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Abstract

Objectives: Few interactions between risk factors for schizophrenia have been repli-

cated, but fitting all such interactions is difficult due to high-dimensionality. Our aims

are to examine significant main and interaction effects for schizophrenia and the per-

formance of our approach using simulated data.

Methods: We apply the machine learning technique elastic net to a high-dimensional

logistic regression model to produce a sparse set of predictors, and then assess the

significance of odds ratios (OR) with Bonferroni-corrected p-values and confidence

intervals (CI). We introduce a simulation model that resembles a Finnish nested case–

control study of schizophrenia which uses national registers to identify cases

(n = 1,468) and controls (n = 2,975). The predictors include nine sociodemographic

factors and all interactions (31 predictors).

Results: In the simulation, interactions with OR = 3 and prevalence = 4% were identi-

fied with <5% false positive rate and ≥80% power. None of the studied interactions

were significantly associated with schizophrenia, but main effects of parental psycho-

sis (OR = 5.2, CI 2.9–9.7; p < .001), urbanicity (1.3, 1.1–1.7; p = .001), and paternal

age ≥35 (1.3, 1.004–1.6; p = .04) were significant.

Conclusions: We have provided an analytic pipeline for data-driven identification of

main and interaction effects in case–control data. We identified highly replicated

main effects for schizophrenia, but no interactions.
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1 | INTRODUCTION

Evidence suggests that schizophrenia is a disorder with a multifacto-

rial etiology. While individual environmental risk factors for schizo-

phrenia have been identified (Radua et al., 2018), reviews have

suggested that the disorder likely results from interactions between

them and susceptibility genes (Cannon et al., 2003; van Os, Kenis, &

Rutten, 2010). Evidence of interactions can increase the understand-

ing of the disease, and facilitate identifying subgroups at particularly

high risk (Zammit, Wiles, & Lewis, 2010).

Received: 9 September 2019 Revised: 12 March 2020 Accepted: 29 April 2020

DOI: 10.1002/mpr.1834

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. International Journal of Methods in Psychiatric Research Published by John Wiley & Sons Ltd.

Int J Methods Psychiatr Res. 2020;29:e1834. wileyonlinelibrary.com/journal/mpr 1 of 11

https://doi.org/10.1002/mpr.1834

https://orcid.org/0000-0003-3220-9805
mailto:david.gyllenberg@utu.fi
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/mpr
https://doi.org/10.1002/mpr.1834


TABLE 1 Summary of reported interactions in the risk of schizophrenia and nonaffective psychoses

Interactions reported in ≥2 papers and interaction in same direction

Familial liability ✕ urbanicity

Family history of psychoses ✕ urbanicity (van Os, Hanssen, Bak, Bijl, & Vollebergh, 2003)a

Family history of schizophrenia-spectrum disorders ✕ urbanicity (van Os, Pedersen, & Mortensen, 2004)b

Family history of any psychiatric hospitalization ✕ urbanicity (van Os et al., 2004)b

Familial liability ✕ maternal infection

Parental psychosis ✕ prenatal effect of pyelonephritis (Clarke, Tanskanen, Huttunen, Whittaker, & Cannon, 2009)b

Maternal psychiatric disorders ✕ maternal infection during pregnancy (Blomström et al., 2016)a

Male sex ✕ maternal stress during pregnancy

Male sex ✕ maternal stress during second trimester (van Os & Selten, 1998)b

Male sex ✕ maternal daily stress during pregnancy (Fineberg et al., 2016)a

Interactions reported in ≥2 papers but interaction in opposite direction

Familial liability ✕ paternal age

Absent family history of schizophrenia ✕ advanced paternal age (Sipos et al., 2004)b

Sister with schizophrenia-related diagnosis ✕ advanced paternal age (Perrin et al., 2010)a,c

Interactions not found in ≥2 papers

Familial liability ✕ other risk factor

Maternal schizophrenia-spectrum disorder ✕ low family functioning (Tienari et al., 2004)a

Maternal psychosis ✕ unwanted pregnancy (McNeil et al., 2009)a

Biological parent with psychosis ✕ parental employment (Wicks, Hjern, & Dalman, 2010)a

Parental psychosis ✕ maternal depressed mood during pregnancy (Mäki et al., 2010)b

Parental psychosis ✕ high birth weight (Keskinen et al., 2013)b

Parental psychosis ✕ high birth length (Keskinen et al., 2013)b

Parental psychosis ✕ high maternal education (Keskinen et al., 2013)b

Absence of parental psychiatric disorder ✕ parental separation (Paksarian, Eaton, Mortensen, Merikangas, & Pedersen, 2015)b

Parental psychosis ✕ delayed development of touching thumb with index finger (Keskinen et al., 2015)b

Absence of parental psychiatric disorder ✕ childhood residential mobility (Paksarian, Eaton, Mortensen, & Pedersen, 2015)b

Genetic liability ✕ IQ (Kendler, Ohlsson, Sundquist, & Sundquist, 2015)b,d

Interactions between other risk factors

Male sex ✕ refugee status (Hollander et al., 2016)a

Birth year ✕ season of birth (Suvisaari, Haukka, Tanskanen, & Lönnqvist, 2000)b

Birth year ✕ urbanicity (Suvisaari et al., 2000) a

Season of birth ✕ urbanicity (Harrison et al., 2003)a

Normal Apgar scores at 1 min ✕ advanced paternal age (Sipos et al., 2004)b

Cannabis use ✕ low IQ (Zammit, Lewis, Dalman, & Allebeck, 2010)a,d

Cannabis use ✕ poor social relationships (Zammit, Lewis, et al., 2010)a,d

Cannabis use ✕ disturbed behaviour (Zammit, Lewis, et al., 2010)a,d

Low IQ ✕ poor social relationships (Zammit, Lewis, et al., 2010)a,d

Low IQ ✕ disturbed behaviour (Zammit, Lewis, et al., 2010)a,d

Low IQ ✕ other diagnosis than psychosis at conscription (Zammit, Lewis, et al., 2010)a,d

Obstetric complications ✕ delayed attainment of developmental milestones (Clarke et al., 2011)b

Maternal infection during pregnancy ✕ childhood infections (Blomström et al., 2016)a

Change in degree of urbanicity during childhood ✕ IQ (Toulopoulou, Picchioni, Mortensen, & Petersen, 2017)b,d

Note: Included studies were published 1998–2017 and reported on an interaction effect in the risk of schizophrenia or related psychoses that did not

include specific genetic information. The literature search is described in detail in the Supporting Information.
aThe outcome was schizophrenia-spectrum disorders or nonaffective psychoses.
bThe outcome was schizophrenia.
cThe finding was restricted to females.
dThe study was restricted to males.
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A substantial number of studies have assessed gene–environment

(G–E) interactions in the risk of schizophrenia (Misiak et al., 2018), but

critical evaluations have raised doubts whether many findings on such

interactions in psychiatry are robust and replicable (Dick et al., 2015;

Duncan & Keller, 2011). Apart from G–E interactions, over 30 interac-

tions that do not include specific genetic information have been linked

to schizophrenia or psychoses (Table 1). For example, psychotic disor-

ders were associated with different measures of familial psychopa-

thology interacting with urbanicity (van Os et al., 2003; van Os

et al., 2004) and maternal infections during pregnancy (Blomström

et al., 2016; Clarke et al., 2009) as well as male sex interacting with

maternal stress during pregnancy (Fineberg et al., 2016; van Os &

Selten, 1998). However, with the exception of the above-mentioned

interactions that were reported in more than one study, we identified

no replications over a two-decade period (Table 1). Possible explana-

tions for the few replications include publication bias, variation in

additive versus multiplicative scales to study interactions, and a scar-

city of study samples with sufficient sample size and available data to

replicate interactions. Nonetheless, it also raises the question regard-

ing the rationale for selecting interactions from a myriad of possibili-

ties. That is to say, even if a study includes only a few variables but all

interactions are examined as predictors, one has to decide which pre-

dictors or interactions are sufficiently important that they are worthy

of analysis.

The selection of interactions is typically based on theory, resulting

in the study of only a fraction of possible interactions. Therefore,

important interactions might not be studied, negative findings might

not be reported, and findings are less likely to be replicated. To over-

come these disadvantages, a data-driven approach is needed. Certain

supervised machine learning techniques allow for addressing such

high-dimensional data by automatically selecting the most informative

predictors (Huys, Maia, & Frank, 2016; Iniesta, Stahl, &

McGuffin, 2016; Shatte, Hutchinson, & Teague, 2019). While many

machine learning techniques are considered to be “black boxes” with

low interpretability (Adkins, 2017), the data-driven selection algorithm

“elastic net” has the advantage of producing interpretable results.

These algorithms have recently been used to select predictors of anti-

depressant response (Chekroud et al., 2016), persistence of depres-

sion (Kessler et al., 2016), suicide (Kessler et al., 2017) and psychosis

(Fusar-Poli et al., 2016); however, these studies have aimed to

develop a predictive model that assigns a probability score for each

individual (probability of recovery, suicide, psychosis, etc.), but this

does not allow one to draw conclusions about the p-values and confi-

dence intervals (CI) of the automatically selected predictors. The latter

is referred to as post-selection inference and aims to correct for the

large number of predictors present before the selection (Taylor &

Tibshirani, 2015). To explore novel high-dimensional predictors but

also ensure that predictors are identified correctly, the false positive

(FP) rate needs to be low and the power needs to be high, that is, the

approach should have both low Type I and II errors.

Our primary aim was to provide a robust data-driven approach

that allows to study and assess the power of binary main and interac-

tion effects in case–control data. Second, using this analytic pipeline,

we tested if replicated parental and demographic risk factors or any of

all their possible interactions were associated with schizophrenia. To

obtain a large sample size suitable for studying interactions, we uti-

lized a nationwide nested case–control study of schizophrenia in Fin-

land. We included parental and demographic risk factors that have

been replicated for this disorder according to a recent umbrella review

(Radua et al., 2018), a number of potential confounders, three previ-

ously reported interactions between the risk factors (Harrison

et al., 2003; Perrin et al., 2010; Sipos et al., 2004; van Os et al., 2003;

van Os et al., 2004) but also all other possible interactions.

2 | METHODS

The study was based on both a simulation study and actual data from

the Finnish Prenatal Study of Schizophrenia (FiPS-S) which utilized a

nested case–control design (Gyllenberg et al., 2016). A schematic

overview of the methods used in both the simulation and the FiPS-S

study is shown in Figure 1. The analytic pipeline and the simulation

study are described in detail under “Analytic pipeline,” and the FiPS-S

is described below.

F IGURE 1 Flow-diagram showing the analytic pipeline
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2.1 | Design of the FiPS-S study

The source population consisted of all subjects born in Finland

between 1983 and 1998 (n = 1,009,846; Statistics Finland, 2018). We

used nationwide registers to identify all cases who had been diag-

nosed with schizophrenia or schizoaffective disorder before

December 31, 2009 (maximum age = 26 years) and randomly selected

age- and sex-matched controls (see “Case and Control Identification”).

The study was approved by the ethical committees of the Hospital

District of Southwestern Finland, by the National Institute of Health

and Welfare, and the Institutional Review Board of the New York

State Psychiatric Institute.

2.2 | Description of registers

To identify subjects and their parents and to obtain information on

predictors, the personal identification number (PIN) was used and

linked to national registers. The PIN has been assigned to all residents

by the Finnish Population Register since 1971. The computerized

nationwide Finnish Population Register (FPR) was established in

1971, was used to retrieve data on place of birth, date of emigration,

date of death, and biological parents, including their dates of births.

To identify all recorded diagnoses for psychiatric hospital admissions

and psychiatric outpatient treatment visits among study subjects and

their parents, we used the Finnish Hospital and Outpatient Discharge

Register (FHDR) which is maintained by the National Institute of

Health and Welfare. The FHDR was established in 1963; computer-

ized data are available since 1987 and the register includes all public

outpatient visits since 1998. The register contains the personal and

hospital identification codes and primary/secondary psychiatric diag-

noses. Finally, Statistics Finland was used to obtain data on parental

education level at birth.

2.3 | Case and control identification

We identified all cases with schizophrenia (ICD-10 code F20) or

schizoaffective disorder (F25) from the FHDR. For brevity, we use

“schizophrenia” for referring to schizophrenia or schizoaffective disor-

der. The diagnostic validity of schizophrenia in the FHDR from a pre-

vious study showed that 93% of subjects with a diagnosis of

schizophrenia in the FHDR were assigned a consensus diagnosis of

schizophrenia (Mäkikyro et al., 1998). Controls were selected from

the source population; they were without schizophrenia, other non-

affective psychotic disorders, or bipolar disorder; and were matched

on the date of birth (±1 month), for sex, and residency in Finland at

the time of case diagnosis. There were many controls with these char-

acteristics; therefore, two controls per case were randomly drawn

from all controls fulfilling these criteria.

There were 1,505 subjects who had received a schizophrenia

diagnosis during the study period and 3,010 age- and sex-matched

controls. Subjects with unknown fathers were excluded and, 1,469

schizophrenia cases (97.6%) and 2,975 controls (98.8%) had complete

data on all risk factors and were included in the analyses.

2.4 | Predictors

We included nine risk factors with replicated associations in a recent

umbrella review (Radua et al., 2018) and other previous studies

(Davies, Welham, Chant, Torrey, & McGrath, 2003; Eaton &

Harrison, 2001; El-Saadi et al., 2004; Heinz, Deserno, &

Reininghaus, 2013; Kemppainen et al., 2001; Leung & Chue, 2000;

McGrath et al., 2014; Petersen, Mortensen, & Pedersen, 2011; Rasic,

Hajek, Alda, & Uher, 2014; van Os et al., 2010). Male sex, birth

between December and March, urbanicity, low parental education,

parental psychosis, paternal age 35 or older (at time of birth of the

study subject), maternal age 35 or older, paternal age 19 or younger,

maternal age 19 or younger and all their two-way interactions were

assessed. All variables were derived from the FPR, except for parental

psychosis, which combined information from the FPR and FHDR.

Despite the matching on sex and date of birth, we included male sex

and birth period as predictors in order to assess possible interactions

including the variables. To maximize the number of subjects with

advanced parental age, we set the upper cutoff of parental age to

35 years; this is the age at which the risk of schizophrenia begins to

increase according to a meta-analysis (Wohl & Gorwood, 2007).

Urban birth was classified based on national standards used by Statis-

tics Finland (Official Statistics of Finland, 2015): a densely populated

area was defined as a 250 m2 area with >200 inhabitants; we classi-

fied municipalities with ≥90 and <90% of the population living in

densely populated areas as urban and nonurban, respectively. Low

parental education was defined as both parents not having

postelementary school education. Parental psychosis was defined as a

lifetime diagnosis of nonaffective psychoses according to the FHDR

(see Table S1 for ICD-codes).

2.5 | Analytic pipeline

The steps in the analytic pipeline are depicted in Figure 1 and

described in detail below. The data preprocessing and all analyses

were the same for the simulation datasets and the real data. All ana-

lyses were performed with R version 3.6.3. The R code for rep-

roducing all the steps in the analytic pipeline is publicly available at

https://github.com/davgyl/dd_ident. As the access to the register-

based health care data is limited and the original data cannot be

released, we provide code to reproduce the analyses with

simulation data.

2.5.1 | Simulation study

The true and FP rates for correctly identifying main and interaction

effects were assessed in a simulation study. Each simulated dataset
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comprised three groups (A, B, C) of three variables (nine variables in

all: A1, A2, A3, B1…C3) with a case: control ratio of 1:2.

First, we defined simulated datasets as follows: among 4,500 sub-

jects, we set the prevalence of the variables within each group at 20%

for the first variables (A1, B1, C1), 15% for the second variables (A2,

B2, C2) and 5% for the third variables (A3, B3, C3); we set a within-

group correlation of 0.3 in the three groups of variables (A, B, C); we

set a main effect of OR = 1.3 for the first variable in each group (A1,

B1, C3), and we set one active interaction to have OR = 3.0

(A2 ✕ B2); this interaction was taken between variables in

uncorrelated groups having prevalence of 15%, so the interaction

itself had a prevalence of 2.3%. A simulated dataset using these def-

intions is visualized in the Supplement (see “R-code to reproduce ana-

lyses”). A detailed rationale for why these definitions were used is

described in the Supporting Information.

Second, we defined 13 other types of simulation datasets by

exchanging one of the following in the datasets: the number of sub-

jects (9,000 or 15,00 instead of 4,500); the prevalence of the active

interaction (2.9% or 4.0% instead of 2.3%); the odds ratios (OR) of the

interaction effect (1.5, 2.0, 2.5, 3.5, 4.0, 4.5, or 5.0 instead of 3.0) or

the within-group correlation (0.1 or 0.5 instead of 0.3). Based on

10,000 simulations for each type of dataset (140,000 simulations in

total), we calculated the empirical power and FP rate of main and

interaction effects.

Third, we conducted additional analyses of simulations with three

active interactions, but with no active main effects and with less

resemblance to the FiPS-S data. These analyses are described in the

Supporting Information Methods.

2.5.2 | Data preprocessing and descriptive
analyses

To maximize interpretability of interactions, all main effects were

coded as binary (0, 1; Table S1); thus, all two-way interactions also

had a binary structure with “1” indicating presence of both risk fac-

tors. To describe the data, we calculated frequencies and propor-

tions of all predictors. To ensure stable models without zero or

near-to-zero variance, we excluded interactions with a lower

expected count of five among cases and controls prior to further

modeling. To minimize the risk of falsely identifying interactions

that could be explained by high correlation, we further excluded

interactions between main effects that had had log(OR)s ≥0.3 or

≤−0.3. The decision to use the above criteria for excluding predic-

tors was informed by a simulation study (Supporting Information

Methods). During the preprocessing of data, the prevalence, the

expected count and the correlation were extracted for descriptive

purposes. Finally, before modeling, the predictors were standard-

ized by scaling and centering, while the original binary structure of

the predictors was used for inference. All the preprocessed predic-

tors in the model, that is, interactions were studied on the multipli-

cative scale.

2.5.3 | Elastic net analyses

We performed variable selection using the elastic net algorithm

(Zou & Hastie, 2005) using the R package glmnet (Friedman, Hastie, &

Tibshirani, 2010). Due to the binary outcome (schizophrenia, control),

we used the logistic regression version of the algorithm. The algorithm

is an extension of generalized linear models and can select the stron-

gest associations by shrinking the regression coefficients of predictors

as a function of the shrinkage-parameter lambda and of the tuning

parameter alpha. Low alpha values near zero favor ridge regression

and high alpha values near one favor lasso regression; we conducted a

simulation study for choosing an optimal alpha value of 0.75

(Supporting Information Methods). As predictors with non-zero coeffi-

cients are defined as the “selected predictors” in elastic net models

with an alpha parameter >0, the number of selected predictors is a

function of lambda. We defined the lambda parameter using 10-fold

cross-validation and the 1-SE-rule; for more exploratory approaches

the minimum-rule can be used instead.

After selecting the most informative predictors, we calculated their

OR, CI, and p-values. We fitted a multivariate logistic regression model

of the selected predictors and corrected the Wald-type CIs and p-values

with Bonferroni-adjustment: the significance level of 5% was diminished

by dividing it by the number of all predictors included in the selection

process. For example, the elastic net algorithm chose between 31 predic-

tors in the FiPS-S data, and in that analysis the Bonferroni-corrected p-

values were defined as p-values divided by 31 and the level of the CI

are set at 99.84% (1–0.05/31 = 1–0.0016 = 0.9984). Although not used

in the current study, the postselection inference approach also allows

for more exploratory analyses with less strict significance correction and

more narrow CI by setting the significance level to, for example, 10%

(see “R-code to reproduce analyses” in the Supporting Information).

2.5.4 | Additional exploratory analyses

To compare our analytic approach to traditional marginal screening of

main and interaction effects, we conducted simulation studies and

marginal screening of previously reported interaction effects

(Supporting Information Methods).

3 | RESULTS

3.1 | Simulation results

Based on 10,000 simulated datasets for each definition of dataset, the

FP rate of detecting active main or interaction effect was <5% regard-

less of how the datasets were defined (Table 2). However, the true

positive (TP) rate, that is, the power, to detect the active main or

interaction effects varied considerably depending on the definition of

the simulated datasets. As shown in Table 2, using our primary defini-

tion of simulated datasets, the power to detect an active main effect
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was 57.3% and the active interaction was 46.6%, but when the num-

ber of subjects were increased from 4,500 to 9,000, the power to

detect main and interaction effects exceeded 80%. Furthermore, the

power to detect the active interaction was ≥80% when the prevalence

of the active interaction was 4.0% instead of 2.3% or when the OR of

the active interaction was 5 instead of 3. The degree of within-group

correlation also affected the power to detect the active interaction,

but the power remained <80%.

In an additional simulation study, we set all variables to the have

same prevalence, including no active main effects and three active

interaction effects (Supporting Information Results). In these analyses,

the FP rate remained <5%, the power to identify at least one active

interaction ranged between 22.9% and 100.0% depending on the

effect size of the active interactions, and the power to identify all

three active interaction effects ranged between 0.1 and 93.4%

(Table S3).

We further tested whether our analytic approach was superior to

traditional marginal screening of main and interaction effects, that is,

testing one predictor at a time without variable selection (Supporting

Information Methods and Results). When we did not apply

Bonferroni-correction to marginal screening, the FP rates were high,

ranging between 47.1 and 91.1% (Table S4). When we applied

Bonferroni-correction to marginal screening, the TP and FP rates for

detecting interactions were similar to our approach of elastic net vari-

able selection, but the FP rate for identifying main effects ranged

between 3.6 and 71.1% when using marginal screening (Table S5)

compared to between 0.5 and 1.3% when using variable selection

(Table 2).

TABLE 2 The true positive (TP) and false positive (FP) rates of identifying main and interaction effects in 10,000 simulated datasets using
elastic net variable selection and Bonferroni-corrected multivariate logistic regression

Definition of simulated datasets

Identification
of main
effects

Identification
of interaction
effects

OR of active
interaction

No. of
subjects

Prevalence of active
interaction (%)

Within-group
correlation

TPa

(%)
FPb

(%)
TPc

(%)
FPd

(%)

Primary definition of

simulated datasets

3.0 4,500 2.3 0.3 57.3 1.3 46.6 4.5

Varying OR of active interaction

1.5 4,500 2.3 0.3 60.0 1.3 1.7 4.8

2.0 4,500 2.3 0.3 58.9 1.3 11.3 4.2

2.5 4,500 2.3 0.3 58.1 1.1 29.1 4.2

3.5 4,500 2.3 0.3 57.4 1.0 60.3 4.0

4.0 4,500 2.3 0.3 57.7 1.0 70.0 3.9

4.5 4,500 2.3 0.3 57.8 1.1 78.1 4.3

5.0 4,500 2.3 0.3 57.8 0.8 83.4 3.8

Varying number of subjects

3.0 9,000 2.3 0.3 93.9 0.6 94.9 3.1

3.0 15,000 2.3 0.3 99.8 0.5 99.7 2.0

Varying prevalence of

active interaction

3.0 4,500 2.9 0.3 56.6 1.0 67.0 4.2

3.0 4,500 4.0 0.3 55.5 1.0 86.9 4.0

Varying within-group

correlation

3.0 4,500 2.3 0.1 57.4 0.9 51.2 4.4

3.0 4,500 2.3 0.5 54.8 1.2 36.2 4.0

Note: Simulated datasets with both the TP rate ≥80% and the FP rate <5% are shown in bold.
aThe TP rate of identifying main effects was defined as the proportion of simulations in which at least one of the three active main effects were correctly

identified.
bThe FP rate of identifying main effects was defined as the proportion of simulations in which at least one of the nonactive main effects were incorrectly

identified.
cThe TP rate of identifying interaction effects was defined as the proportion of simulations in which the one active interaction effect was correctly

identified.
dThe FP rate of identifying interaction effects was defined as the proportion of simulations in which at least one of the nonactive interactions effects were

incorrectly identified.
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3.2 | Results based on FiPS-S data

There were nine main effects and 34 possible interactions between

main effects. First, we inspected the frequencies and the expected

counts of all these 43 predictors by case–control status and as part of

the data preprocessing, we excluded six interactions that had an

expected count lower than 5 (Table S6). The prevalence of these

37 main and interaction effects is summarized in Figure 2. Second, we

inspected the correlational structure between main effect variables as

shown in Figure 3. There were six variables that were associated with

each other at log(OR)s ≥0.3 or ≤−0.3 (Figure 3): parental low educa-

tion with mother 19 or younger, with mother 35 or older, with father

19 or younger and with father 35 or older; mother 19 or younger with

father 19 or younger; and mother 35 or older with father 35 or older;

the interactions between these variables were excluded from the ana-

lyses. In total, 31 main effects and interactions (hereafter “predictors”)

were included in the analyses.

When using the elastic net algorithm to select the most informa-

tive predictors, the following predictors were selected: parental psy-

chosis, urbanicity, father 35 or older and urbanicity ✕ parental

psychosis. The respective proportions of cases and controls with the

selected predictors were as follows: parental psychosis 15.5 versus

3.1%; urbanicity 62.6 versus 55.4%; father 35 or older 26.5 versus

22.4%; and urbanicity ✕ parental psychosis 9.7 versus 1.5% (Figure 2).

Figure 4 shows the ORs and Bonferroni-corrected CIs from the asso-

ciations between the four selected predictors and schizophrenia.

Associations with schizophrenia were significant for parental psycho-

sis (OR = 5.2, CI 2.9–9.7; p < .001), urbanicity (1.3, 1.1–1.7; p = .001)

and father 35 or older (1.3, 1.004–1.6; p = .04). Of note, the interac-

tion between urbanicity and parental psychosis was not significant

and no other interactions had been selected for further analysis by

the elastic net algorithm.

To further explore whether previously reported interactions could

be detected using a less strict approach in the FiPS-S data, we

F IGURE 2 Prevalence of analyzed predictors among schizophrenia cases and controls ranked by percentage in controls. btwn, between; Dec,
December; Mar, March
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conducted marginal screening without Bonferroni-correction of the

interactions between parental psychosis and urbanicity, parental psy-

chosis and father 35 or older, and born in winter months and

urbanicity; however, none of the interaction terms were significant

(Table S7).

4 | DISCUSSION

This study has two major findings. First, using a simulation study

defined to resemble epidemiologic data, the data-driven approach

identified both main and interaction effects with sufficient power and

strict control of FPs. However, for that to occur, the number of sub-

jects had to be large, the predictor common or the effect size large.

Second, when studying relatively common risk factors and interac-

tions between parental and demographic factors predicting schizo-

phrenia in a national birth cohort, this analysis identified three of the

most replicated risk factors for schizophrenia—parental psychosis,

urbanicity and advanced paternal age—but none of the studied inter-

actions were associated with schizophrenia.

The highest level of evidence of a risk factor can be obtained by

umbrella reviews, followed by meta-analyses and original research

(Fusar-Poli & Radua, 2018). It is reassuring that our original research

with a data-driven approach selected and showed significant findings

explicitly for parental psychosis, urbanicity, and paternal age

≥35 years, which were also significant in a recent umbrella review of

risk factors for psychosis (Radua et al., 2018). Although the outcome

could be defined as psychosis instead of schizophrenia or the risk

ratios could be reported instead of ORs in the umbrella review (Radua

et al., 2018), it is of note that the CI of the effect sizes were compara-

ble in our study versus the umbrella review (parental severe mental ill-

ness: 3.0–11.8 versus 2.9–9.7; urbanicity: 1.6–3.1 versus 1.1–1.7; and

paternal age ≥35 years: 1.06–1.4 versus 1.004–1.6). In other words,

the reported significant main effects are replications in line with the

literature that strengthen the applicability of our analytic pipeline.

However, the negative findings from our systematic exploration

of interactions require reconciliation, as previous studies have

reported positive findings (Table 1). First, the analytic approaches

used in those studies were fundamentally different as we used a data-

driven approach to examine interactions while other studies were

theory-driven. In a theory-driven approach, one or a few interactions

are typically selected to be tested and no statistical correction for this

selection-process is applied. In data-driven approaches, it is required

to correct for the selection-process for reducing the risk of FP errors

(Taylor & Tibshirani, 2015). We corrected for FPs with the Bonferroni

method, and in our simulation study, we showed that in sample sizes

like ours the analytic pipeline had <5% FP error rate and ≥80% power

to detect interactions with prevalence over 4% and ORs over 3. The-

ory-driven studies without statistical correction can detect more rare

interactions in smaller samples, but then there should be no explor-

atory elements in the analyses for maintaining control of FPs. The

degree of possible exploratory analyses in previous studies cannot be

assessed and we can therefore not draw any conclusions about possi-

ble FPs. However, the risks inherent in post hoc interpretations are

decreased in theory-based quasi-experimental studies, such as adop-

tion studies, as they are designed to study a limited number of inter-

actions. For example, adoption studies have been designed to test

interactions between psychosis in a biological parent and adoption

family characteristics (Tienari et al., 2004; Wicks et al., 2010). None-

theless, most other studies, such as population-based cohorts or fam-

ily cohorts, have been nonexperimental like the present one, and the

differences in design are unlikely explanations for the majority of

observed discrepancies. Second, we did not have measurements on

many of the variables involved in previously reported interactions, for

example, maternal stress during pregnancy (Fineberg et al., 2016; van

Os & Selten, 1998). To maximize our sample size, we included vari-

ables that were available in the registers during the sampling period.

F IGURE 3 The log(odds ratios [OR]) between main effect
variables. The asterisks denote log(ORs) with values ≥0.3 or ≤−0.3.
The log(ORs) of variables with expected count <5 were not assessed
and are denoted with blank squares in the heatmap. btwn, between;
Dec, December; Mar, March

F IGURE 4 Forest plots of odds ratios (OR) and Bonferroni-
adjusted confidence intervals (CI) of the selected predictors. The gray
vertical line corresponds to OR = 1
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We were able to assess three previously reported interactions, namely

between family liability and urbanicity (van Os et al., 2003, 2004),

between family liability and advanced paternal age (Perrin et al., 2010;

Sipos et al., 2004), and between season of birth and urbanicity

(Harrison et al., 2003). The interaction between family liability and

urbanicity has been replicated when analysed with multiple degrees

of urbanicity on an additive scale (van Os et al., 2003, 2004), but

when analysed on a multiplicative scale as in our study, the finding

was nonsignificant (Mortensen et al., 1999). The interaction between

family liability and advanced paternal age have shown findings in

opposite directions (Table 1): one study with family liability present in

the interaction (Perrin et al., 2010) and another with family liability

absent in the interaction (Sipos et al., 2004). Finally, the interaction

between season of birth and urbanicity was significant in a study

showing that the hazard ratios of urban birth in relation to non-

affective non-schizophrenic psychoses were 2.7 for those born in

winter and 1.3 for those born in summer (Harrison et al., 2003). The

corresponding ORs of urban birth for those born in winter and non-

winter months were 1.6 and 1.3, respectively, in our study. This

indicates that our results are in line with the literature, but that no sig-

nificant interaction between season of birth and urbanicity could be

detected even with a traditional approach. In summary, given all these

differences, we can neither confirm nor deny the presence of interac-

tions in previous studies.

Our analytic approach avoided FPs successfully and showed suit-

ability of analyzing a large number of predictors, but a drawback of

the strict Bonferroni correction is a substantial reduction in explor-

atory findings in small datasets: low power to detect interactions

when the prevalence is below 4% and ORs under 3, even for our large

sample. We carried out a simulation to see whether the traditional

marginal screening approach of testing one variable at a time yields

different results. Without Bonferroni-correction to marginal screen-

ing, the FP rate was over 50%. While we opted for elastic net variable

selection with Bonferroni-correction (due to its strong performance

with correlated predictors, and the possibility of obtaining easily inter-

pretable CI and p-values), we also considered a handful of other

approaches. For example, the fixed lambda approach allows for post-

selection inference CI and p-values using the LASSO penalty (Taylor &

Tibshirani, 2018; Tibshirani, Taylor, Lockhart, & Tibshirani, 2016), but

has not been developed for the elastic net algorithm which performs

better with correlated predictors (Zou & Hastie, 2005). We also con-

sidered the recently developed knockoff filter that controls the false

discovery rate (Barber & Candès, 2015, 2019), but opted for our

approach, consistent with the tradition in psychiatric epidemiology, to

control the family-wise error rate and to report Wald-type

CI. Identifying predictors using these and other novel postselection

inference techniques remains an active field of study.

The strengths of this study include several advantages of the

FiPS-S, including prospectively acquired data in a population-based birth

cohort, comprehensive registry-based information, and the application

of novel statistical methods. The following limitations should be consid-

ered. First, as noted above, we could not assess many of the previously

reported interactions as these were not included in the register. Second,

despite the large sample size, our simulation study showed that there is

little power to detect rare combinations of risk factors; future studies

with larger sample sizes will be required to detect them. Third, in our

study the maximum age of schizophrenia was 26 years; future studies

with longer follow-up will be needed to reassess our findings.

5 | CONCLUSIONS

We provide a data-driven approach that can be used to detect robust

associations in high-dimensional case–control data. Using this tech-

nique, we identified previously replicated risk factors that were signifi-

cantly associated with schizophrenia, though we did not find support

for interactions between the studied risk factors. Clinicians should

acknowledge the uncertainty related to nonreplicated interactions

and refrain from drawing conclusions about individual patients' risk

for schizophrenia based on such findings. A major challenge remains

as to how the field can identify interactions and other predictors in

high-dimensional data that replicate across independent samples.

Data-driven approaches with even larger datasets and more detailed

variables on neurodevelopment are likely to provide a fruitful way for-

ward to address this challenge.
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