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Improved mouse models to assess tumour immunity
and irAEs after combination cancer immunotherapies
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The current excitement surrounding cancer immunotherapy stems particularly from clinical data involving agents mediating

immune checkpoint receptor blockade, which have induced unprecedented efficacy against a range of tumours compared with

previous immunotherapeutic approaches. However, an important consideration in targeting checkpoint receptors has been the

emergence of associated toxicities termed immune-related adverse events (irAEs). In light of the clinical benefits observed after

co-blockade of checkpoint receptors and data from preclinical mouse models, there is now a strong rationale to combine

different checkpoint receptors together, with other immunotherapies or more conventional therapies to assess if clinical benefits

to cancer patients can be further improved. However, one may predict the frequency and severity of irAEs will increase with

combinations, which may result in premature therapy cessation, thus limiting the realization of such an approach. In addition,

there is a limit to how many different combination therapies that can be tested in a timely manner given the legal, regulatory

and budgetary issues associated with conducting clinical trials. Thus, there is a need to develop preclinical mouse models that

more accurately inform us as to which immunotherapies might combine best to provide the optimal therapeutic index (maximal

anti-tumour efficacy and low level irAEs) in different cancer settings. In this review we will discuss the irAEs observed in

patients after checkpoint blockade and discuss which mouse models of cancer can be appropriate to assess the development of

tumour immunity and irAEs following combination cancer immunotherapies.
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Cancer immunotherapy harnesses the immune system to eliminate
cancer and is poised to be increasingly utilized as a main stream
approach for cancer treatment. Notably, in 2013, cancer immunother-
apy was awarded the breakthrough award of the year by the journal
‘Science’.1 The current excitement surrounding cancer immunotherapy
stems particularly from clinical data involving agents mediating
immune checkpoint receptor blockade, which have induced
unprecedented efficacy against a range of tumours compared with
previous immunotherapeutic approaches.

Checkpoint receptors pathways are important for maintaining self-
tolerance by modulating the duration and amplitude of physiological
immune responses and thus limiting collateral damage and preventing
autoimmunity. However, we now appreciate that many cancers can
hijack these pathways to evade immune attack and generate an
immunosuppressive tumour microenvironment. Indeed, the existence
of layers of immune suppression in cancer patients was demonstrated
by the impressive results obtained following concurrent blockade of
two immune checkpoints compared with targeting of one alone.2

A key issue when targeting checkpoint receptors has been the
occurrence of associated toxicities termed immune-related adverse
events (irAEs).3 Although there is clinical benefit observed after co-
blockade of checkpoint receptors in mice and humans, one may
predict the frequency and severity of irAEs may increase with new

combinations. This may result in premature cessation of therapy,
hence limiting the efficacy of these new combinations. Furthermore,
there is a limit to how many different combination therapies that can
be tested in a short time frame given the regulatory and budgetary
issues associated with untertaking clinical trials. Therefore, there is a
requirement to develop pre-clinical mouse models that more
accurately determines which combination immunotherapies have
the optimal therapeutic index (maximal anti-tumour efficacy and
minimal irAEs) in different cancers. In this review we will highlight
the irAEs observed in patients after checkpoint blockade and discuss
which mouse models of cancer might be appropriate for predicting
the anti-tumour immunity and irAEs following combination cancer
immunotherapy in humans.

THE IMMUNE SYSTEM AND CANCER

We now appreciate that the immune system recognizes cancer and
that patients with strong natural immune reactions have better
survival compared with those with weak responses. This concept
was first demonstrated in patients with colorectal cancer (CRC) by
Pages et al.4 Here they demonstrated that the immune contexture,
defined by number, type and location of tumour immune infiltrates
in primary tumours, are key prognostic factors for disease-free and
overall survival (OS) in CRC patients. Importantly, the immunoscore,
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an immune-based classification strategy derived from three aspects of
the immune contexture, proved superior over the standard tumour–
node–metastases classification in predicting outcomes in survival and
relapse of CRC patients and their response to therapy.5–7 Collectively,
a good immunoscore, defined as high densities of tumour-infiltrating
lymphocytes particularly with a T helper type 1 (Th1) and cytotoxic
orientation, was associated with longer disease-free survival and/or
improved OS. This correlation was first documented in CRC but has
now been extended to a number of other cancers, including
melanoma, head and neck, breast, ovarian and lung.8 Importantly,
recognition that cancer development and progression is influenced by
the host immune system has led to the development of a conceptual
framework called ‘cancer immunoediting,’ which explains the dual
host-protective and tumour-promoting roles of the immune system.9

Furthermore, the demonstration that cancers actively evade immune
destruction has led to its inclusion as an emerging hallmark of cancer
in 2011.10

Tumours can escape immune detection and destruction by a
number of mechanisms that have been previously discussed.11

These can include: (i) downregulation of antigen and major
histocompatibility complex class I (MHC I) expression, (ii) pro-
duction of immunosuppressive mediators (for example, interleukin-
10 (IL-10), transforming growth factor-b, adenosine, vascular
endothelial growth factor-A (VEGF-A), indoleamine 2,3-
dioxygenase (IDO)) to dampen effector cell activation and (iii)
recruitment of immune cell subsets (T regulatory cells (Tregs) and
myeloid-derived suppressor cell (MDSC)) to suppress effector
immune cell function and facilitate its growth and metastases. In
addition to these pathways, we now understand that physiological
negative feedback loops that curtail T-cell activation, to prevent
autoimmunity, can be exploited by tumours to limit anti-tumour
responses. For example, after activation, T cells upregulate checkpoint
receptors such as cytotoxic T-lymphocyte antigen 4 (CTLA-4), which
bind to B7 ligands with higher affinity than the co-stimulatory
receptor CD28, thus attenuating effector T-cell function.12 Other
T-cell checkpoint receptors that limit activated T-cell effector function
include programmed cell death-1 (PD-1), B and T lymphocyte
attenuator (BTLA), T-cell immunoglobulin mucin 3 (TIM3) and
lymphocyte activation gene-3 (LAG-3).13–15 Recently, it has been
demonstrated in melanoma patients that tumours can also counter
attack from activated T cells though another mechanism termed
adaptive immune resistance.16 In this study, tumour-infiltrating
lymphocytes producing inflammatory cytokines such as interferon-g
in the tumour microenvironment upregulated PD-L1/L2 expression
on tumours, which delivers an inhibitory signal to PD-1-expressing T
cells. Over the past 5 years, the use of antibodies to target checkpoint
receptors (also termed checkpoint blockade) has emerged as one of
the most effective ways to overcome tumour-induced immuno-
suppression and re-activate an endogenous anti-tumour response.
In 2011, anti-CTLA-4 (ipilimumab) was the first immunomodulatory
monoclonal antibody approved by the Food and Drug
Administration for the treatment of patients with advanced
melanoma on the basis of improved survival benefits.17 Recently,
second-generation checkpoint inhibitors, anti-PD-1 and anti-PD-L1,
have induced better anti-tumour efficacy (31% objective response
rate) compared with ipilimumab (6%).18,19 With the recent
observation of further increase in anti-tumour efficacy (53%)
through the combination of anti-CTLA-4 and anti-PD-1,2 the stage
is now set for combining checkpoint receptors with other
immunotherapeutic approaches. Clinical trials are currently in
different stages of accrual and development to assess checkpoint

receptor blockade in combination with (1) chemotherapies, (2)
radiotherapy, (3) small-molecule inhibitors, (4) vaccines and (5) co-
stimulatory receptors (for example, CD40, OX40 (also known as
CD134), CD137, GITR (glucocorticoid-induced tumour necrosis
factor (TNF) receptor-related protein) and CD27.17

TOXICITIES ASSOCIATED WITH TARGETING

IMMUNOMODULATORY RECEPTORS

The induction of irAEs is an important factor to consider when
attenuating co-stimulatory and co-inhibitory immune receptors for
cancer immunotherapy.3 Thought also has to be given as to how
targeting of these receptors in combination or with other therapeutics
may induce combination-specific irAEs that may not be predicted or
observed by monotherapies. IrAEs are thought to be related to
therapy-associated cytokine release and T-cell-mediated organ
infiltration17 and different from bona fide autoimmunity as they
normally resolve following therapy or with corticosteroids or anti-
TNF therapy. IrAEs can generally involve the gastrointestinal, liver,
skin, nervous and endocrine systems (Figure 1). In a pooled analysis
of 325 patients treated with 10 mg kg�1 of anti-CTLA-4, irAEs of any
grade were observed in B72.3%.20 Similar proportions were also
observed in patients treated with anti-PD-1 alone, although with less
severity.19 In most cases, irAEs are mostly mild and generally
manageable with appropriate treatment algorithms now having
been developed.20 This includes dose interruption/discontinuation
and the use of systemic high-dose corticosteroids.21 Specifically, grade
3 or 4 irAEs, which developed in each of these patients (14% for anti-
PD-1 and 25% for anti-CTLA-4) warranted attention, as in extreme
cases these can be severe and life threatening. Patients who resolve
their grade 2 irAEs can recommence treatment, although any grade 3
or 4 irAEs (with the exception of grade 3 skin toxicity) is a
contraindication to further therapy with ipilimumab. Importantly,
almost all patients (93%) developed irAEs following concurrent anti-
PD-1 and anti-CTLA-4 monoclonal antibody therapy with an
increase in grade 3 or 4 irAEs (50%) being observed compared
with those treated with monotherapy alone.2

Moving forward, the better safety and clinical efficacy of targeting
PD-1 (most likely due to its role in regulating T-cell activation in
peripheral tissues) suggest that it will be the checkpoint receptor of
choice to combine with other therapies for cancer treatment. Never-
theless, one may predict that the act of combining immunotherapies
increases the proportion of patients who may develop severe irAEs.
This may limit the number of patients who can fully benefit from
combination cancer therapies due to discontinuation, as seen in 21%
of patients treated with anti-CTLA-4 and anti-PD-1.2 IrAEs generally
manifest during the induction phase of treatment (initial 9–12 weeks
of therapy) and organ-specific irAEs appears to follow kinetics of
appearance. In the case of ipilimumab where irAEs of skin and
mucosa develop after about 3–6 weeks, this is followed by diarrhoea/
colitis around week 5 and liver toxicity and endocrinopathies around
week 6.20 More recently, an update on patients treated with anti-PD-1
reported on 2 years of safety monitoring and found that similar to
what has been reported for ipilimumab, most adverse events tended
to occur within the first 6 months of therapy.22 Importantly,
cumulative toxicities were also not observed with prolonged drug
exposure.22 Hence, the goal of therapies targeting checkpoint
receptors in combination with other approaches should aim to
generate a strong therapeutic index over the induction period of
therapy. Questions that have to be answered include whether it is
possible to release/activate anti-tumour immunity without
development of irAEs if the right combination, dosing and
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scheduling is utilized. Alternatively, is the development of irAEs a
predictor of anti-tumour responses? In one study, it was reported that
ipilimumab-treated patients who developed grade 3 or 4 irAEs were
more likely to achieve a clinical response compared with those who
had no irAEs.23 Interestingly, in a retrospective analysis of 498

patients pooled from four Phase II clinical trials treated with
different doses of ipilimumab, Feng et al.24 reported that higher
exposure (dose) was associated with better survival, albeit at a greater
risk of developing irAEs in the grade 3 or higher category. A caveat is
that this correlation is observed simply because the longer the patients
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BMS-936559 (anti-PD-L1)
Grade 3 or 4: 1%

MPDL3280A (anti-PD-L1)
Grade 3 or 4: 7% (Melanoma)

Hyperglycemia

BMS-936559 (anti-PD-L1)
Grade 3 or 4: 1%

CP-870,893 (anti-CD40)
Grade 3 or 4: 38% (Solid tumour) 

Lymphopenia

BMS-936559 (anti-PD-L1)
All Grades: 9%
MK-3475 (anti-PD-1)
All grades: 20%; grade 3 or 4: 1% (Melanoma)

Nivolumab (anti-PD-1)
All grades: 11%; grade 3 or 4: 2% (Melanoma)

Ipilimumab (anti-CTLA-4)
All Grades: 27.5%; grade 3: 4.6% (Melanoma)

Grade 3 or 4: 21% (Renal carcinoma)

Tremelimumab (anti-CTLA-4)
Grade 2: 6.4%; grade 3: 10.6% (Colorectal)

Grade 3 or 4: 6% (Gastric) 

All Grades: 51%; grade 3 or 4: 18% (Melanoma)

Diarrhoea

BMS-936559 (anti-PD-L1)
All Grades: 7%

MK-3475 (anti-PD-1)
All Grades: 21%; grade 3 or 4: 2% (Melanoma)

Tremelimumab (anti-CTLA-4)
Grade 1: 8.5% (Colorectal)

All Grades: 33%; grade 3 or 4: 2% (Melanoma)

Ipilimumab (anti-CTLA-4)
All Grades: 19.1%; grade 3: 0.8% (Melanoma)

Rash

Liver Damage

MPDL3280A (anti-PD-L1)
Grade 3 or 4: 7% (Melanoma)

MK-3475 (anti-PD-1)
All Grades: 9% (Melanoma)

Tremelimumab (anti-CTLA-4)
Grade 3 or 4: 6% (Gastric)

CP-870,893 (anti-CD40)
Grade 3 or 4: 7% (Solid tumour)

BMS-663513 (anti-CD137)

Ipilimumab (anti-CTLA-4)

All grades: 4%

Hypophysitis

Nivolumab (anti-PD-1)

Grade 3 or 4: 2% (Non-small
cell lung cancer)

Pneumonitis

BMS-936559 (anti-PD-L1)
All Grades: 6%

MK-3475 (anti-PD-1)
All Grades: 21%; grade 3 or 4: 1% (Melanoma)
Tremelimumab (anti-CTLA-4)
Grade 1: 6.4% (Colorectal)
All Grades: 31%; grade 3 or 4: 1% (Melanoma)

Ipilimumab (anti-CTLA-4)
All Grades: 24.4% (Melanoma)

Pruritis

BMS-936559 (anti-PD-L1)
All Grades: 2%

MK-3475 (anti-PD-1)
All Grades: 9% (Melanoma)

Ipilimumab (anti-CTLA-4)
All Grades: 2.3% (Melanoma)

Vitiligo

MK-3475 (anti-PD-1)
Grade 3 or 4: 1% (Melanoma)

Ipilimumab (anti-CTLA-4)
All Grades: 7.6%; grade 3: 5.3% (Melanoma)

Tremelimumab (anti-CTLA-4)
Grade 1: 4.3% (Colorectal)

Grade 3 or 4: 9% (Non-small cell lung cancer)

Colitis

CP-870,893 (anti-CD40)

Dacetuzmumab (anti-CD40)

Cytokine Release  Syndrome

Figure 1 Spectrum of irAEs associated with immunomodulatory antibodies. Although immunomodulatory antibodies such as those that target checkpoint

receptors can release endogenous anti-tumour responses, irAEs can be induced through therapy-associated release of cytokines and infiltration of immune

effector cells. In cancer patients, treatment with immunomodulatory antibodies particularly with single checkpoint blockade is frequently associated with the

development of irAEs. The types of irAEs (proportion and severity) as well and more unique and serious side effects reported in clinical trials with

immunomodulatory antibodies such as anti-CTLA-4 (Ipilimumab,18,49,61 Tremelimumab62–64), anti-PD-1 (Nivolumab,19 MK-3475),65 anti-PD-L1 (BMS-

936559,66 MPDL3280A67), anti-CD40 (CP-870,893)27,68 and anti-CD137 (BMS-663513)30 are summarized.
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responding are treated, the greater the possibility of developing
irAEs.20 However, the study by Feng et al.24 also suggested that
patients who did not experience irAEs during the induction period
were not likely to experience it during maintenance therapy with
ipilimumab. It would be interesting to perform retrospective analysis
to determine whether these group of patients also did not benefit as
much clinically. Potentially these analyses may help answer the
question of whether tumour reactive and autoreactive T cells are
the same or distinct. It should be noted that, in some studies, there
were patients, albeit at a low proportions, who developed durable
responses with no associated irAEs.16 Analysis of these patient cohorts
may provide clues as to the requirements necessary to release anti-
tumour immunity without inducing irAEs.

For patients who discontinued combination therapy due to irAEs,
do they still benefit clinically and what is the minimum period of
therapy required to allow immune activation and/or release of
immune suppression? A recent report suggests this is likely, where
patients with advanced melanoma treated with ipilimumab were
found to survive for up to 10 years, confirming the durability of the
overall survival (OS) trend observed.25 These results, the largest
analysis of OS for 1861 patients, included 2 Phase III trials, 8 Phase II
trials and 2 retrospective trials. Their findings demonstrated that in
10–15% of the total patients who responded, B22% of patients can
achieve 3–10 years OS and this OS reaches a plateau at 3 years. This
was observed regardless of dose (3 or 10 mg kg�1), previous treatment
history and whether they had been kept on a maintenance therapy
with ipilimumab. Analysis of safety data, which were not included in
these results, may shed light on the association of irAEs’ severity with
OS as well as clinical benefits obtained following therapy cessation.

In addition to checkpoint receptors, agonistic antibodies targeting
co-stimulatory receptors belonging to the TNF receptor family
(CD40, OX40, CD137, GITR and CD27) are also being assessed.
These receptors, in general, act through activation of effector cell
function and are currently being evaluated for their anti-tumour
efficacy in various Phase I/II clinical trials.26 In particular, the data for
agonistic antibodies targeting CD40 and CD137 (4-1BB) are most
mature where some objective responses, as well as corresponding
irAEs, have been reported. In a number of Phase I clinical trials,
agonistic anti-CD40 monoclonal antibodies have been evaluated
against solid tumours or B-cell non-Hodgkin’s lymphoma.27

Objective responses were reported in a proportion of these patients,
with the most common irAEs being primarily grade 2 cytokine release
syndrome, which manifests as transient chills, fever and rigors and
mild elevations in liver enzymes and decreases in circulating platelet
numbers.27 Interestingly, irAEs such as colitis or dermatitis, which are
normally associated with checkpoint receptor blockade and can result
in dose interruption/discontinuation, were not observed in targeting
CD40, suggesting the comparative safety of anti-CD40.27,28 Targeting
of another co-stimulatory receptor CD134 (OX40) in one Phase 1
clinical trial was also safe as no acute toxicities were reported at the
dose tested.29 By contrast, grade 3/4 irAEs (severe liver toxicity) were
observed in patients treated with anti-CD137 (urelumab) particularly
at high doses, resulting in the termination of a number of Phase I
trials.30 Currently, lower doses of anti-CD137 are being evaluated for
their safety in a PhaseI/II clinical trial with reports suggesting anti-
tumour activity can still be elicited without significant liver toxicity.26

The experience with ipilimumab and immunotherapies in general
is their kinetics of response is much slower but more durable
compared with those seen with cytotoxics.20,31 Recently, a long-term
follow-up study of 177 patients treated with ipilimumab reported a
median time to achieve complete response of 30 months, consistent

with slow kinetics of tumour regression.32 Similarly, the kinetics of
anti-PD-1 responses is atypical with some patients responding rapidly
as early as 8 weeks into therapy, whereas other patients displayed new
tumours or growth of existing tumours before responding. In
addition, some patients continued to respond despite cessation of
anti-PD-1 therapy.19,22 Strikingly, a different kinetics of response was
observed in patients treated with the maximum tolerated doses of
anti-PD-1 and anti-CTLA-4, given in combination. Impressively,
these patients all had tumour reduction of 80% (classified as deep
response) or more at their first scheduled assessment at 12 weeks.2

This is in contrast to patients who were given anti-CTLA-4 and anti-
PD-1 in a sequenced regime. This suggests anti-tumour responses can
be rapid if the right combination is given at optimal dosage and
timing. The question now is whether (1) maintenance dosage is
required for patients treated with combination therapies who
responded rapidly so as to minimize their risk of further developing
more irAEs or (2) Can patients who developed grade 3 or 4 irAEs and
ceased therapy still benefit and can one correlate the number of doses
they received before cessation, with clinical benefit to determine what
is the minimum period of therapy required? (3) If irAEs are
predictors of response, are there biomarkers that can be used to
determine which patients will develop them and thus enable
monitoring and prophylactic treatment to prevent their escalation
into grade 3 or 4 toxicities and cessation of treatment? Given that
many patients with irAEs treated with systemic corticosteroids and/or
anti-TNF resolve their symptoms rapidly if treated when symptoms
first appear, it would suggest serum TNF and other inflammatory
cytokines like interleukin-6 could be measured as biomarkers and
targeted. There seems to be a consensus that corticosteroids or anti-
TNF administration do not impede anti-tumour immune responses
following checkpoint blockade.2,19,20,22,33 Given that most patients
will develop some form of irAEs following immunomodulatory
therapies, particularly in combination, it would suggest concurrent
administration of anti-TNF and/or corticosteroids with combination
therapies is an option that can be investigated.

THE BEST PRECLINICAL MOUSE MODELS THAT MORE

ACCURATELY MODEL TUMOUR IMMUNITY AND IRAES

The demonstration that targeting checkpoint receptors activates
endogenous anti-tumour immunity and leads to significant clinical
benefit in different cancer types now spurs the question of how their
efficacy can be further improved through rationale combination
approaches. In advanced melanoma, concurrent anti-CTLA-4 and
anti-PD-1 therapy resulted in clinical benefits in 50% of patients,
which to date is the best result obtained with cancer immun-
otherapies. Nevertheless, 50% of patients did not respond, and in
some cancer types such as pancreas and prostate, checkpoint blockade
does not appear to provide any significant clinical benefits. Thus,
early-phase clinical trials are exploring how checkpoint inhibitors
combine with other agents, including (1) conventional therapies
(radiotherapy, chemotherapy), (2) alternative immunotherapies
(vaccines, cytokine, adoptive cellular therapy), (3) targeted therapies
(BRAF or vascular endothelial growth factor inhibitors)17 or (4)
immunomodulatory antibodies.26 With combination immuno-
therapies increasingly being tested in clinical trials, irAEs will be an
ongoing issue that has to be dealt with (as discussed above) as it may
limit their usage. Furthermore, even when both agents have regulatory
approval and have distinct mechanisms of action and toxicity profile,
unexpected specific irAEs induced by the combination can occur.
This was illustrated by a recent clinical trial that reported on the
unexpected hepatotoxicity observed with melanoma patients after
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concurrent treatment with a Braf inhibitor (Vemurafenib) and
ipilimumab, resulting in cessation of the trial.34 Given the
beauracracy, cost and time associated with conducting clinical trials,
utilizing preclinical mouse models that can more accurately model
tumour immunity and irAEs may allow more informed assessment of
which therapies can be combined to induce optimal therapeutic index
(Figures 2 and 3).

Tumour-associated autoimmune syndrome is very rare in patients
with cancer, such as melanoma-associated retinopathy and vitiligo.
However, new data suggest that it is not merely a side effect of robust
anti-tumour immunity. The development of vitiligo is considered to
be a benefit to the prognosis of the patient with malignant
melanoma.35–38 In a preclinical study, mice with vitiligo generated
more CD8þ memory T cells, which protected them from melanoma
expressing the same melanocyte antigens.36 In another study,
inflammatory monocytes or dendritic cells accumulated in the skin
were shown to be capable of killing melanoma cells as well as normal
melanocytes.39 However, whether the relationship of tumour-
associated autoimmune syndrome and tumour immunity is
dependent on the innate immune system or adaptive immune
system or both requires further investigation. In contrast, irAEs are
not true autoimmune diseases, as they typically resolve with cessation
of therapy and appropriate immunosuppressive regimes. In addition,
the experience with ipilimumab and immunotherapies in general is
their kinetics of response is much slower but more durable compared
with those seen with cytotoxics.20,31 Thus utilizing spontaneous
mouse tumour models may better mimic the response kinetics that
is observed in the clinic and may potentially allow for the
development of any therapy-induced toxicity. These models can be
divided into those that are carcinogen-induced such as
methylcholanthrene (MCA)-induced fibrosarcomas and 7,12-
dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-
acetate (TPA)-induced skin papillomas or genetically engineered
mouse tumour models, which have enforced expression of

oncogenes and/or the loss of function of tumour suppressors, often
in a tissue-specific and/or temporally controlled manner
(Figure 2).40,41 Examples include the Her2/neu or PyMT transgenic
mice to mimic breast cancer, the MT/ret model of spontaneous
metastatic melanoma42 and BrafCATyr-creERT2Ptenfl/fl mice in which
4-hydroxytamoxifen (4-HT) induces de novo melanoma43 as well as
the use of adenoviral vectors encoding Cre recombinase to selectively
introduce mutations in the oncogene Kras and the tumour-suppressor
gene Tp53 in the pulmonary epithelia to induce autochthonous lung
tumours.44 Interestingly, it has been noted that carcinogen-induced
models are very immunogenic, whereas germline mutation models
are often not, most likely due to the former carrying more passenger
mutations, thereby generating more neoantigens that can potentially
be recognized by the immune system.41 This was elegantly illustrated
in two studies investigating the role of T cells in selecting for non
immunogenic sarcomas using either a mouse model of
sarcomagenesis driven by Cre recombinase-triggered activation of
the KrasG12D oncogene and inactivation of the Trp53 tumour-
suppressor gene45 or a MCA-induced mouse model of sarcoma.46

In the first model, sarcomas that developed did not appear to be
recognized by adaptive immunity as these tumours grew equally well
when transplanted into wild-type or RAG-2-deficient mice. On the
contrary, MCA-induced sarcomas, which had many passenger
mutations in addition to Kras and Trp53, were demonstrated to
generate tumour-specific T cells, which could then selectively sculpt
tumour immunogenicity.46 Interestingly, mouse MCA-induced
sarcomas were also found to have qualitative and quantitative
genomic mutation profiles to carcinogen-induced human cancers,
such as smoker’s lung cancer. Thus carcinogen-induced mouse
models of cancer may better mimic cancers that are immunogenic.
In contrast, transplantable tumours, which grow more rapidly and are
employed as an initial model to assess the therapeutic potential of
combination therapies, may be less useful. As most transplantable
tumours are grown subcutaneously on the flanks of mice, an

Tumour models using transplanted cell lines 

Advantages
• Rapid and reliable tumour growth means treatment 

efficacy/altered tumour growth in different mouse 
strains easily determined

• Models for various cancer types available e.g. prostate, 
melanoma, breast cancer.

• Behaviour of cell lines able to be altered by 
modification of gene expression

Disadvantages
• Weaker model of natural tumour microenvironment 

(maybe improved by injection into orthotopic site)
• Injection and death of tumour cells may induce 

inflammation, altering tumour immune response
• Rapid tumour growth may prevent normal tumour: 

immune interaction to develop

Subcutaneous injection
•Cell lines injected under the skin
•Tumour growth easily monitored

Orthotopic injection
• Injection of tumour cell line into 
organ of tumour origin (e.g. Renca
injection into kidney)
• More faithful recreation of tumour 
microenvironment

Spontaneous tumour models

Advantages
• Heterogeneous tumour development more faithfully 

recapitulates human tumour development
• Tumour immune response, and immune escape 

may recapitulate clinical observations

Disadvantages
• Longer time required and higher cost compared to 

transplanted tumour models
• Tumour heterogeneity increases complexity of 

treatment, results can be more difficult to interpret

Genetically  engineered tumour mouse models
• Strains of mice with systemic or organ specific 
expression of oncogenes which develop spontaneous 
tumours, generally between 3-12 months of age

Example of carcinogen induced cancer
• MCA induced fibrosarcoma
• DMBA/TPA induced skin papillomas
• DSS+AOM induced colon cancer

Intravenous injection
• Experimental model of lung 
metastasis

Figure 2 Common preclinical mouse models of cancers to assess the anti-tumour efficacy of cancer immunotherapies. The advantages and disadvantages of

using transplantable and spontaneous mouse models of cancer are listed.
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alternative approach is to inoculate them orthotopically to better
mimic the tumour environment from which they originated. Indeed,
immunotherapies that demonstrate efficacy against a renal tumour
grown subcutaneously were not as effective when the same tumour
was transplanted into the kidney.47

Although checkpoint blockade in patients commonly induces
irAEs, such events have rarely been commented upon or observed
in preclinical mouse models, even when X3 different pathways are
targeted.48 It is possible that while treated mice appeared outwardly
healthy, closer examination of animals may have revealed the presence
of biochemical autoimmunity, which is frequently observed in
patients even if they do not display clinical symptoms.16 In
addition, observable irAEs may not have manifested owing to the
generally short nature of preclinical mouse models experiments or,
perhaps, the strain of mice used may be more resistant to developing
irAEs compared with humans. This was elegantly shown in a recent
study where repeated dosing of anti-CTLA-4 in SJL/J mice over
5 weeks was able to induce hypophysitis, an irAE that appears to be
associated with ipilimumab treatment.49 Testing checkpoint blockade
in combination or with other therapies in mouse strains more prone
to development of autoimmune symptoms (for example, NOD, SJL/J)
may be one strategy to assess the development of tumour immunity
and autoimmunity. Furthermore, it has also been shown that repeated
dosing of agonistic antibodies to co-stimulatory receptors such as
GITR induced anaphylaxis in tumour-bearing mice that was caused
by serum antibodies, and dependent on CD4þ T cells, B cells,
basophils, platelet-activating factor and GITR.50 Alternatively, to
observe irAEs in mice, a more dramatic alteration of the immune
system such as the complete and systemic depletion of Tregs may be
required. Intratumour Treg depletion by antibodies such as anti-
CTLA-4 (now a recognized mechanism) does not seem sufficient to
induce irAEs in mice, as are observed in humans. In addition,
heterogeneity in the kinetics of response is normally seen in
patients after immunotherapy, such as those that were treated with
anti-PD-1,19 and thus a tumour model that mimics what is observed
in the clinic will be useful. Using the de novo model of MCA-induced
fibrosarcoma, we observed that complete Treg depletion in DEREG

mice bearing established MCA-induced tumours displayed a similar
heterogeneous range of tumour responses to that observed in the
clinic.51 In our study, no overt autoimmunity with Treg depletion was
observed, but this may be explained by the potential compensatory
effect of other nontransgenic regulatory cells in the DEREG mice.52

Comparative experiments in Foxp3-DTR knock-in mice, where
autoimmunity is more easily generated upon Treg depletion,53 are
currently underway in our laboratories.

In clinical trials, concurrent blockade of CTLA-4 and PD-1
checkpoint receptors induced deep and rapid anti-tumour responses
in contrast to the slower response kinetics seen in patients given anti-
CTLA-4 and anti-PD-1 in a sequenced-regime.2 This suggests that
anti-tumour responses can be rapid if the right combination is given
at optimal dosage and timing. It was not made clear if patients who
had the rapid deep objective response had high/low grade irAEs.
Indeed, we recently reported the use of the poorly immunogenic
B16F10 melanoma model to characterize a very heterogeneous anti-
tumour effect of the immune response induced by complete Treg
depletion in DEREG mice.54 Strikingly, the duration of the tumour–
immune system interaction induced in individual Treg-depleted mice
positively correlated with their propensity to develop vitiligo. A rapid
complete tumour rejection was not associated with the development
of autoimmunity; however, a proportion of mice that suppressed but
did not effectively clear B16F10 melanoma did develop vitiligo.54 We
would postulate that approaches that combine with Treg depletion to
rapidly reject tumours may also diminish irAEs.

Currently, cancer patients who have chronic autoimmunity are
generally precluded from clinical trials with checkpoint blockade.3

However, patients with certain autoimmune diseases (Pernicious
anaemia, Crohn’s disease, ulcerative colitis, systemic lupus
erythematosis and psoriasis) are generally thought to be at higher
risk of cancer due to the underlying dysregulation of their immune
system, as well as a consequence of their treatment regime.55,56 Thus,
it is imperative we understand how and if toxicities induced by
combination therapies in this cohort of patients differ to cancer
patients who do not have underlying autoimmunity, that is, whether
the therapies will be more toxic. Given that many tumour-associated

Current mouse models
• Use tumour models where the kinetics of tumour
 regression is slower to allow for more long term
 administration of immune-modulating agents

• Increase experimental sampling to detect for the
 presence of biochemical autoimmunity
- Serum testing for liver damage (ALT, AST)
- Immunohistochemistry for kidney damage
 (autoantibodies)
- Changes in inflammatory cytokine profile (IL-6, TNF)

irAEs occurring in treated patients that can
result in treatment discontinuation

1) Rash/pruritus
2) Liver toxicity
3) Diarrhea, Colitis
4) Biochemical autoimmunity

Mouse models that can be developed

• Assess how complete depletion of Tregs using
 Foxp3-DTR mice to mimic alleviation of suppression
 on many immune cell types combines with different
 immunomodulatory agents.

• Assess combination immunomodulatory agents in
 strains of mice that are more susceptible to
 autoimmunity

Pre-clinical mouse models that can assess the impact of
combination therapies on development of tumour immunity and irAEs

Figure 3 Clinical irAEs that needs to be assessed in preclinical mouse models of cancer following cancer immunotherapies. A number of key irAEs that

occurs in patients following treatment with immunomodulatory antibodies and suggestions for how these irAEs could be modelled in preclinical mouse

models are listed.
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antigens are self-antigens, and that self-reactive T/B cells are increased
in patients with autoimmunity, should a case be made that cancer
patients with stable underlying autoimmunity be allowed treatment
with immunotherapies as they may respond better? Of course, these
patients have to be monitored stringently owing to their increased risk
of developing irAEs or have their autoimmune symptoms
exacerbated. Nevertheless, studies in this cohort of patients may
potentially help in answering the question of how much overlap they
are between tumour reactive and autoreactive T cells as well as their
relative importance in different cancers. The Foxp3-DTR mouse
represents one model where we can evaluate how combination
immunotherapies attenuate tumour immunity/irAEs. In this setting,
tumour-bearing Foxp3-DTR mice can be conditionally depleted of
their Tregs to mimic the maximum release of suppression on all
immune cells53 and can then be treated with different immuno-
therapies/agents. Potentially, this may allow us to assess how different
co-inhibitory/co-stimulatory receptors combine with each other or
with other therapies to attenuate anti-tumour immunity/irAEs.

Although clinical observations suggest that autoimmune effectors
are intricately involved in tumour cell killing, evidence using antigen-
specific preclinical mouse models indicates that, in some cases, the
immune system can selectively target tumour tissue while sparing
self.57 Indeed how self antigen-specific T cells target tumour versus
healthy tissues, and how they are regulated in different
microenvironments, is still unclear. To address this issue, Miska
et al.57 evaluated the ability of specific T effector cells to kill tumour
versus healthy cells expressing the same self antigen in the same
animal. Their studies concluded that tumours suppressed
autoimmune T effector cells locally without distal impairment,
suggesting that higher levels of suppression exist in tumours
compared with healthy tissues expressing the same self antigen.
Their studies also highlighted an increased potency of regulatory
mechanisms such as Treg and MDSCs in tumours, although the
molecular mechanisms responsible for this increased suppression
remain to be elucidated. Thus antigen-specific CD4þ or CD8þ T
cells that are unable to eliminate tumours can still mediate
destruction of healthy tissues, suggesting that the threshold of
inducing autoimmunity is lower than tumour immunity. This
implies that systemic administration of immunotherapies that result
in T-cell activation will almost always induce autoimmunity unless a
substantial antigenic difference is identified between tumour target
and healthy tissue. Thus strategies that can alleviate immune
suppression specifically at the tumour site will be the way forward
for next-generation combination therapy approaches. Another issue
for consideration is that many of the cancer patients may have
underlying metabolic syndrome such as obesity58 and diabetes,59

which have repeatedly been associated with increased incidence for
some common cancers. How would combination therapies impact on
this cohort of patients in terms of tumour immunity/irAEs? This
question may be assessed by testing immunotherapies with the obese
diabetic mouse (ob/ob) model.60

CONCLUSION

The durable clinical benefits obtained with immune checkpoint
blockade have reinvigorated the field of cancer immunotherapy.
Moving forward, checkpoint blockade looks set to be explored in
combination with other therapies to further improve their therapeutic
efficacy and their impact on more cancer types. However, the
proportion of patients developing severe irAEs following combination
immunotherapies most likely will increase. Utilizing relevant pre-
clinical mouse models of cancer that better model tumour immunity

and irAEs may identify therapies that combine well together without
the associating toxicities.
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