs are sequentially listed
under the resulting images, which indicate that multi-hyperuniform sampling structure can
suppress the color misregistration and chromatic moiré fringes in different scale features.
The reconstructed results in Figure 7 demonstrated that the multi-hyperuniform sampling
structure is valid to improve the qualities of natural scenes with sparse periodic patterns as
well.
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Figure 6. Comparison of reconstructed images of artificial scenes using different sampling patterns.
From the left to right are the original images, reconstructions from multi-hyperuniform, regular
and Bayer sampling patterns. The corresponding RMSEs and SSIMs are listed below the images,
respectively. (a) The scene of Colosseum with color transition area and corresponding reconstructed
images in numerical simulations; (b) The scene of bird with periodic patterns on the wings and
corresponding reconstructed images; (c) The scene of fish with periodic stripes and corresponding
reconstructed results.
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Figure 7. Comparison of reconstructed images of natural scenes using different sampling patterns.
From the left to right are the original images, reconstructions from multi-hyperuniform, blue-noise
sampling patterns, regular and Bayer sampling patterns. The corresponding RMSEs and SSIMs are
listed below the images, respectively. (a) The scene of forest and corresponding reconstructed image;
(b) The scene of sky and corresponding reconstructed images; (c) Natural scene with the different
contents and corresponding reconstructed results.

4. Experimental Results

It is difficult to perform the multi-hyperuniform optical sampling with an actual
detector array, because such a chromatic detector array would be impossible to manu-
facture. However, it is possible to perform a multi-hyperuniform optical sampling ex-
periment utilizing the computational imaging methods which have emerged during the
last decade [30–33]. Single-pixel imaging, being a typical computational imaging method,



Sensors 2021, 21, 4084 9 of 12

forms an image by sampling the scene with varying structured illuminations, and asso-
ciating the illumination patterns with the corresponding light intensities recorded with
a single-pixel detector. This imaging strategy provides advantages for imaging in situa-
tions that are challenging with a detector array, such as special spectrum imaging [34,35],
adaptive imaging [36–38], optical phased array imaging [39] and 3D profiling [40–43].

In this work, a single-pixel imaging experimental system was set up as shown in
Figure 8. The multi-hyperuniform chromatic LED structured illumination module was
used in the system to sample the scene, which consists of a field-programmable gate
array (Xilinx Spartan XC6SLX9-2FTG256C), a drive circuit and an LED array developed
in Section 2. During the experiment, for each monochromatic channel, a projection lens
(f = 150 mm) projected N masks Pi (I = 1, . . . , N) displayed on the LED array. The mask
Pi is orthonormal and derived from the Hadamard matrix, a square matrix with elements
±1 whose rows (or columns) are orthogonal to one another [44]. The LED array displays
monochromatic illumination masks at the rate of 1.25 MHz. The high illumination rate
was achieved by using the line control modulational strategy proposed in our previous
work [45]. A single-pixel bucket detector (Thorlabs PMT2102) and a digitizer (PicoScope
6404D) were used to record the corresponding reflecting total light intensities Si (I = 1, . . . ,
N). The image I’channel for the monochromatic channel can be reconstructed as:

I′channel =
N

∑
i=1

Si·Pi (7)

where the N is the quantity of the Hadamard basis masks. The problem of reconstructing the
single channel image of the scene becomes a problem of solving N independent unknowns
using a set of linear equations. Due to the orthonormal property of the mask, the Equation
(7) can be solved perfectly if the number of Hadamard basis masks is equal to pixels of
the image [16,21,44,45]. Provided the scene is sparse, compressive sensing [18,21,44] can
be used to reconstruct image with N < 32 × 32 measurements by sub-sampling the scene
and solving the optimization problem. To yield one 32 × 32 monochromatic image, 2048
masks (1024 Hadamard masks and their inverses) were used to perform a fully Hadamard
sampling. After images I’channel for red, green, and blue were reconstructed separately,
the gradient-based interpolation algorithm was applied to yield the chromatic image I’
of the object. A chromatic image required 6144 illumination masks, or 4.8 ms acquisition
time, resulting in a 208 fps frame rate for the multi-hyperuniform chromatic LED array-
based single-pixel imaging system. Due to the lab manufacturing limitation, the imaging
experiment only can achieve 32 × 32 pixels resolution.
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Figure 8. Experimental set-up. A multi-hyperuniform chromatic 32 × 32 × 3 LED array provided
structured illumination to sample the object through a projection lens (f = 150 mm). A single-pixel
bucket detector (Thorlabs PMT2102) and a digitizer (PicoScope 6404D) collected the reflected light
intensity and transferred it to a computer for reconstruction.
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For comparison, another LED array with regular sampling arrangement, as shown in
Figure 3b, was used in the experimental system to obtain images with regular sampling. An
ordinary smartphone camera was also used to capture images with Bayer sampling, where
the method of sub-sampling is chosen to ensure the same sampling structure compared
with the simulation. All images were obtained with the same number of spatial sampling
points to make sure the comparison was fair.

Figure 9 illustrated the resulting images yielded from multi-hyperuniform, regular and
Bayer sampling patterns. Like numerical simulation, color misregistration and chromatic
moiré fringes were observed in images yielded by regular and Bayer sampling, while
multi-hyperuniform sampling suppressed both artifacts. The calculated RMSEs and SSIMs
listed below the images are in a good agreement with the numerical simulation. It is
showed below that the images reconstructed by multi-hyperuniform have the lowest
RMSE and highest SSIM values, demonstrating the effectiveness of suppression of color
misregistration and frequency aliasing.
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Figure 9. Experimental results of two group scenes. Chromatic images are reconstructed experimen-
tally by multi-hyperuniform, regular and Bayer sampling patterns with their RMSEs and SSIMs listed
below. (a) The scene of Colosseum with color transition area and corresponding reconstructed results
in experiments; (b) The scene of fish with periodic stripes and corresponding recon-structed results.

5. Discussions and Conclusions

In summary, we developed a chromatic LED array with multi-hyperuniform structure,
that is, luminous points of each monochromatic chip exhibited hyperuniformity inde-
pendently, and red-green-blue luminous points combined to show hyperuniformity as
well. The chromatic LED array was developed to mimic the virtues of avian retina opti-
cal sampling, specifically, suppressing color misregistration and chromatic moiré fringes
caused by periodic optical sampling. The placement and orientation of LED array has an
impact on whether the arrangement of LED array is multi-hyperuniform, and two random
procedures are used here to ensure LED array is of multi-hyperuniformity. Comparisons
were performed numerically and experimentally by reconstructing images by different
sampling methods in a single-pixel imaging system. Both numerical and experimental
results indicated that the multi-hyperuniform sampling method yielded images with better
image quality compared to the other two methods by using the same and basic interpo-
lation algorithm. Besides the improvement of the images’ quality, the proposed imaging
system achieved 208 fps frame rate experimentally, which has a potential in high dynamic
applications.

This work is a proof-of-principle to demonstrate the feasibility of multi-hyperuniformity
in high dynamic chromatic optical sampling. The chromatic LED array developed in this
work contains only 1024 chromatic luminous LED chips due to the lab manufacturing
limitation. The capability of improvement of image quality is almost the same by 32 × 32
multi-hyperuniform LED array with different orientations and placements, which can be
enhanced by integrating more LED chips on the sampling array due to the property of the
hyperuniform structure. Although the low-resolution color images are reconstructed, the
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method in this paper can offer a new solution to suppress the artificial effects in high reso-
lution imaging which would not increase imaging time. Cutting-edge LED manufacturing
techniques such as micro-LED or OLED could be used to develop multi-hyperuniform LED
array with a much larger chip number and a higher density to take full advantages of such
a sampling structure in high-resolution imaging. In this work, the multi-hyperuniform pat-
tern has been verified to be able to improve image quality with a high frame rate. In future,
LEDs could be used not only for illumination and display, but also for the development of
new bionic imaging sensors.
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