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Summary. Background: Atherothrombosis underlies acute

coronary syndromes, including unstable angina and acute

myocardial infarction. Within the unstable plaque, mono-

cytes express collagenolytic matrix metalloproteinases

(MMPs), including MMP-13, which degrades fibrous col-

lagen. Following rupture, vessel wall components includ-

ing degraded collagen are exposed to circulating platelets.

Platelet receptors then mediate the recruitment and acti-

vation of platelets to form a thrombus, blocking blood

flow and resulting in myocardial infarction and sudden

death. Objectives: Here we aim to provide information

on the effects of collagen degradation on platelet adhe-

sion and thrombus formation. Methods: Using increasing

concentrations of MMP-13, we induced progressive

degradation of fibrous and monomeric collagen I, visual-

ized by electrophoresis, and then investigated the capacity

of the resulting fragments to support static platelet adhe-

sion and thrombus formation in whole flowing blood.

Results: Both integrin and glycoprotein VI-dependent

interactions with fibrous collagen underpin high levels of

platelet adhesion under both conditions, with little obvi-

ous effect of MMP-13 treatment. Static platelet adhesion

to monomeric collagen was strongly a2b1-dependent
regardless of degradation status. Under flow conditions,

partially degraded monomeric collagen supported

increased thrombus deposition at 10 lg mL�1 MMP-13,

falling close to background when collagen degradation

was complete (100 lg mL�1 MMP-13). Conclusions: New

binding activities come into play after partial digestion of

collagen monomers, and net platelet-reactivity through

all axes is abolished as degradation becomes more

complete.

Keywords: collagen; collagenase; platelets; GPVI collagen

receptor; matrix metalloproteinase 13.

Following atherosclerotic plaque rupture, circulating pla-

telets bind to exposed vessel wall collagens, where they

initiate arterial thrombosis [1]. Specific receptors mediate

platelet recognition of and adhesion to collagen. GPIba
binds to immobilized von Willebrand factor (VWF) in

the vessel wall, initiating platelet capture [2], and glyco-

protein (GP)VI binds directly to collagen and activates

platelets. Integrin a2b1 stabilizes the early stages of the

platelet-collagen interaction, and integrin aIIbb3 sup-

ports platelet-platelet interactions mediated by fibrinogen

and VWF.

During plaque development, smooth muscle cells

deposit excess collagens I and III within the subendothe-

lial intimal space [3]. Collagen is resistant to most prote-

olytic degradation, and whilst healthy arteries do not

express active collagenases, in the unstable plaque macro-

phages secrete matrix metalloproteinase (MMP)-1 and

MMP-13, which cleave collagen[4–6], leaving behind

bioactive fragments that may target cells downstream

from the site of injury [3]. Despite this, little is known

about the effects of progressive collagen proteolysis on

platelet recognition. Here we investigate the relationship

between MMP-13 treatment and platelet adhesion to

fibrous and monomeric collagen I under static and shear

conditions.

Methods

Proteolytic digestion of collagen I by MMP-13

ProMMP-13 was activated using 1 mM 4-aminophenyl-

mercuric acetate for 1 h at 37 °C, and dialysed at 4 °C
against 50 mM TBS. Active MMP-13 (0–100 lg mL�1)

was added to either monomeric (Devro, Chryston, Scot-

land) or fibrous (Ethicon Corp., Somerville, NJ, USA)

bovine collagen I (1 mg mL�1) and incubated for 16 h at

37 °C.
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SDS-PAGE of collagen samples

Digested collagens were separated by reducing elec-

trophoresis on 4–12% NuPage� bis-tris gels (Invitrogen,

Paisley, UK) and Coomassie stained.

Human washed platelet preparation

Venous platelets were isolated from healthy volunteers as

previously described [7] and counted using a Z2 counter

(Beckman Coulter, High Wycombe, UK).

Adhesion assays

Platelet adhesion assays were conducted as previously

described [7]. The anti-aIIbb3 compound GR144053

(4-[4-[4-(aminoiminomethyl]-1-piperazinyl]-1-piperidineacetic

acid hydrochloride trihydrate) was purchased from Cal-

biochem, Watford, UK. The a2b1-binding peptide, GFO-

GER (GCP(GPP)5-GFOGER-(GPP)5-GCP) courtesy of

Dr Dominique Bihan) and anti-GPVI scFv were gener-

ated as previously described [8,9]. The anti-a2b1 mono-

clonal antibody was a gift from Dr Barry Coller,

Rockefeller University, New York. Ninety-six-well Immu-

lon� 2HB plates (Nunc, Thermo Scientific, Paisley, UK)

were coated with 1 lg digested collagen/MMP-13 solution

or the controls (GFOGER or bovine serum albumin

(BSA)) in 100 lL 0.01 M acetic acid, and left overnight at

4 °C. Washed platelets (100 lL at 1.5 9 108 mL�1) in

calcium free tyrodes (CFT) containing 2 mM Mg2+ or

EDTA were allowed to adhere for 1 h following pre-incu-

bation for 20 min at room temperature with GR144053

(10 lM) or anti-GPVI/a2b1 (10 lg mL�1) as indicated.

The wells were washed, lysed and platelet binding quanti-

fied using a colorimetric alkaline phosphatase assay [7].

Whole blood perfusion experiments

Blood was collected into 40 lM D-Phenylalanyl-L-pro-

lyl-L-arginine chloromethyl ketone (PPACK, Enzo Life

Sciences, Exeter, UK), supplemented hourly with 10 lM
PPACK, and mixed with 1 lM 3,3’dihexyloxacarbocya-

nine iodide dye (DIOC6) 15 min before use. Glass cov-

erslips were coated with (10 lg) collagen solution in

0.01 M acetic acid and left overnight at 4 °C. Slides

were blocked with bovine serum albumin (BSA) (1% w/

v) for 30 min and blood then drawn through the cham-

ber at a wall shear rate of 1000 s�1, mimicking arterio-

lar conditions. Images (field size 360 9 360 lm) were

taken from three separate areas of the slide; 0.69-lm
Z–stacks encompassing the entire thrombus height were

collected using an Olympus FV 300 confocal micro-

scope and an UplanFLN 40x NA1.30 oil immersion

objective and processed using ImageJ1.35 software

(NIH, Bethesda, MD, USA) to determine thrombus vol-

ume [10].

Results and discussion

Visualization of collagen degradation by SDS-PAGE

Proteolysis of monomeric collagen I is proportional to

enzyme concentration, with the a1 and a2 chains disap-

pearing at 40 lg mL�1 and any background smearing

above 150 kDa clearing with progressive proteolysis.

MMP-13 acts at the collagenase cleavage site, located at

Gly906-Leu907, ¾ of the way along the collagen a chain

[11]. The ¾ fragments are visible at ~75 and 90 kDa, and

the ¼ fragment at 25 kDa alongside an increasing level of

autolysed MMP-13 [12] (Fig. 1A). For monomeric colla-

gen, proteolysis at 37 °C yields an additional, stable band

below the ¾ fragments not seen at 24 °C (data not

shown). As expected, some of the large cross-linked

fibrous collagen is unable to enter the gel, and so degra-

dation is observed first as increased density at 250–100
kDa in the 10–30 lg mL�1 lanes, then as a decrease in

aggregate material above 150 kDa (Fig. 1B). Following

incubation at 37 °C for 16 h, the MMP-13 control has

undergone virtually complete autolysis into small frag-

ments [13].

The structure of a collagenase is highly conserved, com-

prising pro-peptide, catalytic (Cat) and hemopexin (Hpx)-

like domains [14]. Cat and Hpx cooperate to recognize

and bind collagen adjacent to its cleavage site [15] with

Hpx-mediated helix relaxation enabling hydrolysis. Subse-

quent gelatinolytic degradation of the clipped a chains by

MMP-13 [16,17] has the potential to influence recognition

of collagen by platelet adhesion receptors, and these data

are presented below.

Static platelet adhesion to MMP-degraded collagens

Mg2+-dependent, integrin-mediated static platelet adhe-

sion to monomeric collagen I [7,8] remained unchanged

regardless of the extent of collagen degradation (Fig. 2A).

Pre-incubation with EDTA or an anti-a2b1 antibody

(subsequent, separate experiments) abolished all adhesion,

confirming that the interaction absolutely requires inte-

grin a2b1, with only modest contribution from GPVI

(Fig. 2B). Messent et al. [12] found that the linear ¼ frag-

ment did not bind a2b1. Together, these data suggest that

platelet adhesion to MMP-13-digested monomeric colla-

gen is primarily mediated through the ¾ fragment (where

GFOGER and other high-affinity a2b1-binding sites

reside [18]; see Fig. 3). In this scenario, the MMP-

13-mediated loss of the weak a2b1-binding sites and the

C-terminal Gly-pro-Hyp-rich tract, a putative GPVI

recognition motif present in the ¼ fragment, make little

discernible contribution to static platelet binding. Autol-

ysed MMP-13 did not support platelet adhesion.

Static platelet adhesion to fibrous collagen I displayed

a constant Mg2+-dependent element regardless of MMP-

13 treatment (Fig. 2C), which was reduced but not abol-

© 2015 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Throm-

bosis and Haemostasis.

2254 J. -M. Howes et al



ished by EDTA, suggesting both integrin-dependent and

integrin-independent contributions. The anti-GPVI scFv

in the presence of EDTA reduced platelet adhesion by

~70% relative to control and by ~40% relative to EDTA

alone (each P < 0.001, one-way ANOVA and Dunnett’s

test), showing that GPVI contributes to integrin-indepen-

dent binding. Although a2b1 and/or aIIbb3 inhibition

also reduced integrin-dependent adhesion (P < 0.001),

neither blockade affected metal ion-independent binding

(Fig. 2D).

In order to bind to collagen fibers, GPVI dimerises on

the platelet surface [19]. Our results suggest that whilst

fibrous collagen provides ample accessible sites, the plate-

let GPVI dimer has little affinity for collagen monomers

or proteolytic fragments and so is unlikely to support

platelet adhesion to digested collagen. Some adhesion to

fibers remains following combined a2b1, GPVI and

aIIbb3 blockade, suggesting contributions by other mech-

anisms. Further studies may identify the receptors

responsible.

Flow-dependent thrombus formation of whole blood is

differentially regulated on digested monomeric collagen

Shear stress is critical for VWF-dependent platelet recruit-

ment to collagen. In flowing blood, platelet attachment to

collagen is initiated by GPIba binding to the A1 domain

of immobilized VWF, the first step in thrombus forma-

tion [20,21]. Using specific collagen-derived peptides, we

observed that VWF is required for thrombus deposition

at high shear rates, together with either high-affinity a2b1
or GPVI, or preferably both [10].

The first experiments using digested monomeric colla-

gen showed a linear decline, P < 0.0001, in surface cover-

age with MMP-13 level, from the control value of

33 000 lm2 to 8000 lm2 after treatment with MMP-13 at

100 lg mL�1 (Fig. 4A, left panel). One point

(10 lg mL�1) was markedly above the 95% confidence

range, at a value of 42 000 lm2. A corresponding fall in

thrombus volume, P < 0.0001, (Fig. 4B, left panel) was

observed, again with an outlying value at an MMP-13

level of 10 lg mL�1. This modest rise in platelet adhesion

suggests increased accessibility of cryptic motifs (such as

Arg-Gly-Asp (RGD); inactive in triple-helical collagens,

but active in linear peptides), which may engage integrins

other than a2b1 such as aIIbb3. To examine this effect of

MMP-13 at 10 lg mL�1 more closely, seven further

experiments were conducted with or without pre-incuba-

tion of whole blood with the aIIbb3 antagonist,

GR144053. These experiments showed significantly

greater surface coverage (P < 0.05, repeated measures

ANOVA) after MMP-13 treatment, from 53 500 to

60 000 lm2, confirming the anomalous point in Fig. 4(A,

B). GR144053 reduced mean surface coverage from

47 500 and 55 500 lm2 on control and MMP-13-treated

collagen monomers (10 lg mL�1) to 46 000 and

41 000 lm2, respectively (P < 0.01 and 0.001, respectively,

Fig. 4C). The antagonist reduced the thrombi to a lawn
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Fig. 1. Visualization of (A) monomeric and (B) fibrous collagen I degradation by SDS-PAGE under reducing conditions. Activated matrix met-

alloproteinase (MMP)-13 (total volume of 10 lL) was added to the collagens and degradation allowed to proceed for 16 h at 37 °C. Gels are

representative of nine repeated experiments (n = 9). Intact collagen I a1 and a2 chains and their ¾ fragments are marked for reference.
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of single platelets (Fig. 4D). Importantly, the elevated

surface coverage after MMP-13 treatment was abolished

by aIIbb3 blockade. These data are consistent with an

increase in either the aIIbb3-reactivity of collagen mono-

mers after limited digestion or their ability to activate

aIIbb3; the former explanation appears more likely; we

know of no activatory receptor that is regulated by non-

helical collagens. It is worth noting that inter-donor dif-
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ferences accounted for over half the variance observed

here.

On MMP-13-treated fibrous collagen, platelet surface

coverage and volume followed a similar pattern, falling in

a linear fashion towards zero (P = 0.0003 and 0.0002,

respectively) (Figs 4A,B, right panels). The data for both

forms of collagen contrast with the static adhesion results,

which showed no significant change in platelet adhesion

regardless of the degree of collagen proteolysis. The

thrombus volume reflects the aggregation of activated

platelets, and is most likely higher for fibrous collagen

than monomeric collagen as a result of the engagement of

GPVI dimers by the former but not the latter. As the

proteolysis of each collagen form continues, it is likely

that these binding sites are all progressively destroyed,

inevitably resulting in near-total loss of platelet adhesion.

Although collagenolytic MMPs can cleave the collagen

molecule at several loci [22], substrate specificity and thus

proteolysis are strictly governed by the tightly regulated

structure of the collagen fibril, resulting in preferential

cleavage at the canonical ¾–¼ site. In the intact fibril,

access to this site may be restricted by a C-telopeptide,

which must be removed to permit collagenolysis [23]. How-

ever, the Cat domain of MMP-13 can cleave the non-

helical N-telopeptide of collagen I [24], and similar activity

has been proposed at the C-terminus. As degradation of

the fibril proceeds, therefore, removal of the outer fibril

components may reveal previously hidden cleavage as well

as cell adhesion sites [23,25]. For fibrous collagen, our sta-

tic adhesion experiments report that the sites available for

platelet adhesion are both integrin- and GPVI-dependent,

which are abolished by the chelation of Mg2+ and the pres-

ence of an anti-GPVI scFv, respectively (Fig. 2D).

In conclusion, proteolytic degradation of an intact col-

lagen fibril within an atherosclerotic plaque is likely to be

a complex and iterative process, determined by the acces-

sibility of its collagenase cleavage sites. Platelet reactivity

will vary as proteolysis proceeds, as buried or cryptic

receptor binding sites within the fibril are revealed and as

monomers or smaller fragments released. Ultimately, it

seems likely that collagenase activity will reduce the fibril

to small components that are unreactive under shear con-

ditions and become dispersed.
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