
nutrients

Review

Metabolic Syndrome: Is It Time to Add the Central Nervous System?

Milagros Rojas 1, Mervin Chávez-Castillo 2, Daniela Pirela 1, Heliana Parra 1 , Manuel Nava 1,
Maricarmen Chacín 3, Lissé Angarita 4 , Roberto Añez 5, Juan Salazar 1 , Rina Ortiz 6, Samuel Durán Agüero 7,
Marbel Gravini-Donado 8, Valmore Bermúdez 9 and Edgar Díaz-Camargo 9,*

����������
�������

Citation: Rojas, M.; Chávez-Castillo,

M.; Pirela, D.; Parra, H.; Nava, M.;

Chacín, M.; Angarita, L.; Añez, R.;

Salazar, J.; Ortiz, R.; et al. Metabolic

Syndrome: Is It Time to Add the

Central Nervous System? Nutrients

2021, 13, 2254. https://doi.org/

10.3390/nu13072254

Academic Editors: Omorogieva Ojo

and Amanda Adegboye

Received: 21 May 2021

Accepted: 9 June 2021

Published: 30 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia,
Maracaibo 4004, Venezuela; migarocafi@gmail.com (M.R.); pirelacdaniela@gmail.com (D.P.);
helianapp20@hotmail.com (H.P.); manuelnava_14@hotmail.com (M.N.); juanjsv18@hotmail.com (J.S.)

2 Psychiatric Hospital of Maracaibo, Maracaibo 4004, Venezuela; mervinch@hotmail.com
3 Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 08002, Colombia;

m.chacin@unisimonbolivar.edu.co
4 Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andrés Bello,

Sede Concepción 4260000, Chile; lisse.angarita@unab.cl
5 Departamento de Endocrinología y Nutrición, Hospital General Universitario Gregorio Marañón,

28007 Madrid, Spain; robertojose.anez@salud.madrid.org
6 Posgrado, Carrera de Medicina, Universidad Católica de Cuenca, Cantón de Cuenca 010101, Ecuador;

rortiz@ucacue.edu.ec
7 Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile;

samuel.duran@uss.cl
8 Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080002, Colombia;

mgravini1@unisimonbolivar.edu.co
9 Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia;

v.bermudez@unisimonbolivar.edu.co
* Correspondence: e.diaz@unisimonbolivar.edu.co

Abstract: Metabolic syndrome (MS) is a set of cardio-metabolic risk factors that includes central
obesity, hyperglycemia, hypertension, and dyslipidemias. The syndrome affects 25% of adults
worldwide. The definition of MS has evolved over the last 80 years, with various classification systems
and criteria, whose limitations and benefits are currently the subject of some controversy. Likewise,
hypotheses regarding the etiology of MS add more confusion from clinical and epidemiological
points of view. The leading suggestion for the pathophysiology of MS is insulin resistance (IR).
IR can affect multiple tissues and organs, from the classic “triumvirate” (myocyte, adipocyte, and
hepatocyte) to possible effects on organs considered more recently, such as the central nervous
system (CNS). Mild cognitive impairment (MCI) and Alzheimer’s disease (AD) may be clinical
expressions of CNS involvement. However, the association between MCI and MS is not understood.
The bidirectional relationship that seems to exist between these factors raises the questions of which
phenomenon occurs first and whether MCI can be a precursor of MS. This review explores shared
pathophysiological mechanisms between MCI and MS and establishes a hypothesis of a possible
MCI role in the development of IR and the appearance of MS.

Keywords: metabolic syndrome; insulin resistance; diabetes mellitus type 2; mild cognitive impair-
ment; Alzheimer’s disease

1. Introduction

Metabolic syndrome (MS) is a serious public health problem. It affects about 25%
of the general population and, more alarmingly, around 40% of adults over 40 years old
worldwide [1,2]. The definition of this syndrome has recently evolved to include a group
of at least three of five cardio-metabolic abnormalities. These conditions include high
blood pressure, central obesity, insulin resistance (IR), elevated blood triglycerides, and
atherogenic dyslipidemia [3], which together lead to an increased risk of cardio-metabolic
pathologies [4–6], as well as other diseases, such as arthritis [7] and some types of cancer [8].
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Likewise, the presence of MS-related disorders also plays a role in the pathophysiology
of neurological disorders [9], reflecting the association between deficiencies in secretion and
action of insulin and mild cognitive impairment (MCI) [10]. MCI is defined as cognitive
dysfunction that exceeds what is typically expected for age and educational level but
does not meet the criteria for a major neurocognitive disorder. General functionality
is preserved in MCI [11] and it can be best described as an intermediate state between
cognitive impairment characteristic of aging and major neurocognitive conditions, such as
Alzheimer’s disease (AD) [12,13].

Pathophysiological mechanisms of MCI have not been fully clarified. Thus, different
hypotheses are proposed to explain the MCI/MS association [14]. A cyclical relationship
seems to exist between IR and cognitive impairment, and the question of which phe-
nomenon occurs first arises [15]. Additionally, if cognitive impairment precedes IR, it
becomes a risk factor for developing MS. Therefore, this review briefly describes the history
of MS and discusses clinical and preclinical findings that support the role of MS and IR as
elements of pathophysiological mechanisms of cognitive impairment.

While most reviews on the topic focus on the MS-to-MCI relationship, this review
goes beyond this by looking at the inverse relationship, examining available evidence
regarding a new hypothesis that suggests that cognitive impairment could have a role in the
development of IR and the appearance of MS. Among the mechanisms to be highlighted in
this regard, the hyperphosphorylation of tau proteins and the formation of amyloid β (Aβ)
plaques are proposed as alterations that go beyond the pathophysiology of Alzheimer’s
disease (AD), and their role in the pathophysiology of insulin alterations is examined.

2. Metabolic Syndrome: Historical Aspects

The first studies of MS started almost 100 years ago when Eskil Kylin, in 1921, and
Gregorio Marañón, in 1922, independently published in the same journal (Zentralblatt für
Innere Medizin) papers with the same title, “diabetes mellitus and hypertension” [16,17].
Yet, not until 1981 did Hanefeld and Leonhardt use the term “metabolic syndrome” for the
first time [18].

In 1988, Gerald Reaven hypothesized that IR was a common etiological factor for a
group of disorders he termed “Syndrome X” [19,20]. He used this name to emphasize its
unknown origin. At this time, the fundamental pathophysiological role of IR was known.
This mechanism had been studied by researchers, such as Randle [21]. In subsequent years,
DeFronzo, Ferrannini, and others used the term “Insulin Resistance Syndrome”, proposing
that available evidence suggested its presence was the cause of MS [22].

The cause of MS and its components have been debated worldwide since the end of the
20th century. Many organizations, such as the World Health Organization (WHO) [23], the
European Group for the Study of Insulin Resistance (EGIR) [24], the Adult Treatment Panel
III (ATP-III) [25], the American Association of Clinical Endocrinologists (ACE/AACE) [26],
and the International Diabetes Federation (IDF) [27], have proposed evolving diagnostic
criteria. Some criteria have been progressively discarded and replaced with criteria that
can be easily applied in daily clinical practice.

Finally, the IDF, the National Heart, Lung, and Blood Institute, the American Heart
Association, the World Heart Federation, the International Atherosclerosis Society, and
the International Association for the Study of Obesity made a joint statement in 2009 that
concluded that a diagnosis of MS requires the presence of three or more of the following
criteria: high abdominal circumference as defined for each geographical region, triacylglyc-
erides (TAG) greater than or equal to 150 mg/dL, HDL levels less than 50 mg% in women or
less than 40 mg% in men, systolic blood pressure (SBP) greater than or equal to 130 mmHg
or diastolic blood pressure (DBP) greater than or equal to 85 mmHg, and glycemic levels
greater than 100 mg/dL [3]. We now consider that the evolution of diagnostic criteria has
reached a maturity level that makes it difficult to incorporate new criteria that are both
easily recognized and provide useful clinical information [28]. IR continues to be the most
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widely accepted hypothesis to describe MS pathophysiology that involves various organs
and associations with numerous diseases [29].

3. Mild Cognitive Impairment and Metabolic Syndrome: Molecular Basis

Epidemiological, clinical, and experimental evidence provides a solid basis for the
hypothesis that IR is the pathophysiological origin for dyslipidemias, high blood pressure,
and disorders in glucose homeostasis [30]. As studies of MS continued, a relationship
emerged between obesity, the syndrome’s most prevalent individual criterion, and neu-
rological alterations [31]. This association necessitates additional consideration of the
pathophysiological mechanisms involved and how they are interconnected.

3.1. From Metabolic Syndrome to Cognitive Impairment

Epidemiological [32], neuroimaging [33], and animal modeling studies are available to
characterize MS pathophysiology, accompanying diseases, and individual components in
the development of neurodegenerative diseases and associated cognitive impairment [34].
The connection between diabetes mellitus (DM) and AD and the connection between
obesity and cognitive impairment are two areas that have been investigated in depth,
including reports of statistically significant relationships [10,35,36].

The hippocampus plays an important role in learning and memory. The effect of IR
on hippocampal function has been widely studied [37]. Lindqvist et al. administered high-
and low-fat diets to different groups of rats, using bromodeoxyuridine (BrdU) to observe
synaptogenesis after 4 weeks. Male rats fed the high-fat diet showed a significant decrease
in neurogenesis in the hippocampus. The animals did not develop obesity [38]. This result
could reflect the role of lipid alteration, a component of MS, in cognitive decline.

Karimi et al. studied long-term neuronal potentiation (LTP) in the dentate gyrus
(DG) of the hippocampus in mice receiving different combinations of a high-fat diet and
antioxidants. Mice fed a high-fat diet showed lower LTP levels compared with control
animals. In contrast, mice that received antioxidants displayed elevated LTP [39]. These
effects might be mediated by an increase in free radical production caused by the high-fat
diet, leading to oxidative stress (OS). This hypothesis is supported by rescue of LTP levels
through the administration of antioxidants [39].

3.1.1. Role of IR in the Formation of Amyloid-Beta Plaques

Production of reactive oxygen species (ROS) results in increased levels of amyloid
precursor peptide-β (AβPP) and increased expression and accumulation of amyloid-β 42
(Aβ) [40]. This accumulation leads to the formation of amyloid-beta plaques, identified as
a key element of AD [41]. One pathway for increased ROS production is increased insulin
levels that lead to changes in normal NADPH oxidase (NOX4) pathway function. Elevated
insulin levels induce phosphoinositol-3 kinase (PI3K) to phosphorylate Rac instead of
phosphatidylinositol bisphosphate (PIP2). This alteration increases NOX4 activity and ROS
levels. This aberrant metabolism is perpetuated because elevated ROS leads to activation
of casein kinase 2 (CK2) and consequent activation of the retromer. This action signals the
degradation of glucose receptor, GLUT4, leading to a continued increase in glucose levels
in the blood and, therefore, increased production of insulin [42] (Figure 1).

The metabolic syndrome (MS) and its components cause brain alterations such as
neuroinflammation, hyperphosphorylation of Tau, formation of beta amyloid plaques,
and vascular changes (not represented in the figure). This is achieved through changes
in the signaling of hormones such as adiponectin, leptin, and insulin. These changes are
clinically expressed as mild cognitive impairment (MCI), Alzheimer’s disease (AD), and
major vascular neurocognitive disorder.
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Figure 1. Impact of metabolic syndrome on cognitive impairment. PIP2: phosphatidylinositol bisphosphate; AKT: protein 
kinase B; PI3K: phosphoinositide kinase-3; JNK: c-Jun N-terminal kinase; AGEs: advanced glycation end products; PP2A: 
protein phosphatase 2A; GSK3β: glycogen synthase kinase 3 beta; NOX4: NADPH oxidase 4; 02-: superoxide; H202: hy-
drogen peroxide; Aβ: amyloid beta. Solid lines mean activation; dashed lines mean inactivation. 
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jor vascular neurocognitive disorder. 

This positive feedback produces an environment of neuronal inflammation, reported 
as a risk factor for AD. An associated hypothesis is that, along with neurofibrillary tangles 
and amyloid-beta plaques, inflammation has a critical role in the pathophysiology of the 
disease [43]. Insulin seems to play a significant role in the development of plaques, and 
hyperinsulinemia observed in IR leads to their formation. In vitro studies show that high 
levels of insulin affect the degradation and elimination of Aβ. Both insulin and Aβ are 
degraded by insulin-degrading enzyme (IDE). During hyperinsulinemia, IDE degrades 
insulin preferably to Aβ, promoting its oligomerization into insoluble aggregates [44]. In 
vivo experiments in rats corroborate these findings, showing that elimination of Aβ is 
reduced in the presence of high levels of insulin [45]. 

Insulin receptors provide an alternative explanation for IR effects on the hippocam-
pus and other brain structures [46]. These receptors are abundant in metabolic active brain 
areas and exert their effects at the neuronal level via PI3K and mitogen-activated protein 
kinases (MAPK) pathways [47]. These pathways, when activated by insulin, promote an-
giogenesis in the brain. In the presence of IR, these pathways are not activated. This dis-
ruption might underlie the concomitant synaptic anomalies, memory disorders, decreases 
in neurogenesis at the hippocampus level, alterations in cognition, and decreases in levels 
of brain-derived neurotrophic factor (BDNF) [46]. 

  

Figure 1. Impact of metabolic syndrome on cognitive impairment. PIP2: phosphatidylinositol bisphosphate; AKT: protein
kinase B; PI3K: phosphoinositide kinase-3; JNK: c-Jun N-terminal kinase; AGEs: advanced glycation end products; PP2A:
protein phosphatase 2A; GSK3β: glycogen synthase kinase 3 beta; NOX4: NADPH oxidase 4; 02-: superoxide; H202:
hydrogen peroxide; Aβ: amyloid beta. Solid lines mean activation; dashed lines mean inactivation.

This positive feedback produces an environment of neuronal inflammation, reported
as a risk factor for AD. An associated hypothesis is that, along with neurofibrillary tangles
and amyloid-beta plaques, inflammation has a critical role in the pathophysiology of the
disease [43]. Insulin seems to play a significant role in the development of plaques, and
hyperinsulinemia observed in IR leads to their formation. In vitro studies show that high
levels of insulin affect the degradation and elimination of Aβ. Both insulin and Aβ are
degraded by insulin-degrading enzyme (IDE). During hyperinsulinemia, IDE degrades
insulin preferably to Aβ, promoting its oligomerization into insoluble aggregates [44].
In vivo experiments in rats corroborate these findings, showing that elimination of Aβ is
reduced in the presence of high levels of insulin [45].

Insulin receptors provide an alternative explanation for IR effects on the hippocampus
and other brain structures [46]. These receptors are abundant in metabolic active brain areas
and exert their effects at the neuronal level via PI3K and mitogen-activated protein kinases
(MAPK) pathways [47]. These pathways, when activated by insulin, promote angiogenesis
in the brain. In the presence of IR, these pathways are not activated. This disruption might
underlie the concomitant synaptic anomalies, memory disorders, decreases in neurogenesis
at the hippocampus level, alterations in cognition, and decreases in levels of brain-derived
neurotrophic factor (BDNF) [46].

3.1.2. Metabolic Syndrome, Insulin Resistance, and Tau Proteins

Conversely, tau protein (TP) helps stabilize microtubules and its alteration results in
the formation of neurofibrillary tangles [48]. Further, IR induces hyperphosphorylation
of TP and induces cognitive impairment in human and animal models [49,50]. Thus, IR is
associated with poorer performance on cognitive tests and higher levels of phosphorylated
PT in cerebrospinal fluid (CSF) in cognitively normal individuals and carriers of the APOE
allele ε4 [10,51].
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One mechanism underlying this phenomenon involves glycogen synthase kinase-
3β (GSK3β), a tau kinase regulated by insulin via the protein kinase B (AKT) pathway.
Decreased brain insulin signaling caused by IR induces chronic exposure of neurons to high
levels of insulin or an eventual decrease in insulin levels, resulting in PI3K dysfunction
and reduced AKT-dependent phosphorylation. Downstream, GSK3β is activated, and
ultimately TP is hyperphosphorylated [52,53]. The production of advanced glycation end
products (AGEs) from OS damage via GSK3β receptors (RAGE) also increases the activity
of GSK3β by an alternate pathway involving c-Jun N-terminal kinase (JNK) [54].

A recent study showed protein kinase A (PKA) is a potent tau kinase and its activation
increases TP hyperphosphorylation in an insulin-deficient animal model [55]. Moreover,
insulin deficiency influences hyperphosphorylated TP level by decreasing the activity
of protein phosphatase 2 (PP2A) [56]. PP2A is the primary tau phosphatase involved
in AD and its deregulation is associated with TP hyperphosphorylation [57]. Similarly,
hypothermia, common in chronic DM, also leads to inhibition of PP2A activity [58].

Another pathological mechanism in AD is truncation of TP by proteolytic enzymes,
such as caspases, peptidases, and thrombins that promote tau aggregation and formation
of the central component of neurofibrillary tangles (NFT) [59]. DM stimulates apoptosis
through the activation of caspases in affected tissues. Through hyperglycemia, DM might
increase tau aggregation by activating caspases, thus contributing to AD risk [60]. Kim
et al. demonstrated such increased tau aggregation in the brain of db/db rats using in vivo
and in vitro type 2 diabetes mellitus (T2DM) animal models [61].

3.1.3. Metabolic Syndrome, Leptin, Adiponectin, and Cognitive Disorders

Alterations in hormones involved in MS, such as leptin and adiponectin, are also
linked to cognitive impairment [62]. Both hormones affect the metabolism of fatty acids
and glucose as well as energy metabolism and food intake [63,64]. Their function in neuro-
plasticity, learning, and cognition [65,66] is now known via reports of leptin and adiponectin
receptor expression in brain regions such as the hippocampus and neocortex [67].

Recent studies in animal models show that leptin deficiency or resistance is associated
with cognitive disorders, such as reductions in LTP, long-term neuronal depression (LTD),
and alterations in spatial memory [68]. Further, leptin modulates the production and elimi-
nation of Aβ in AD by inhibiting the formation of AβPP and increasing APOEε4-induced
amyloid filament elimination. This activity may be mediated through the activation of
AMP-activated protein kinase (AMPK) [69,70]. Leptin resistance in AD is associated with
diminished activity in these pathways and increased cognitive impairment [71].

Additionally, adult rats deprived of adiponectin display several common characteris-
tics of AD, including deposition of Aβ, TP phosphorylation, and neuroinflammation [72].
This observation is corroborated by Kim et al., who demonstrated that adiponectin receptor
suppression also produced an AD-like phenotype [73] Thus, hormone deficiencies might
be involved in AD pathogenesis. However, studies in humans are controversial since
available information for the association of adiponectin and leptin levels in the blood and
CSF with cognitive impairment is inconclusive [62].

3.1.4. Metabolic Syndrome, Microvasculature, and Cognitive Impairment

Micro- and macrovascular changes observed in MS, such as hypertension and DM, are
also associated with brain alterations, such as vascular neurocognitive disorder. However,
several recent studies note the contribution of vascular risk factors in AD. Mechanisms for
this accelerating cognitive decline are not fully elucidated [74].

Hypertension leads to alterations observed in magnetic resonance imaging (MRI),
such as white matter lesions (WML), lacunar infarcts, microhemorrhages, and microin-
farcts. All these abnormalities are part of a spectrum called small vessel cerebral disease
(SVD), which is common in AD [75]. SVD is characterized by loss of smooth muscle cells
in the mid-tunic, deposition of fibro-hyaline material, reduced light, and thickening of
vascular walls [76]. Moss et al. studied Rhesus monkeys using an aortic coarctation model.



Nutrients 2021, 13, 2254 6 of 22

Multiple microinfarcts and lesions in gray and white matter in hypertensive monkeys were
associated with cognitive impairment [77]. Other mechanisms might involve large arteries
via endothelial dysfunction that progresses to the formation of atherosclerotic plaques in
the carotid or intracranial arteries. Such damage can cause ischemic events in brain regions
related to cognition [78].

3.2. Exploring the Inverse Relationship—From Cognitive Impairment to Metabolic Syndrome

The consequences of MS on the development of cognitive impairment have been
studied in depth [79], but the inverse relationship in which pathophysiological mechanisms
of AD, such as hyperphosphorylation of TP and the formation of amyloid complexes-β,
lead to the appearance of MS is largely unstudied.

3.2.1. Tau Proteins and Deficits in Insulin Signaling

Interestingly, TPs, in addition to microtubule stabilization, also interact with insulin
signaling pathway components in the brain. The N-terminal portion of TP can bind to
homology 3 (SH3) domains of the Src family of tyrosine kinases, including domains of
the p85 alpha subunit of PI3K, a key protein in the insulin signaling pathway. Under
pathological conditions, hyperphosphorylation of TPs can lead to loss of functionality,
triggering alterations in insulin signaling that eventually generate altered fasting glycemia
and DM. The ability of TPs to interact with SH3 domains is inversely correlated with the
degree of phosphorylation, suggesting that scaffolding properties of TPs are regulated by
their phosphorylation status [80].

Further, co-immunoprecipitation studies of mouse brain tissue and N1E115 cells in-
dicate that TPs bind to phosphatase and tensin homologous protein (PTEN), a negative
insulin signal translocation regulator that catalyzes dephosphorylation of phosphatidyli-
nositol triphosphate (PIP3) to PIP2. Thus, TP, by interacting with and inhibiting PTEN,
promotes insulin signaling [81]. These studies raise the possibility that insulin helps main-
tain adequate brain activity due to TP and, conversely, pathological forms of TP could be
harmful due to a loss of protein function. This suggestion is supported by a study that
showed that TP removal was accompanied by loss of inhibitory effects of insulin on PTEN
in the hippocampus, resulting in brain IR.

Concurrently, the absence of TP reduced the anorexigenic effect of insulin in the
hypothalamus after intracerebroventricular injection of TP [81]. Previously, such injection
induced increased food intake, weight gain, adiposity, hyperinsulinemia, and glucose
intolerance in rodents with insulin receptor deletion in the hypothalamus [82,83]. These
effects produce alterations in energy metabolism that may increase the risk of suffering
from obesity, DM, and MS.

TP is also highly expressed in pancreatic islet β-cells. However, its function in periph-
eral tissues is not fully understood [84,85]. Wijesekara et al. investigated TP actions on
β-cell function and glucose homeostasis using a tau KO rat model. Rats showed weight
gain, defects in glucose signaling, and IR, leading to DM and ultimately MS. Thus, TP
might be crucial for normal energy metabolism in peripheral tissues [86].

3.2.2. Amyloid β and Insulinemic Alterations

In vitro and in vivo studies suggest that Aβmay also contribute to IR through various
mechanisms. Aβ competitively inhibits the binding of insulin to its receptor [87] and
activates the JAK2/STAT3/SOCS-1 signaling pathway to produce IR in the liver [88].
Further, the oligomer Aβ (AβO), a highly toxic species of Aβ, causes deregulation of
N-methyl-D-aspartate (NMDA) receptors and leads to the production of excessive ROS.
This effect is probably due to mitochondrial dysfunction [89].

This deregulation might lead to alterations in insulin signaling, since increased ROS
activates several serine kinases, such as an inhibitor of the nuclear factor kappa-B kinase
beta subunit (IKK-β), protein kinase C (PKC), and JNK. These kinases increase phosphory-
lation in Ser IRS-1 residues. ROS can cause OS and damage at mitochondrial and cellular
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levels. This stress generates mitophagy and, at high levels of stress, apoptosis. The elimi-
nation of mitochondria by mitophagy results in a decrease in oxidation and consequent
accumulation of lipids, leading to IR and T2DM [90].

Conversely, AβO causes a rapid and substantial loss of insulin receptors in dendrites
and inhibition of insulin receptor autophosphorylation associated with NMDA activity [91].
Additionally, an increase in levels of IR markers p(Ser)-IRS-1 and p-JNK were observed in
neurons after intracerebroventricular injection of AβO in vivo in monkeys [92].

3.2.3. Amyloid β, Tau Protein, and Leptin

Aβ and TP have also been linked to alterations in leptin signaling. Bonda et al.
showed that TP hyperphosphorylation leads to the formation of NFT and dysfunction in
intracellular trafficking networks in the hippocampus. Thus, the leptin receptor in its long
form (Ob-Rb) becomes unable to reach cell membranes, hindering its access to circulating
free leptin and interrupting signaling. This activity might lead to increased food intake
and weight gain with subsequent development of obesity and long-term MS [93]; leptin in
the hippocampus is associated with regulating food intake and processing food-related
memories [94].

Elevated levels of Aβ1-42 produced by beta-site amyloid cleaving enzyme 1 (BACE1)
increase leptin resistance in the hypothalamus, which is associated with decreased sensitiv-
ity to exogenous leptin throughout the body and exacerbation of body weight gain in rats
fed high-fat diets. Thus, countering BACE1 activity may be protective against metabolic
disorders [95].

The above findings affirm cognitive impairment as a key trigger of alterations in
insulin signaling in the hypothalamus. The latter region is the primary regulator of
body weight via controlling food intake and peripheral metabolism [96]. Thus, cognitive
impairment might lead to metabolic changes that precede the development of MS and
its complications.

4. Mild Cognitive Impairment and Metabolic Syndrome: Epidemiological Basis

Evidence concerning the relationship of MS and its components with MCI has accu-
mulated in the last few years to the point where grouping these disorders into a single
clinical entity, the cognitive–metabolic syndrome, may be appropriate [97]. Below, we
summarize clinical and epidemiological information on the MCI and MS relationship and
its components.

4.1. From Metabolic Syndrome to Cognitive Impairment

Cardio-metabolic risk factors and MS affect cognition and increase the risk of major
neurocognitive disorders [98–100]. Speed of processing, attention, and executive functions
are the most frequently affected domains [101,102]. Thus, an association is often reported
between risk factors, such as hyperlipidemia, T2DM, obesity, hypertension, and physical
inactivity, and models of risks of cardiovascular disease (CVD) (e.g., Framingham Risk
Score) with the risk of MCI and major neurocognitive disorders (Table 1) [103–106].

Strong evidence of a link between high blood pressure in middle age and poorer
cognitive function in old age is available [107,108]. Different prospective studies in older
people show that increased blood pressure is associated with worse cognitive function [109].
The risk of cognitive impairment can increase up to 2.8 times [110]. In older women,
risks may increase by up to 20% [111]. Similar results were reported in individuals from
Hispanic [112], Swedish [113], Asian [114], and North American communities [115,116].

Obesity, defined by a high abdominal circumference or a body mass index (BMI) ≥ 30,
is also associated with poor cognitive function [117,118]. Individuals with high BMI during
middle age show low scores among various cognitive tests [119]. Further, long-term
obesity is linked to lower cognitive performance and an increased risk of neurocognitive
impairment in older people [120–122].
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Several epidemiological studies and meta-analyses provide evidence for an effect of
hyperlipidemia, hypertriacylglycerolemia, and HDL-C levels on cognitive performance
in individuals with and without major neurocognitive disorders. Elevated LDL-C levels
are correlated with the degree of cognitive impairment [123] and decreased episodic
memory (ECM) [124]. Further, hypertriacylglycerolemia is associated with low scores in
verbal tests [124,125]. Low concentrations of this lipoprotein are associated with poor
and decreased memory in middle-aged adults [126], while in older people, low levels
are associated with major neurocognitive disorders [127]. In contrast, improvement in
cognitive test performance is reported for subjects over 75 years old with high HDL-
C [128,129], which is also associated with a significant decrease in the appearance of major
neurocognitive disorders [130].

Hyperinsulinemia, glucose intolerance, and T2DM are other cardio-metabolic risk
factors that recently have been associated with cognitive impairment and different major
neurocognitive disorders [131]. Hyperinsulinemia and impaired glucose tolerance, both
indicators of a prediabetic state and an increased risk of developing DM, are associated
with cognitive dysfunction and an increased risk of developing MCI [132–135]. These
premorbid states are associated with reduced long-term memory scores [136] and impaired
verbal fluency [137]. Lower performance on psychomotor and memory tests is observed in
diabetic individuals [138]. These lower scores correlate with an increased risk of developing
cognitive impairment and MCI [139–143].

Several studies associate different elements of MS with cognitive functions. However,
few studies of MS as a clinical entity and its relationship with MCI or its progression to
major neurocognitive disorders are available. Roberts et al. reported a cross-sectional
study in 1969 of 70 89-year-old individuals. Participants with MS showed non-amnestic
MCI (naMCI) when accompanied by elevated C-reactive protein (CRP). The combination
of inflammation and MS might be linked to specific subtypes of MCI [144]. Yaffe et al.
conducted a longitudinal, multicenter study with 4895 women with an average age of
66.2 years. MS was associated with an increased risk of developing cognitive impairment in
older women. Risk increased by an age-adjusted 23% for each increment in the number of
MS components [145]. Similar findings were reported by Pal et al. [146] and Atti et al. [147],
who concluded that MS is associated with an increased incidence of major neurocognitive
disorders and an increased risk of progression from MCI to such disorders, respectively.

Table 1. Effects of components of MS on cognitive function, the risk of MCI, and major neurocognitive disorders.

MS Component Authors (REF) Methodology Results

High blood pressure

McDonald et al. [109]
Longitudinal cohort study of the

association between cognitive function
and BP variability in adults ≥65 years.

After 5 years of monitoring, diurnal
systolic BP variability was

independently associated with a greater
decrease in total CAMCOG (CV: 3.205;

p = 0.043) and MMSE (CV: 3.985;
p = 0.020) scores.

Haring et al. [111]

Prospective study in 6426 cognitively
intact older women of the relationship
between hypertension and cognitive

impairment.

Hypertension was associated with an
increased risk for cognitive decline

(HR: 1.20; 95% CI: 1.04–1.39; p = 0.02).

Obesity

Sabia et al. [121]

Longitudinal cohort study of the
association between BMI and mid-age

cognition throughout adult life in
5131 individuals.

Late midlife obesity was associated with
lower scores on the MMSE and on

memory and executive function scores
compared with normal-weight

individuals (mean difference (95% CI):
−0.99 (−1.78–0.21), −0.82 (−1.57–0.08),

and −0.80 (−1.49–0.12), respectively
(p < 0.05)).

Beydoun et al. [122]
Meta-analysis of the association

between obesity and major
neurocognitive disorder in older adults.

A significant U-shaped association was
found between BMI and major

neurocognitive disorder (p = 0.034), with
an increased risk of disorder (OR (95%

CI): 1.42 (0.93–2.18)) and increased
incidence of AD (OR (95% CI): 1.80

(1.00–3.29)) in obese individuals.
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Table 1. Cont.

MS Component Authors (REF) Methodology Results

Dyslipidemias

de Frias et al. [124]

Longitudinal cohort study of the
association between total cholesterol,

triglycerides, and cognitive performance
in older adults.

Hypertriglyceridemia was associated
with a low score on the verbal memory

tests (γ = −2.31; p < 0.05), while
hypercholesterolemia was associated

with a detrimental effect on facial
recognition test score (γ = −2.13;

p < 0.05).

Singh-Manoux et al. [126]

Longitudinal cohort study of the
relationship between HDL-c and verbal

short-term memory in middle-aged
adults.

After 5 years of monitoring, decreased
HDL-C was associated with decreased

verbal memory (OR = 1.61;
95% CI = 1.19–2.16).

DM

Elias et al. [117]
Longitudinal study of the effects of
T2DM on cognitive performance of

adult individuals.

The amount of time suffering from
diabetes was associated with poorer
cognitive performance (β = −0.02;

p < 0.02).

Kanaya et al. [137]
Longitudinal cohort study of changes in

cognitive performance according to
glucose tolerance status in older adults.

After 4 years, women with DM had a
4-fold increased risk of cognitive
impairment (OR (95% CI): 4.38

(1.71–11.27); p = 0.02).

MS

Atti et al. [147]

Meta-analysis of the relationship
between MS and progression to major
neurocognitive disorder in individuals

with MCI.

Having MS increased the risk of
progression from MCI to major

neurocognitive disorder (HR (95% CI):
2.69 (1.16–6.27); p < 0.05).

Pal et al. [146]

Meta-analysis that quantified the
relative risk of progression from MCI to

major neurocognitive disorder in
individuals with MS.

An increased risk of progression was
found in individuals with MCI and SM
(OR (95% CI): 2.95 (1.23–7.05) p < 0.05).

Abbreviations: MS: metabolic syndrome; MCI: mild cognitive impairment; BP: blood pressure; CAMCOG: Cambridge Cognitive Examina-
tion; MMSE: Mini-Mental State Examination; CV: coefficient of variation; BMI: body mass index; OR: odds ratio; HR: hazard ratio; CI:
confidence interval; AD: Alzheimer’s disease; HDL-c: high-density lipoprotein; DM: diabetes mellitus.

The impact of MS on cognitive function is not limited to adults. There is also evidence
that suggests that MS components may be detrimental in younger populations. The
presence of T2DM, obesity, and hypertension in children and adolescents is associated with
poorer performance in overall functioning, and declines in executive function, memory,
attention, and intelligence quotient (IQ) [148–152].

Cardiovascular and metabolic risk factors are modifiable and their timely identification
and consequent management could prevent MCI or its progression to major neurocognitive
disorders [101]. Thus, lifestyle changes, including increased physical activity and imple-
mentation of healthy diets, and antihypertensive, hypolipidemic, and insulin-sensitizing
drugs are important considerations for the management of premorbid state characteristics
of MS (Table 2) [153].

Changes in lifestyle and physical activity positively impact cognitive function. [154,155].
Physical activity is associated with better scores on tests of executive function, processing
speed, and improvement in global cognitive function. These benefits were found both
in healthy older subjects and in older subjects with MCI or major neurocognitive disor-
ders [156–159]. More studies to elucidate types of exercise, times, and intensity needed to
cause a positive impact on cognition are necessary; still, 150 min of physical activity per
week is proposed to improve the brain health of individuals with MCI [160].

Better results are obtained if physical activity is combined with a healthy diet. Sup-
plementation with B-vitamins, folic acid, docosahexaenoic acid (DHA), eicosapentaenoic
acid (EPA), and flavonoids is associated with improved cognitive performance, particularly
memory, in subjects with MCI [161]. Similarly, both cognitively normal individuals and
those with MCI are reported to be at less risk of developing MCI or AD if they main-
tain high adherence to a Mediterranean diet [162]. Similar results are associated with
Mediterranean-DASH diets [163], low-carbohydrate diets (keto-diet) [164], and fish PUFA
diets [165].
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Additionally, a causal relationship between antihypertensive drugs and improved
cognitive function is supported by available evidence. Antihypertensive drugs, especially
calcium channel blockers and renin–angiotensin system blockers, have a protective effect
on cognitive decline and decrease the risk of AD and neurocognitive vascular disorders in
older people [166]. Similarly, treatment with antihypertensive drugs reduces the risk of
major neurocognitive disorders by 9% and shows improvement in all cognitive domains,
except language [167]. Longitudinal studies that included older individuals without
major neurocognitive disorders who were undergoing antihypertensive therapy produced
supporting results [110,168].

Controlling glycemic concentrations and increasing peripheral insulin sensitivity are
strategies that might positively affect cognitive function [146]. A recent meta-analysis
showed that treatment with metformin or sulfonylureas is associated with a significant
decrease in cognitive impairment in patients with T2DM. In contrast, the use of insulin
aggravated the dysfunction [169]. Studies of metformin as monotherapy [170], or combined
with vildagliptin [171], on the participants’ cognitive function produced similar results.
However, other studies show no association between the use of antidiabetic drugs and
improvement in cognitive function [172,173]. One study linked the use of such drugs to
the diagnosis of MCI [174].

Finally, unlike antihypertensive and antidiabetic drugs, hypolipidemics, such as
statins, do not affect the risk of progression to MCI or major neurocognitive disorders
of any kind [175,176]. Indeed, several clinical and epidemiological studies report no
significant association between statin use and reduced cognitive impairment [177–180].

Table 2. Association between treatment of MS elements and MCI improvement.

Therapeutic Approach Authors (REF) Methodology Results

Lifestyle changes

Karssemeijer et al. [157]

Meta-analysis of the effect of cognitive
and physical exercise intervention in

older adults with MCI or major
neurocognitive disorder.

A positive effect of the combination of
physical–cognitive interventions on global

cognitive function was observed (MDS
(95% CI) = 0.32 (0.17–0.47); p < 0.05). It

was equally beneficial for individuals with
MCI (MDS = 0.39 (0.15–0.63); p < 0.05),

and for patients with major
neurocognitive disorder (MDS = 0.36

(0.12–0.60); p < 0.001).

Zhang et al. [165]
Meta-analysis of the association

between risk of cognitive impairment
and intake of fish and PUFAs.

Increased fish consumption was
associated with decreased risk of major

neurocognitive disorder (RR: 0.95; 95% CI:
0.90–0.99; p = 0.042). A significant

curvilinear relationship was observed
between PUFA consumption and MCI risk

(p nonlinearity < 0.001).

Krikorian et al. [164]
Prospective study of the effect of a
ketogenic diet in older individuals

with MCI.

An improvement in verbal memory
performance was observed in patients on

a low-carbohydrate diet (p = 0.001).
Memory performance was positively

correlated with ketone levels (p = 0.04).

Antihypertensives

Tzourio et al. [110]
A longitudinal study of the effect of

antihypertensive drugs on the risk of
cognitive decline in older individuals.

The risk of cognitive impairment was
higher in untreated subjects (OR = 6.0

(95% CI: 2.4–15.0)), compared with
subjects treated with antihypertensives

(OR = 1.3 (95% CI: 0.3–4.9)).

Guo et al. [168]

Prospective study that evaluated
whether the use of antihypertensives

affected the appearance and
progression of major neurocognitive

disorders in older adults.

The risk of major neurocognitive disorder
was reduced in subjects receiving

antihypertensive treatment and without
major neurocognitive disorder at the

beginning of the study (RR = 0.7
(95% CI: 0.6–1.0); p = 0.03).
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Table 2. Cont.

Therapeutic Approach Authors (REF) Methodology Results

Antidiabetics

Ng et al. [170]
Longitudinal study of the protective
effect of metformin on the cognitive

performance of older adults.

Use of metformin showed an inverse
association with cognitive impairment

(OR = 0.49 (CI 95%: 0.25–0.95); p < 0.05),
and was associated with a low risk of

cognitive impairment after 6 years of use
(OR = 0.27 (CI 95%: 0.12–0.60); p < 0.05).

Borzì et al. [171]
Retrospective study of the effect of

vildagliptin on cognitive function in
older diabetic adults with MCI.

The use of metformin as monotherapy or
in combination with vildagliptin was

associated with a significant reduction in
MMSE score (p < 0.001).

Hypolipidemics

Bosch et al. [177]
Clinical trial on the effect of

rosuvastatin in reducing cognitive
impairment in older adults.

The mean difference in DSST score
between rosuvastatin vs. placebo was
−0.54 (95% CI: −1.88–0.80); p < 0.05.

Bettermann et al. [178]
Clinical trial on the impact of statin
use on delaying cognitive decline in

patients with and without MCI.

Statins were associated with a decreased
risk for increased neurocognitive

impairment from all causes in patients
who did not have MCI at the beginning of

the study (HR = 0.79 (95% CI: 0.65–0.96)
p = 0.021). In subjects with MCI, these
protective effects were not observed.

Abbreviations: MS: metabolic syndrome; MCI: mild cognitive impairment; SMD: standardized mean difference scores; PUFAs: polyunsatu-
rated fatty acids; MMSE: Mini-Mental State Examination; CV: coefficient of variation; OR: odds ratio; RR: relative risk; HR: hazard ratio; CI:
confidence interval; DSST: Digit Symbol Substitution Test.

4.2. Exploring the Reverse Relationship—From Cognitive Disorder to Metabolic Syndrome

Epidemiological studies suggest the inverse relationship. MCI has been assessed as
a contributor to the development of MS (Table 3). In a cross-sectional study of 3312 male
and female participants aged 70 years and older in Japan, a higher prevalence of MS was
observed in subjects with naMCI than in those with normal cognition. Moreover, women
with naMCI had high blood pressure and high glucose levels more often, while men with
naMCI showed only a higher frequency of high glucose levels compared with the control
group. However, a causal relationship between the two could not be determined from this
cross-sectional study [181]. Clinical evidence is still scarce and has focused more on specific
components of MS, such as insulin/glucose alterations and T2DM, than on MS as an entity.

Alterations in insulin signaling have been reported in postmortem studies in brains
from individuals with AD [182,183], as well as in patients with AD in clinical studies
of plasma hyperinsulinemia and reductions in insulin levels in the CSF. These changes
worsen as the disease progresses [184]. Animal models produce similar results [88,185].
Accordingly, Janson et al. used the Mayo Clinic Alzheimer’s Disease Patient Registry to
show a higher incidence of both T2DM and IR in 80% of AD patients. A greater increase in
fasting plasma glucose (FPG) with age compared with the control group was also observed.
AD patients might thus be at greater risk of developing a diabetic phenotype and suffering
from T2DM [186].

Similarly, a longitudinal study using data from the Lothian Birth Cohort of 1936
(LBC1936) examined parameters, such as cognitive changes and glucose levels. This cohort
consists of 1091 initially healthy individuals born in 1936. Individuals were assessed using
glycosylated hemoglobin (HbA1c) data for four ages—70, 73, 76, and 79 years. Lower
cognitive function at 70 years was associated with increased HbA1c in the following decade.
Cognitive dysfunction is thus negatively correlated with increases in HbA1c. Maintaining
high cognitive function could be a protective factor for the development of hyperglycemia
and T2DM [187].

Likewise, Peng et al. initially conducted a cross-sectional study in 2126 participants,
including 1063 patients recently diagnosed with T2DM and 1063 patients with standard
glucose tolerance. Individuals with higher plasma concentrations of both Aβ40 and Aβ42
were more likely to have T2DM compared to subjects with the lowest concentrations [188].
In a follow-up study, the authors examined Tongii-Ezhou Cohort (TJEZ) data prospectively.
One hundred and twenty-one individuals with T2DM and 242 healthy individuals were
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included. The same association was found, where the probability of T2DM was higher
with higher plasma concentrations of Aβ, 3.79 (95% CI 1.81–7.94) for Aβ40 and 2.88 (95%
CI 1.44–5.75) for Aβ42. The authors conclude that a positive association exists between Aβ
and the risk of acquiring T2DM [188].

Table 3. Effect of cognitive dysfunction and suffering from MS or MS components.

Author (REF) Methodology Results

Janson et al. [186]

Longitudinal study where prevalence of
T2DM in patients with AD was

evaluated, along with the association
between FPG and aging in these patients.

The prevalence of T2DM (34.6 vs. 18.1%;
p < 0.05) and IFG (46.2 vs. 23.8%; p < 0.01)

was higher in the AD group vs. the control
group. A greater increase was seen in FPG

per year in the AD group
(0.83 vs. 0.57 mg/dL−1; p < 0.01).

Bae et al. [181]
Cross-sectional study of the prevalence of
MS by type of MCI in 3312 older adults

and differences related to sex.

The prevalence of MS was higher in
participants with naMCI (men: p = 0.030;
women: p = 0.040) and the risk of MS was

higher in men (OR = 2.45; 95% CI: 1.13–5.32)
than in women (OR = 1.94; 95% CI: 1.12–3.39)

compared with participants with
normal cognition.

Altschul et al. [187]

Longitudinal cohort study of the
association between cognitive function,
HbA1c, and other variables in early and

late life in 1091 adults.

High cognitive function at age 11 predicted
low HbA1c levels at age 70 (p < 0.001).

Additionally, high cognitive function at age
70 was associated with a smaller increase in

HbA1c levels between age 70 and 79
(p < 0.001).

Peng et al. [188].

Study comparing 1063 newly T2DM
diagnosed individuals with 1063 control
individuals for an association between

plasma concentrations of Aβ40 and Aβ42
with risk of T2DM.

The risk of T2DM was higher in individuals
with the highest concentrations of Aβ40 and

Aβ42 (OR = 2.96 (95% CI: 2.06–4.25))
compared with subjects with the lowest

concentrations of Aβ.

Peng et al. [188].
Prospective study of the association

between plasma concentrations of Aβ40
and Aβ42 with risk of T2DM.

A higher risk of T2DM was found in
individuals with concentrations greater than
that of Aβ (OR = 3.79 (95% CI: 1.81–7.94)) for

Aβ40 and (OR = 2.88 (95% CI: 1.44–5.75))
for Aβ42.

Abbreviations: T2DM: diabetes mellitus type 2; HbA1c: glycated hemoglobin; FPG: fasting plasmatic glucose; IFG impaired fast-
ing glucose; MCI: mild cognitive impairment; naMCI: non-amnestic mild cognitive impairment; Aβ: amyloid-beta; OR: odds ratio;
CI: confidence interval.

These findings imply that therapeutic intervention aimed at MCI, especially AD,
could be beneficial for treating MS and its components (Table 4). A drug approved for the
treatment of moderate-to-severe AD is memantine, an NMDA receptor antagonist that
reduces the accumulation of Aβ in AD patients [189]. Ettcheto et al. analyzed the effects of
memantine in rats with model AD that were fed a high-fat diet. After 12 weeks of treatment
with 30 mg/kg memantine, improvement of peripheral metabolic parameters, such as IR,
was observed [190].

Similarly, Ahmed et al. investigated piracetam and memantine in the treatment of
T2DM in 120 individuals. Piracetam is used to improve memory and brain function.
Diabetic patients with AD treated with either drug showed a significant reduction in
diabetic markers (GPA, HbA1c%, and insulin levels) compared to a symptomatic control
group. Thus, agents used to treat MCI demonstrate a therapeutic potential for the treatment
of metabolic disorder [191].

Another therapeutic strategy is based on reducing the activity of enzymes that promote
the formation of Aβ, such as BACE1. The metabolic role of BACE1 is not fully understood,
though loss of BACE1 in transgenic rats leads to increased sensitivity to insulin and
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decreased body weight [192]. Its mechanisms of action may involve leptin signaling and
thermogenesis [95]. These results were extrapolated in a randomized clinical trial (RCT).
Patients with AD treated with lanabecestat, a BACE1 inhibitor, showed greater weight loss
than a placebo group after 104 weeks of treatment [193].

Additionally, immunotherapy against Aβ is used to improve insulin sensitivity and
plasma glucose levels. Zhang et al. used an APP/PS1 EA rat model with increased plasma
levels of Aβ40/42. Animals exhibited altered glucose/insulin tolerance and liver insulin
signaling. After nine months of intraperitoneal injections of antibodies against Aβ, an
improvement was observed in insulin sensitivity. Hepatic signaling of JAK2/STAT3/SOCS-
1 compared to the control group was concurrently attenuated. Thus, neutralization of Aβ
attenuates hyperglycemia and IR in vivo [194].

Table 4. Summary of preclinical and clinical studies exploring treatment of SM with anti-Alzheimer’s drugs.

Author (REF) Treatment Methodology Results

Ettcheto et al. [190] Memantine

Preclinical study of the effects of
MEM on learning and memory

impairment in rats with familial AD
and HFD-induced insulin resistance.

MEM prevented body weight
increase in HFD-fed mice with

APP/PS1 (p < 0.001). Hepatic IR
protein levels showed a significant

increase in APP/PS1 MEM mice
compared to nontreated controls

(p < 0.05), improving insulin function
in the liver.

Zhang et al. [194] Anti- Aβ
Immunotherapy

Preclinical study of the effects of
intraperitoneal injections of anti-Aβ

antibodies in APP/PS1 rats on
glucose metabolism.

After 9 months of treatment,
neutralization of Aβ reduced fasting

blood glucose level (p < 0.001),
improved insulin sensitivity

(p < 0.05), and inhibited hepatic
JAK2/STAT3/SOCS1 signaling

(p < 0.05) in APP/PS1 AD model rats.

Wessels et al. [193] Lanabecestat

RCT that assessed whether
lanabecestat slows the progression of

AD compared with placebo in
patients with early AD (mild

cognitive impairment) and mild
AD dementia.

Even though treatment with
lanabecestat did not slow cognitive

decline, patients who completed
week 104 had a mean (SD) weight
loss of 0 (4.7) kg for placebo, −0.8
(4.6) kg for patients treated with

20 mg lanabecestat, and −1.9 (5.2) kg
for those treated with 50 mg.

Ahmed et al. [191] MemantinePiracetam
Clinical study of the effect of
piracetam and memantine on

diabetes mellitus.

A significant decrease in all diabetic
markers (FPG, HbA1c%, and insulin

levels) in the diabetic and
Alzheimer’s patients was observed
after treatment with memantine or

piracetam compared to diabetic and
Alzheimer’s patients with

symptomatic treatment (p < 0.05).

Abbreviations: MEM: memantin; AD: Alzheimer’s disease; HFD: high-fat diet; Aβ: amyloid-beta; RCT: randomized clinical trial; FPG:
fasting plasmatic glucose; HbA1c: glycated hemoglobin.

Numerous epidemiological and clinical studies and meta-analyses provide evidence
that MS and its components have a substantial impact on the development of MCI. How-
ever, the inverse relationship, where MCI contributes to MS risk, is feasible, though some
studies report the lack of association between these clinical entities [195–198]. A causal
relationship between MS and MCI has yet to be conclusively identified.
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5. Conclusions

The current epidemic of metabolic disorders, framed in what we term MS, increases
in a society with unhealthy lifestyles, and many aspects of this condition are still unknown.
Research on MS generates a constant stream of new information and a flood of debate on
whether this pathology exists, its components, and the pathophysiological mechanisms
that produce it.

Recently, a two-way relationship between MS and brain disorders, such as MCI and
AD, has been observed, but without clarity regarding which phenomenon occurs first and
which pathophysiological pathways are involved. Contrasting findings could be attributed
to factors inherent in the complex nature of MS and MCI. Both disorders are multifac-
torial and display disparity in clinical manifestations. Further, research methodology is
heterogeneous, reflecting the variability in criteria used to define MS, methods used for
evaluating cognitive function, study design, and the presence of confounding factors. The
latter factors might be varying characteristics of the populations studied, such as age,
sex, race, educational status, socioeconomic status, and health–disease status. Large-scale
studies with adequate power and longer follow-up periods will be necessary to establish a
direct and accurate causal relationship between MS and MCI pathologies.
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