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A B S T R A C T   

Deep Eutectic Solvents (DESs) emerge as innovative 21st-century solvents, supplanting traditional 
ones like ethanol and n-hexane. Renowned for their non-toxic, biodegradable, and water-miscible 
nature with reduced volatility, DESs are mostly synthesized through heating and stirring method. 
Physicochemical properties such as polarity, viscosity, density and surface tension of DESs 
influenced their application. This review paper gives the overview of application of eco-benign 
DESs in fruits, vegetables, cereals, pulses, spices, herbs, plantation crops, oil seed crops, medic-
inal and aromatic plants, seaweed, and milk for the extraction of bioactive compounds. Also, it 
gives insight of determination of pesticides, insecticides, hazardous and toxic compounds, 
removal of heavy metals, detection of illegal milk additive, purification of antibiotics and prep-
aration of packaging film. Methodologies for separating bioactive compounds from DESs extracts 
are systematically examined. Further, safety regulations of DESs are briefly discussed and 
reviewed literature reveals prevalent utilization of DES-based bioactive compound rich extracts in 
cosmetics, indicating untapped potential of their application in the food industry.   

1. Introduction 

Extraction, an earliest method for the separation of desired components from agricultural waste is still used in laboratories and 
industries [1]. Traditional organic solvents like ethanol, n-hexane, and methanol, employed in this process are toxic, hazardous, 
potentially explosive, highly flammable and causes environmental pollution [2]. The residues of organic solvents remained in extract 
and act as impurities which is well known for their reproductive hazardous, neurotoxic and carcinogenic nature [3]. Their interaction 
with oxides of nitrogen (came from chemical manufacturing industries) leads to formation of ground level ozone (bad ozone), posing 

* Corresponding author. 
E-mail address: anilkumar.afs@gbpuat.ac.in (A. Kumar).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e28784 
Received 2 February 2024; Received in revised form 24 March 2024; Accepted 25 March 2024   

mailto:anilkumar.afs@gbpuat.ac.in
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e28784
https://doi.org/10.1016/j.heliyon.2024.e28784
https://doi.org/10.1016/j.heliyon.2024.e28784
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e28784

2

respiratory threat and also, aggravating conditions for asthma patients [4]. However, food, cosmetic, biofuel, pharmaceutical, nu-
traceutical as well as chemical industry has been depending on these petroleum originated solvents [5]. To cope up with these 
problems, several research have been carried out in order to find a ‘green solvent’ which has substantial benefits over organic solvent. 

Water, supercritical fluids (SCF), ionic liquids (ILs) and deep eutectic solvents (DESs) are well known green solvents. However, 
some limitations are associated with them. Water is not fit for the extraction of non-polar constituents whereas SCF (like carbon di-
oxide), is not a good solvent for polar compounds. Synthetic ILs are prepared from petroleum which impede its application in food 
products and also Food and Drug Administration (FDA), Codex Alimentarius as well as European Union Legislation have not regulated 
its use in food industry [6,7]. Moreover, ILs and DESs cannot be employed in chemical industry due to high price of ILs, solid form of 
many DESs at room temperature, and deleterious effect of these solvents on humans. DESs are a mixture of two or more components 
which are individually solid at ambient temperature but converts to liquid after mixing due to the development of intermolecular 
hydrogen bond that renders them in liquid state [8]. Other than its application as an extraction solvent for bioactive compounds and 
food colorants from natural sources, it has other uses in food discipline such as in extraction of undesired compounds (such as metals 
from tobacco, lettuce leaves, edible oil etc.), improving mechanical properties (such as flexibility, elasticity etc.) of food packaging 
films, anti-freezing agent for frozen food industries, encapsulation of low bioavailable bioactive compounds, enhancer for organoleptic 
properties [9], extraction of synthetic phenolics (Tert-Butylhydroquinone in edible oil) and protein from oats, soybean, bamboo shoots 
etc, detection of aflatoxin in crops like peanut, millet etc. and detection of hazardous chemicals present in drinking water [10,11]. DESs 
has uses in other areas also like membrane preparation of ultrafiltration as well as nanofiltration [12], separation of azeotropic 
methanol - methyl tert-butyl ether and water-ethanol mixture by using pervaporation chitosan-based DESs membranes [13–15] and 
enhancement of mechanical stability and plasticity of chitosan film as DESs has great ability to dissolve chitosan effectively. DESs also 
used for the conversion of chitin powder into chitin nanocrystals and nanofibers [16]. 

Abbott and co-workers discovered first Deep Eutectic Solvent in 2003 by mixing choline chloride (ChCl) and urea (Ur) in the molar 
ratio of 1:2 (also known as reline) whose melting point (MP) was 12 ◦C, lower than the MP of ChCl (i.e. 302 ◦C) and Ur (i.e. 133 ◦C) 
[17]. It is supposed that high MP depression of eutectic mixture may be due to charge delocalization e.g. halide anion (HBA) to HBD via 
hydrogen bond formation [18]. Deep Eutectic Solvents (DESs) are mainly categorized into four groups i.e. organic salts + metal salts 
(type 1), organic salts + metal hydrates (type 2), organic salts + hydrogen bond donor (HBD) (type 3) and metal chlorides + HBD (type 
4) [19]. Later, Choi, van Spronsen, Dai, Verberne, Hollmann, Arends, Witkamp and Verpoorte [20] described the term ‘Natural Deep 
Eutectic Solvents’ (NADESs) comprising of quaternary ammonium salts and natural substances such as amino acids, polyols, sugars, 
organic acids, amides, amines and diols. In type 3, second element is mainly natural compounds or primary metabolites which are used 
by plants for its own survival such as organic acids, sugars etc. [21,22]. It is considered that these solvents are present in all living cells 
as third class of liquids other than water and lipids which help them to fight against odd conditions such as drought [23]. NADESs 
shows better extraction properties than DESs, solubilises polar as well as non-polar compounds and also acts as a stable media for 
oxidation sensitive compounds [24]. 

Till now, researchers have done intensive experiments that depict the advantages of DESs. As far we know, no review was published 
that separately discussed the use of DESs in agriculture and its byproducts in various perspectives. The present review fills the gap of 
existing literature by presenting the use of DESs in fruits, vegetables, cereals, pulses, spices, herbs, plantation crops, oil seed crops, 
medicinal and aromatic plants, seaweed and milk, discussing each in separate section and from various perspectives such as extraction 
of bioactive compounds, determination of pesticides, insecticides, hazardous and toxic compounds, removal of heavy metals, detection 
of illegal milk additive, purification of antibiotics and preparation of packaging film. Along with it, recovery methods and safety 
regulations of DESs are also discussed by keeping in mind that the knowledge of these properties is utmost important as the extract 
obtained from these avant-gardes solvents has the potential to be utilized directly in food, cosmetics, and pharmaceutical products. 

2. DESs preparation methods 

There are various methods for the preparation of Deep Eutectic Solvents (DESs) such as heating and stirring (also known as thermal 
mixing), microwave, ultrasonication, grinding, freeze drying and vacuum evaporation [25]. One of the widely preferred methods is 
heating and stirring which involves mixing of individual components with or without known amount of water followed by heating in 
water bath or can be done on a hot plate (50–100 ◦C) until a clear homogenous liquid is obtained. This method is one of the simplest, 
cheap and safe but requires more time for preparation [26,27]. In microwave assisted synthesis of DESs, individual components are 
mixed in glass bottles and exposed to microwaves for a few seconds (less than 30 s at 180 W) that makes this method ultra-fast [28]. 
Similarly, in ultrasound (US) assisted synthesis, individual components along with known amount of distilled water (10, 30, 75 % 
w/w) is added in a glass vial consisting of screw cap and treated with US waves (37 KHz, 30 W) at 50 ◦C till a clear homogenous liquid is 
formed [29]. Under grinding method, components are mixed and ground in pestle-mortar at room temperature till clear solution is 
formed. DESs prepared by this method is pure in nature [30]. In freeze-drying method, aqueous solution of DESs or of the individual 
components are freeze-dried in order to sublimate the water to get solvent in its pure form [31]. Lastly, vacuum evaporation method in 
which HBA and HBD are mixed in water and evaporated at 50 ◦C with the help of rotator evaporator. The obtained solution is kept in 
charged desiccator until the solution reached a constant weight [8]. Irrespective of different preparation methods, high temperature 
results in degradation of DESs based on ChCl and carboxylic acids due to esterification reaction [32]. Additionally, no change in 
physicochemical properties of NADESs was found when prepared by three different methods i.e. heating and stirring, microwave and 
ultrasonication [28,33]. 
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3. Physicochemical properties of DESs 

Physicochemical properties of these newly generated solvents depend on their chemical nature as well as on their intermolecular 
interactions. Density, viscosity, polarity and surface tension of the extraction solvent plays an important role in mass transfer phe-
nomenon, and it can be easily adjusted according to the need of an experiment. These following properties are discussed in this section. 

3.1. Density 

Density is a main property which controls the diffusivity and ability of solvent to miscible with other liquids [5]. It plays an 
important role due to its effect on the design and process operation as higher density of DESs during extraction process will require 
higher power consumption during agitation or mixing of contents using agitators or magnetic stirrers and also, during conveyance 
through pump from one place to another. Density of DESs is greatly affected by temperature, molar ratio of HBA and HBD, and pressure 
applied during preparation. Most DESs show higher densities (1.04–1.63 g/cm 3) than water (1 g/cm3) [34]. On contrary, Ribeiro et al. 
[35] prepared low density hydrophobic DESs by mixing DL-menthol as HBA and acetic acid, pyruvic acid, lactic acid (LA), lauric acid 
as HBD in different ratios. They observed low viscosity (5–100 cP) and density of hydrophobic DESs as compared to water. Similar 
results were observed by Martins et al. [6] on using terpenes and monocarboxylic acids based hydrophobic eutectic solvents. Leron 
et al. [36] found that density of ChCl: glycerol (Gly) decreases with increase in temperature due to thermal expansion whereas it 
increases with increase in pressure because of thermal compression. Same trend was observed by Sas, Fidalgo, Domínguez, Macedo and 
González [37] in ChCl: levulinic acid (LeA) as well as by Mjalli and Ahmed [38] in glyceline (ChCl: glycerol) and ethaline (ChCl: 
ethylene glycol). According to Shahbaz, Mjalli, Hashim and AlNashef [39], increase in temperature causes rapid motion of molecules 
and creates more space due to which density decreases. In line with the fact that density is also affected by molar ratio, Manurung, 
Simanjuntak, Perez, Syahputra, Alhamdi, Siregar and Syahputri Zuhri [40] firstly noted decrease in density with increase in con-
centration of ChCl salt in ChCl: D-glucose (Glu) DES but after molar ratio of 2:1 sudden increase in density of DES was observed which 
might be due to the presence of large number of halide anions extra salt in the DES. Additionally, decrease in density of ChCl: ethylene 
glycol (EG) DES was found with increase in concentration of ethylene glycol because of smaller density of EG than the density of ChCl. 
Yusof, Abdulmalek, Sirat and Rahman [41] conducted study to check the effect of HBD on density of DESs prepared by mixing tet-
rabutylammonium bromide (TBABr) with ethylene glycol, 1,3 propanediol and 1,5 pentanediol HBD which consist of two, three and 
five carbon chain, respectively. They noted decrease in the density of DESs with increase in the chain length of HBD as decrease in 
hydrogen bond interaction occur due to steric hindrance as a result free volume tends to increase and ultimately, density of DESs 
decrease. 

3.2. Viscosity 

Viscosity is a measure of internal friction of a flowing fluid which shows the resistance of a liquid to flow. Solvents with high 
viscosity are difficult to handle, transport from one place to another, stir, filter and therefore, this property plays an important role in 
the selection of appropriate solvent. Also, this physical characteristic of solvent aids in design of equipment and calculation of fluid 
flow. It depends on the nature of the HBA and HBD components, temperature, and percentage of water [7]. Hydrogen bonding, 
electrostatic and van der Waals interaction controls the viscosity of DESs [38]. They are 100–1000 times more viscous than organic 
solvents and water due to strong hydrogen bonds which results in lower mobility of free species within DESs [42,43]. Higher viscosity 
may hinder its utilization in some applications such as extraction [44]. Low viscous DESs were high in diffusivity that can further 
ameliorate the extraction capacity of synthetic pigments [45]. Viscosity and temperature were found inversely related to each other. 
Sugar based HBDs such as ChCl: Glu (molar ratio-1:1) was noted highly viscous (34,400 mPa) in nature at 323.15K whereas ChCl: Urea 
(molar ratio-1:2) had viscosity of 750 mPa at 298.15K [46]. 

Solvents prepared by polyalcohol were lower in viscosity than acid and sugar because of weaker molecular interaction of smaller 
molecules present in polyalcohol [47]. On the contrary, urea based DES showed larger viscosity due to the development of stronger 
hydrogen bonds than polyol based DESs [48]. Additionally, ChCl: diacid (oxalic acid) showed more viscosity than ChCl: monoacid 
(levulinic acid) which might be due to additional hydrogen bond formation [34]. Decrease in viscosity was detected with increase in 
mole fraction of HBD in allyl triphenyl phosphonium bromide (ATPPB) - diethylene glycol (DEG) DES (1:4–213.18, 1:10–70.916, 
1:16–57.19 mPa s at 20 

◦

C) and ATPPB - triethylene glycol (TEG) DES (1:4–233.75, 1:10–95.287, 1:16–76.631 mPa s at 20 ◦C) due to 
OH bond stretching which results in weakening of hydrogen bond between salt (Br− ) and HBD (H+) and therefore, decrease in vis-
cosity. Furthermore, increase in molecular weight of DESs and increase in alkyl chain length of HBD (from DEG - (HOCH2CH2)2O to 
TEG- HOCH2CH2OCH2CH2OCH2CH2OH) cause enhancement in viscosity of DESs [49]. Higher viscosity can lead to many technical 
problems in decantation, dissolution and filtration [50] which is decreased by adding water in highly viscous DESs matrix by 
weakening the hydrogen bonds between the precursors [51]. Low viscosity DESs consisting of LeA, ethylene glycol or phenol were 
found incredible for practical use. Even 10 % of water can notably reduce the viscosity without affecting their solvation power [43]. 
However, addition of excess water or over-dilution (more than 50%) disturbs the hydrogen bonding in NADESs as a result, affecting its 
solubilization power adversely [24]. 

3.3. Polarity 

Polarity is an important property that reflects the overall solvation capability of solvents which affects the extraction efficiency of a 
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compound [52]. Change in polarity of Natural Deep Eutectic Solvents (NADESs) can take place by the addition of water [8]. Due to 
high polarity and intrinsic property of hydrophilic NADESs, it possesses great solubilising power for polar substances along with some 
water insoluble substances [7]. Organic acid based DESs are most polar (more than water) followed by amino acid and sugars based 
ones while polyalcohol based DESs are found least polar (close to menthol) [53]. Higher electronegativity and hydrogen bonding 
ability makes up the hydrophilic nature of most DESs and NADESs that shows its similarity with other polar solvents [47]. However, 
the polarity of DESs can be altered into polar or non-polar solvent that can further help to extract various kinds of phytochemical 
compounds. This property makes it highly effective over conventional solvents such as methanol, ethanol, water and acetone [54]. 
Formerly discovered DESs were mostly hydrophilic (water-soluble) in nature which hampered its utilization in non-water-soluble 
samples. Therefore, hydrophobic DESs got attention from researchers and scientists. Hydrophobic DESs was found first in 2015 and 
was used for the extraction of volatile fatty acids as well as for biomolecules like vanillin and caffeine [55]. Use of hydrophobic or 
hydrophilic DESs depends on the target compound to be extracted as well as on the type of food sample under consideration (solid or 
liquid). Successful extraction of organic as well as inorganic compounds can be carried out by using hydrophobic DESs and it is 
well-known for its solvation characteristics for both polar and non-polar compounds [56]. According to the law of similarity and 
inter-miscibility (i.e. like dissolves like), solvent polarity value near to the solute polarity value expected to perform superior and vice 
versa [57]. Xu, Ran, Chen, Fan, Ren and Yi [58] found poor extraction of citrus peel flavonoid by sugar based DESs as they have strong 
polarity whereas, flavonoids present in citrus peel are less polar in nature as it has multiple methoxy groups (R–O–CH3). Furthermore, 
ChCl: LeA was found most suitable for extracting flavonoid from citrus peel as it has lowest polarity among other tested DESs. 

3.4. Surface tension 

Surface tension is the tension created in the liquid surface due to cohesive nature of water molecules which allows it to resist an 
external force. This property plays important role in extraction, absorption, adsorption, heat exchangers, fluid flow piping, industrial 
processes design etc. [49]. Solvents having less surface tension penetrate easily in the solid matrix and therefore, enhance the 
extraction efficiency. Parameters such as alkyl chain length, temperature, hydrogen bond between HBA and HBD, molecular weight 
and viscosity affects the surface tension. Strong hydrogen bond form higher surface tension which generally gets disturbed at high 
temperature due to increase in kinetic energy and decrease in cohesion forces which ultimately results in reduction of surface tension 
[49,59]. Higher molar ratio of ChCl: glycerol decreases the surface tension of DESs as higher amount of ChCl reduces the interaction 
between HBA and HBD [60]. Firstly, Ghaedi, Ayoub, Sufian, Shariff and Lal [49] found lower value of surface tension in ATPPB-TEG 
than ATPPB-DEG DES as high OH covalent bond wave number of ATPPB-TEG depicts the weakening of hydrogen bond and hence, 
decrease in surface tension at all measured temperature and similar molar ratios. Secondly, due to decrease in DESs viscosity, reduction 

Fig. 1. Schematic representation of DESs preparation and its application in agriculture sector.  
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Table 1 
Overview of various process parameters along with the yield for extraction of desired components from fruits, vegetables, cereals and pulses by using 
DESs.  

Food material Target component Best DESs 
combination 

Optimum 
molar 
ratio 

DESs 
prepared 
method 

Combined 
techniques for 
extraction 

Yield References 

Banana puree Soluble sugars MA: β-alanine: 
water 

1:1:3 H + S MAE (2.45 GHz, 
900 W, 25 ◦C, 30 
min) 

106.9 g/100 g [71] 

Myrciaria 
cauliflora 

Anthocyanin and 
Pectin 

a. ChCl: Prop (for 
anthocyanin) b. 
CA: Glu: water 
(for pectin) 

1:2 
1:1:3 

H + S Heating at 323K 279.45/100g anthocyanin 
27.3% pectin 

[72] 

Mangifera pajang 
waste 

Anti-oxidants ChCl: AA 1:2 H + S Incubator shaker 
(2 h at 51 ◦C), 
speed - 178 rpm 

half-life values for the 
antioxidant-ChCl/AA was 
higher by 4.17–25% as 
compared to aqueous 
system 

[73] 

Garlic skin (GS) 
and green 
onion root 
(GOR) 

Lignin isolation ChCl: Gly: 
AlCl3.6H 2O 

1:2:0.2 H + S UAE (30 min in 
room 
temperature) and 
MAE (80 ◦C for 
20 min) 

lignin removal rate 
GS (90.14%) 
GOR (92.34 %) 

[74] 

Corn stalk, wheat 
straw, and 
rapeseed 
stem residues 

Lignin LA: ChCl (acidic 
DES) 
Gly: K2CO3 
(alkaline DES) 

5:1 H + S Heating at 100 ◦C 
for 8 or 16 h or at 
80 ◦C for 24 h 

delignification yields 
11.8–5.7 wt % 

[75] 

Apple, pear and 
orange 

Diphenylamine Menthol: n- 
octanoic acid 

1:4 H + S UAE (100 W at 
20 ◦C for 1 min) 

Extraction efficiency 
94.4% 

[76] 

Fruit juices Sulfonamides TMA chloride: 2- 
Octanol 

1:2 H + S UAE (5 min) Recovery88.09–97.84% [77] 

Fruit juices Organophosphorus 
pesticides 

ChCl: Phenol 1:2 H + S UAE (12.31 min) Recovery87.3–116.7 % [78] 

Blueberry Anthocyanins ChCl: Gly: CA 0.5:2:0.5 H + S UAE (40 kHz, 
2 min) 

362.3 mg/100g [79] 

Apple pomace Pectin ChCl: LA 1:2 H + S Heating in water 
bath (0.5–2h at 
40–80 ◦C) 

21.34% (w/w) [80] 

Mango Peel Pectin Betaine: CA 
ChCl: MA 

1:2 H + S water bath (90 
◦

C) 
36.76 % and 38.72 % [81] 

Olive pomace Polyphenols ChCl: CA 
ChCl: LA 

1:2 H + S HAE (30 min, 40 
or 60 ◦C, speed - 
4000 or 12,000 
rpm), MAE (200 
W at 40 or 60 ◦C 
for 30 min), UAE 
(30 kHz, 280 W, 
40 or 60 ◦C for 
30 min), HHPAE 
(room 
temperature, 
high pressure - 
300 and 600 MPa 
for 5 and 10 min) 

HAE18.30 mg/g (dw) 
MAE-9.49 mg/g (dw) 
UAE-2.51 mg/g (dw) 
HHPAE-5.31 mg/g (dw) 

[82] 

Lyciumbarbarum 
L. 

Flavonoids ChCl: p- 
toluenesulfonic 
acid 

1:2 H + S UAE (ambient 
temperature for 
1.5 h) 

Myricetin57.2 mg/g, 
morin-12.7 mg/g and rutin 
9.1 mg/g 

[83] 

Buckwheat 
sprouts 

Flavonoids ChCl: TEG 1:4 H + S UAE (700 W, 40 
kHz, 40 ◦C for 40 
min) 

21.07 ± 1.23 mg RE/g [84] 

Citrus peel Flavonoids ChCl: LeA: N-MU 1:1.2:0.8 H + S UAE (200 W, 35 
kHz, 50 ◦C for 25 
min) 

65.82 mg/g [58] 

Grape skin Phenolics ChCl: Ox 1:1 H + S MAE (50–90 ◦C 
for 15–90 min), 
UAE (30–90 ◦C 
for 15–90 min), 
fixed frequency - 
35 kHz 

5and 2-fold higher 
extraction yield than water 
and aqueous methanol for 
total anthocyanin content, 
respectively 

[85] 

(continued on next page) 
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in surface tension was observed with increase in concentration of HBD (i.e., DEG and TEG) in DESs. However, most importantly, while 
comparing the surface tension of two DESs (prepared from different components and same molar ratio), hydrogen bonding and alkyl 
chain should be considered the crucial parameter than viscosity. Even, at same molar ratio (1:4), ATPPB-DEG DES had less viscosity 
(150.76 mPa s at 25 ◦C) than ATPPB-TEG DES (166.52 mPa s at 25 ◦C) but the surface tension of former was higher i.e., 49.37 mN/m 
than latter one i.e. 48.25 mN/m at 25 ◦C. The major reason behind this was strong hydrogen bonding between HBA and HBD and small 
alkyl chain of ATPPB-DEG DES rather than viscosity. Also, lower molecular weight DES showed less surface tension at all temperature 
when prepared from same components. Chen, He, Fan and Song [61] noted higher and lower surface tension of betaine and chloride 
based DES, respectively than its pure substances. Hayyan, Mjalli, AlNashef, Al-Wahaibi, Al-Wahaibi and Hashim [62] found, at the 
same molar ratio of DESs, higher surface tension of Glu based DESs as compared to carboxylic acid-based ones. This might be due to 
large number of hydroxyl group (5-OH) in Glu based DESs which make the stronger hydrogen bond and therefore, results in higher 
surface tension. Bi, Tian and Row [63] found decrease in surface tension of alcohol based DESs in the following order: ChCl: 1,6 
-hexanediol > ChCl: glycerol > ChCl: 1,4 butanediol > ChCl: 1,3 butanediol >2,3 butanediol >1,2 butanediol > ethyl glycol which 
were selected for extraction of flavonoids from Chamaecyparis obtusa. 

Table 1 (continued ) 

Food material Target component Best DESs 
combination 

Optimum 
molar 
ratio 

DESs 
prepared 
method 

Combined 
techniques for 
extraction 

Yield References 

Grape pomace 
(GP), olive 
pomace (OP) 

Polyphenolic 
compounds 

ChCl: CA 2:1 H + S Ultrasonic- 
microwave 
cooperative 
reactor 
(microwave 
power - 300 W, 
ultrasound power 
- 50 W for 10 
min) 

2892.07 ± 60.12 mg/kg 
dw (GP), 
645.99 ± 64.8 mg/kg dw 
(OP) 

[86] 

Sour cherry 
pomace 

Polyphenols ChCl: MA 1:1 Microwave 
irradiation, 
US and H +
S 

Microwave 
irradiation (90 W 
for 15 s), UAE 
(40 ◦C for 30 
min) and H + S 
(650 rpm, 40 ◦C 
for 30 min) 

3238.32 μg total phenols/ 
g, 2442.93 μg total 
anthocyanins/g, 418.00 μg 
total flavonoid/g, and 
377.39 μg total phenolic 
acids/g in H + S method 

[28] 

Blueberry fruits Phenolic 
compounds 

ChCl: Gly:CA 0.5:2:0.5 H + S UAE (40 kHz, 50 
min, room 
temperature) 

35-fold higher intestinal 
bioaccessibility for 
anthocyanin than organic 
solvent 

[87] 

Orange peel Polyphenols ChCl: EG 1:4 H + S Shaking 
incubator (100 
min, 313.15 K, 
2800 rpm speed) 

3.61 mg/g (for EG), 
2.62 mg/g (for ethanolic 
solvent) 

[88] 

Mango Peel Polyphenols LA: Glu 5:1 H + S UAE (30 min, 30 
◦

C), CBE (400 
rpm, 60 min, 
50 ◦C), SE 
(reflux 
temperature of 
ethanol for 5 h) 

1.4 times high phenolic 
content 

[89] 

Apple pomace Bioactive 
compounds 

ChCl: Gly, 
ChCl: LA, 
ChCl: CA 

1:2 
1:3 
1:1 

H + S UAE (10–50 min, 
20 kHz 
frequency, 400 W 
power and 70 % 
amplitude) 

5105 μg/g (ChCl:Gly) 
3448 μg/g (70 % ethanol) 

[90] 

Orange peel Bioactive 
compounds 

ChChl: Gly 
ChChl: MA 

1:2 
1:1 

Water Bath H + S (45 ◦C for 
20 min) 

ChChl:Gly (TPC 903 mg 
GAE/100 g, TFC 169 mg/ 
100 g, 
AA 416 mg/100 g) 
ChChl: MA (TPC 1053 mg 
GAE/100 g, TFC -94.7 mg/ 
100 g, AA -430 mg/100 g) 

[91] 

ChCl - – choline chloride, MA-malic acid, Prop - propylene glycol, Glu - glucose, LeA - levulinic acid, AA - ascorbic acid, Gly - glycerol, EG - ethylene 
glycol, LA – lactic acid, CA - citric acid, Ox - oxalic acid, MU - - methyl urea, TMA-trioctylmethylammonium, TEG - triethylene glycol, UAE-ultrasound 
assisted extraction, MAE-microwave assisted extraction, H + S - heating and stirring, HAE - homogenate assisted extraction, HHPAE - high hydrostatic 
pressure-assisted extraction, CBE - conventional batch extraction, SE - soxhlet extraction, dw - dry weight, RE –rutin equivalent, GAE - gallic acid 
equivalent, TPC- total phenol content, TFC - - total flavonoid content, AA - ascorbic acid. 
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4. Application of DESs in agricultural commodities and their by-products 

Deep Eutectic Solvents (DESs) prepared by using various methods can be applied in fruits, vegetables, cereals, pulses, spices, herbs, 
plantation crops, oil seed crops, medicinal and aromatic plants, seaweeds and milk for different purposes such as extraction of 
bioactive compounds, removal of heavy metal etc. (Fig. 1). 

4.1. Fruits and vegetables 

Fruits and vegetables are the home of bioactive compounds and the by-products generated during its processing are also rich in 
these compounds as they are the part of it. Guo, Ping, Jiang, Wang, Niu, Liu and Fu [64] combined the homogenization and cavitation 
burst extraction technique developed in their laboratory for the mulberry anthocyanin extraction by using eighteen different Natural 
Deep Eutectic Solvents (NADESs). They revealed that ChCl: Gly NADES having molar ratio of 1:2 perform best as it extracted highest 
phenolic compounds (44.65 mg GAE/g) than molar ratio of 1:3 and 1:4. This is because, increase in concentration of Gly enhances the 
viscosity of NADES and therefore, create hindrance in mass transfer. Moreover, conventional solvents such as 70 % ethanol (29.96 mg 
GAE/g) and 80 % methanol (25.47 mg GAE/g) extracted lower phenolic compounds. Other optimum conditions for phenolic com-
pounds extraction were temperature (60 ◦C), ultrasound amplitude (60 %), time (17.5 min), liquid-solid ratio (31.7 mL/g) and water 
content (33.5 %). Chen, Li, Liu, Wang, Yang, Zhang and Zhang [65] extracted flavonoid from Rubia species fruit by using DESs based 
ultrasonic assisted extraction (UAE). They found higher extraction i.e. 49.14 mg/g and 55.15 mg/g of total flavonoid from Rubia 
truppeliana and Rubia cordifolia, respectively when ChCl: LA was employed under following optimized conditions i.e. liquid: solid ratio 
- 30: 1 g/mL; extraction temperature - 70 ◦C and extraction time - 40 min. Additionally, extract obtained from NADES showed higher 
antioxidant activity and stability for flavonoid than ethanol extract which might be due to hydrogen bond between DES and the 
compound of interest that decrease the motion of interested compound. Similarly, Radošević, Ćurko, Gaurina Srček, Cvjetko Bubalo, 
Tomašević, Kovačević Ganić and Radojčić Redovniković [66] observed that NADESs proved to be efficient in isolating phenolic ex-
tracts of grape skin with improved biological activity as compared to organic solvents. Binary NADESs prepared from ChCl: Gly or 
ChCl: citric acid (CA) was similar in effectiveness as 80 % methanol for extracting anthocyanins from grape skin. Also, NADESs ensured 
the stability of extracted anthocyanins depicting its potential to be used in food, cosmetics and pharmaceuticals. Various other studies 
also came up that showed immense potential of NADESs as a solvent for extraction of anthocyanin components of grape skin, 
Catharanthus roseus, and wine lees (leftover dead yeast after wine fermentation) [67–69]. Apart from using NADESs as extracting 
solvent for bioactive compounds, they are also used for the determination of pesticides, sulphonamides, and diphenyl amides in 
various fruit juices (Table 1). NADESs has also been used in extracting several compounds from vegetables. Dai and Row [70] observed 
higher UAE efficiency of quercetin from onion and broccoli with betaine (Bet) based DESs than ChCl based ones. Bet: D-Mannitol 
showed the highest extraction recoveries (quercetin 95.75 %, isorhamnetin 93.82 %, and kaempferol 91.71 %) under the optimal 
conditions. A study was conducted on 17 types of NADESs which were based on different compounds like ChCl, acetyl ChCl, choline 
tartrate, Bet and carnitine in different ratios. Maximum flavonoids were extracted in acetyl ChCl: LA (2:1) based NADES (30 % water 
added) from various fruits, vegetables and spices such as grape, plum, orange peel, wolfberry, cranberry, onion, broccoli, rosemary, 
mustard and black pepper [29]. 

Fang et al. [92] revealed the potential of durian fruit seed gum (low viscosity and high water absorption property) in the edible food 
coating after tuning its properties using NADESs. Sousa, Lima, Silva, Moreira, Pintado and Silva [93] recommended the use of ChCl: 
oxalic acid and ChCl: ascorbic acid as a plasticizer in cassava starch-based film as it showed improvement in film characteristics in 
comparison to 40 % glycerol standard as plasticizer. Lijang, Wang, Wu, Cheng, Chen and Qi [94] analysis the interaction of organic 
salts with linalool and limonene present in citrus peel oil (CPO) by COSMO-RS (conductor-like screening model for real solvents) 
modeling. They separated terpenes (limonene) from terpenoids (linalool), as terpenes has no aroma as well as flavour and degrade in 
presence of light and heat, by associative extraction using DESs. Researchers observed that tetrabutylammonium chloride (TBAC) salt 
forms strong interaction with linalool and weak interaction with limonene. The high extraction of linalool (target substance) was due 
to in situ formation of deep eutectic solvent consist of TBAC as HBA and linalool as HBD. The COSMO-RS interaction analysis and the 
experimental data were noted in good agreement. Ultimately, the linalool was released for analysis using a gas chromatographer once 
the previously formed interaction was broken by the introduction of a strong HBD. 

4.2. Cereals and pulses 

Ochratoxin A (OTA) is a mycotoxin, produced by Aspergillus and Penicillium, mainly identified in wheat, wine, dried fruit etc., 
known to cause cancer in humans. Keeping this point in mind, Piemontese, Perna, Logrieco, Capriati and Solfrizzo [95] conducted 
study for determining OTA in wheat by using ChCl-based DESs of two different types (ChCl: Gly and ChCl: Urea) in the same ratio of 
1:2. OTA was recovered up to 89 % which was close to the recovery from conventional solvent acetonitrile-water mixture (93 %). In 
another study, Huang, Feng, Chen, Wu and Wang [96] successfully removed the cadmium (Cd) from 51 % to 96 % by using ChCl based 
NADESs from rice flour which might be due to acidic nature of ChCl based NADESs that introduced H+ ions into the system as a result 
Cd-rice flour complex disrupted whereas Gly based NADESs was unable to introduce H+ ions into the system due to its alkaline nature. 
Additionally, when saponin (natural biodegradable surfactant and acidic in nature) was mixed with ChCl: L-(− )-Sorbose, synergistic 
effect was seen as it removed >99 % Cd from rice flour as saponin introduced more H+ ions into the system and capture Cd2+ through 
micelle formation. 

Huang, Feng, Jiang, Qiao, Wu, Voglmeir and Chen [50] observed that ChCl and glycerol based NADESs increases the solubility of 
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rutin, a flavonoid, extracted from buckwheat hull by 660–1577 times as compared to water. ChCl based NADESs were more capable to 
extract high amounts of rutin than glycerol-based ones. Among all tested ChCl based NADESs, ChCl: Glycerol (1:1) with addition of 20 
% water extracted the maximum amount of rutin i.e., 9.6 mg/g and further addition of water resulted in the reduction of it which might 
be due disruption of hydrogen bonds between the components of NADESs and therefore, loss in the supramolecular structure. Iso-
flavones, a type of polyphenols, act as antioxidant, anti-allergic, anti-cancerous, anti-inflammatory, anti-hyperglycemic, 
anti-hyperlipidemic and protect the nervous system. Viewing this, Shang, Dou, Zhang, Tan, Liu and Zhang [97] examined twenty 
different types of DESs by mixing various combinations of ChCl, Bet and L-proline as HBA with carboxylic acid, alcohols, sugars and 
amines as HBD for DESs-based UAE of isoflavones from chickpea sprouts. They concluded that ChCl: propylene glycol (1:1) gives 
highest (5.73 mg/g) whereas L-proline: DL-malic acid (1:1) produces the lowest amount of isoflavones. Under optimum conditions, 
yield of ononin, sissotrin, formononetin, biochanin A isoflavones and total flavonoid content were 0.55, 1.56, 1.71, 2.40 and 8.35 
mg/g, respectively. Cui, Peng, Yao, Wei, Luo, Wang, Zhao, Fu and Zu [98] found that 1,6-hexanediol: ChCl (7:1) with 30 % of water 
content yields higher amount of bioactive compounds (genistin, genistein and apigenin) from pigeon pea roots and obtained higher 
extraction yield in DESs based microwave assisted extraction (MAE) followed by DESs based heat reflux extraction (HRE) and DESs 
based UAE. In the same year, Wei, Qi, Li, Luo, Wang, Zu and Fu [99] independently noticed that the yield of phenolic compounds from 
pigeon pea leaves was increased as ChCl: maltose ratio decreased from 1:1 to 1:2. However, extraction yield lessen when molar ratio 
changed from 1:2 to 1:4 because of high viscosity, increase in surface tension, and reduction in the reaction between chloride anion and 
desired compounds. Hence, they concluded that ChCl: maltose (1:2) NADES based MAE prepared with addition of 20 % water content 
was the best combination for the higher extraction of polar as well as weak polar phenolics (30.63 ± 0.98 mg/g) from pigeon pea 
leaves. Additionally, this was the first time that ultra performance liquid chromatography protocol was developed and successfully 
carried out for determination of fourteen different types of phenolics from pigeon pea leaves extracted by NADESs. 

Nowadays, there is a huge demand of plant protein but the extraction of protein by conventional method (alkaline extraction- 
isoelectric precipitation) is time taking as well as laborious. Yue, Zhu, Yi, Lan, Chen and Rao [100] successfully extracted the pro-
tein from oat flour by using eighteen different DESs combinations containing ChCl with 1,4 butanediol, 1,2 butanediol and 2,3 
butanediol in the presence or absence of water at various molar ratios. ChCl: 1,4 butanediol: water (1:3:1) showed highest protein 
content (55.28 %), foaming capacity, thermal stability (denaturation temperature - 105 ◦C–111 ◦C) and solubility. DES, in absence of 
water, showed higher total essential amino acid percentage than DESs containing water in the oat protein extracted by different DESs. 
Additionally, highest α-helix (45.55 %) was noted in 2,3 butanediol based DES/water binary mixture than 2,3 propanediol based DES 

Table 2 
Overview of DESs application in spices and herbs.  

Samples Target 
component 

Best DESs 
combination 

Optimum 
molar ratio 

DESs 
preparation 
method 

Combined techniques 
for extraction 

Yield References 

Peppermint Monoterpenes, 
phenolic 
compounds 

ChCl: Glu 5:2 Freeze- 
drying 

UAE (power − 500 W, 
ambient temperature) 

monoterpenes 0.479 mg/g to 
1.253 mg/g 
total phenol content 
55.23–98.27 mg/g 
total flavonoid content- 
7.30–21.05 mg/g 

[108] 

Alkanet root Phytochemicals Sodium 
acetate: 
formic acid 

1:4 H + S UAE (25 ◦C for 20 
min) 

TPC 390.16 mg GAE/g, TFC 
10.69 mg ECE/g and DPPH 
444.68 mmol TE/g 

[109] 

Curcumae 
longae 
rhizome 
(CLR) or 
turmeric 
tea (TT) 

Curcuminoids TBA chloride: 
decanoic acid 

1:1 H + S Dispersive liquid- 
liquid 
microextraction 
based on 
solidification of 
floating DES drop 

In CLR (mg/g)- 
bisdemethoxycurcumin-2.95, 
demethoxycurcumin- 2.42, 
curcumin-5.12 
In TT (mg/g)- 
bisdemethoxycurcumin– 1.40, 
demethoxycurcumin - 1.54, 
curcumin – 4.15 

[110] 

Cumin Essential oil ChCl: L- LA 1:3 H + S Microwave-assisted 
NADES pretreatment 
coupled with 
microwave 
hydrodistillation 

2.22% [111] 

Vanilla pods Vanillin LA: fructose 5:1 H + S Heating (50 ◦C for 1 
h) 

21.8 mg/g [112] 

Curcuma longa Curcuminoids ChCl: LA 1:1 H + S UAE (30 ◦C for 20 
min) 

77.13 mg/g [113] 

Perillae Folium 
leaves 

Essential oil ChCl:MA 2:1 H + S UAH (600 W for 20 
min) 

0.69 % [114] 

Caryophylli 
Flos 

Bioactive 
compounds 

1,3BD: LeA 1:3 H + S UAE (30 min) – [115] 

ChCl – choline chloride, Glu – glucose, MA-malic acid, TBA-tetrabutylammonium, LA – lactic acid, BD –butanediol, LeA – levulinic acid, H + S – 
heating and stirring, UAE-ultrasound assisted extraction, MAE -microwave assisted extraction, UAH– ultrasonic assisted hydrodistillation. 
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not containing water (43.80 %). On the other hand, DES/water binary mixture of 1,4 butanediol and 1,2 butanediol decreases the 
α-helix percentage in oat protein. Various hurdles are associated in the conventional method for the separation of cellulose and 
hemicelluloses from lignin which is a crucial step for the production of bioethanol. With the aim of solving this problem, for the first 
time, Kumar, Parikh and Pravakar [101] conducted study on the pre-treatment of lignocellulosic biomass rice straw by using NADESs 
followed by enzymatic hydrolysis of pre-treated biomass and observed that LA: ChCl (5:1) based NADES was capable to remove 60 ±
5% of lignin from biomass which was higher in amount than LA: Bet (2:1) based NADES (52 ± 6% lignin). After lignin removal, 
NADES-pretreated rice straw was subjected to enzymatic saccharification, and fermentable sugars were produced with a saccharifi-
cation efficiency of 36.0 ± 3.2 %. 

4.3. Spices and herbs 

Spices and herbs are known for their high antioxidant content. Spices can be obtained from any part of the plant except its leaves 
whereas, herbs can be obtained only from the leaves of the plants [102]. Numerous research is carried out to extract compounds such 
as essential oil, vanillin, curcuminoids etc. from different spices and herbs (Table 2). Hsieh, Li, Pan, Chen, Lu, Yuan, Zhu and Zhang 
[103] performed UAE in ginger powder for extraction of gingerols by using 15 different alcohol based DESs. They concluded that Bet-1, 
3-butanediol, L-carnitine –triethylene glycol as well as L-carnitine-1,3-butanediol in molar ratio of 1:4 and diluted with 75 % water 
before extraction shows higher extraction yield than traditional organic solvents. Additionally, suitable temperature for extraction of 
gingerols was found 50 ◦C (30 min) as beyond this temperature gingerols start degrading. Recently, Duru, Slesarev, Aboushanab, 
Kovalev, Zeidler, Kovaleva and Bhat [104] extracted isoflavones from kudzu roots and soy molasses waste by using UAE with NADESs 
and revealed that extract obtained from NADESs had higher antioxidant activity even the content of isoflavone was less as compared to 
methanolic extract. Additionally, less degradation rate of isoflavones was observed in NADESs extract. Turmeric is known as the queen 

Table 3 
Overview of DESs application in plantation and oil seed crops.  

Samples Target component/ 
extracted component 

Best DESs 
combination 

Optimum 
molar ratio 

DESs 
prepared 
method 

Other combined 
techniques for 
extraction 

Extraction yield/ 
efficiency 

References 

Rapeseed cake 
(RC) and 
evening 
primrose (EC) 
cake 

Protein rich precipitate ChCl: Gly 1:2 H + S Heating (140 ◦C 
for 2 h) 

19.9 g/100 g RC, 
34.2 g/100 g EC 

[121] 

Edible oil 
(sunflower oil, 
baby oil, trout 
oil, waste 
frying oil, 
syrup soaked 
pastry oil) 

Separation and 
preconcentration of 
lead, copper, nickel, 
manganese 

ChCl: Ur 1:2 H + S Flame atomic 
absorption 
spectrometry 

Recovery greater than 
95% 

[122] 

Spent coffee 
grounds 

Phenolic compounds Bet:1,2 BD 1:7 H + S Thermoshaker 
(500 rpm, 50 

◦

C, 
60 min) 

31.67 mg GAE/g [123] 

Peanut roots Resveratrol ChCl: 1,4 BD 1:3 H + S UAE (40 kHz and 
400 W, 55 ◦C, 40 
min) 

38.91 mg/kg [124] 

Peanut hull Quercetin Imidazole: LA 1:1 H + S MAE (323 K, 8 
min) 

430 μg QE/g [125] 

Palm oil Palmitic acid Bet 
monohydrate: 
Gly 

1:8 H + S hotplate (40 ◦C, 
2h, agitation- 
250 rpm) 

Efficiency of palmitic 
acid extraction 
− 34.14%, amount of 
antioxidant preserved in 
the refined palm oil up 
to 99%. 

[126] 

Olive, almond, 
sesame, 
cinnamon 

Ferulic, caffeic, 
cinnamic acid 

ChCl: EG 1:2 H + S 5 min in 
ultrasonic bath 

Recovery 94.7–104.6% [127] 

Spent coffee 
grounds 

Chlorogenic acids, 
flavonoids 

1,6-hexanediol: 
ChCl 

7:1 H + S UAE (ambient 
temperature for 
45 min) 

TPC 17.0 mg GAE/g, 
DPPH 26.2 mg TE/g, 
FRAP 32.9 mg TE/g 

[128] 

Date palm seed Bioactive compounds ChCl: LA 1:2 H + S UAE (35 and 
40 ◦C, 15 min) 

TPC 145.54 mg GAE/g 
DPPH 719.19 mmol TE/ 
g 

[129] 

Coffee husk waste Phenolic compounds ChCl: proline 1:1 H + S H + S (80 ◦C, 120 
rpm, 30 min) 

10.07 mg GAE/g [130] 

ChCl - choline chloride, Gly - glycerol, Ur – urea, Bet – betaine, BD - butanediol, LA - lactic acid, Glu - glucose, EG - ethylene glycol, H + S - heating and 
stirring, UAE-ultrasound assisted extraction, MAE - - microwave assisted extraction, GAE - gallic acid equivalent, QE - quercetin equivalent, TE - trolox 
equivalent. 
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Table 4 
Overview of DESs application in medicinal and aromatic plants.  

Samples Target/extracted 
component 

Best DESs 
combination 

Optimum 
molar ratio 

DESs 
prepared 
method 

Other combined 
techniques for extraction 

Extraction yield/efficiency Therapeutic properties Ref. 

Rhodiola rosea rhizome Phenyletanes and 
Phenylpropanoid 

LA: Fru: water 5:1:11 H + S UAE (50 W, 35 kHz, 36 ◦C, 
60 min) 

26.10 mg/g Treat depression, fatigue, weakness and 
anxiety 

[140] 

Dittany (Dt), fennel (Fe), 
marjoram (Mj), mint 
(Mi) and sage (Sa) 

Polyphenol LA: glycine: 
water 

3:1:3 H + S UAE (80 ◦C, 90 min, 
power - 140W, frequency - 
37 kHz) 

TPC (mg GAE/g dw) 
Dt 115.40, Fe 34.72, Mj - 
137.36, Mi 109.67, 
Sa114.92 
TFC (mg RtE/g dw) 
Dt 18.52, Fe 7.96, Mj - 
21.70, Mi 17.12, Sa 24.29 

Antioxidant, antimicrobial 
chemoprotective potency 

[141] 

Ligusticum chuanxiong 
Hort 

Ferulic acid ChCl: 1,2 Prop 1:2 H + S MAE (60 ◦C, 15 min) 2.32 mg/g Antioxidant, antibacterial, anticancer 
and promote blood circulation 

[142] 

Stevia rebaudiana leaves Stevioside and 
rebaudioside A 

TEA chloride: 
EG 

1:2 H + S UAE (59.4 ◦C, 70 min) Three times higher steviol 
glycosides in UAE than 
conventional method 

Antibacterial, hypotensive, diuretic, 
anti-tumors, anti-inflammatory 

[143] 

Polygonum cuspidatum Resveratrol ChCl: Ox 1:1 H + S UAE (75 ◦C, 80 min, 250 
W) 

12.31 mg/g Antioxidant, anti-viral, anti- 
inflammatory, anti-diabetes and 
antitumor activities 

[144] 

Kinkeliba (C. 
micranthum) 

Phenolic compounds ChCl: LA 1:2 H + S UAE (40 kHz, 296 W, 
25 ◦C, 30 min), HAE (100 
rpm, 25 ◦C, 30 min), 
ME (25 ◦C, 12 h) 

TPC 21.12–23.62 mg GAE/ 
g, 
TFC 4.38–5.01 mg ECE/g 

Antioxidant, nephroprotective activity, 
anti-tyrosinase, anti-inflammatory, 
anti-diabetic, anti-microbial 

[145] 

Centella asiatica Asiaticoside Bet: LeA 1:2 H + S UAE (36 ◦C, 32 min, 140 
W) 

229.92 mg/g ulcerative colitis, wound, atopic 
dermatitis, 

[146] 

ChCl - choline chloride, LA - lactic acid, Fru – fructose, EG-ethylene glycol, Prop – propanediol, TEA – Tetraethylammonium, Ox – oxalic acid, Bet – betaine, LeA – levulinic acid, H + S - heating and stirring, 
UAE-ultrasound assisted extraction, MAE -microwave assisted extraction, HAE – homogenate assisted extraction, ME – maceration extraction, GAE - gallic acid equivalent, RtE – rutin equivalent, ECE - 
epicatechin equivalent. 
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of spices and contains the natural polyphenol, curcumin. Accordingly, a new method was developed by Altunay, Elik and Gürkan [105] 
for extraction of curcumin via vortex-assisted alcohol-based DESs microextraction. They found higher extraction efficiency when 
betaine hydrochloride (BetCl): Gly (1:3) based DES was used due to strong hydrogen bonding, ion-dipole and dipole-dipole in-
teractions of BetCl- Gly with curcumin. Other optimum parameters were: pH 6.0, sample volume of 50 mL, aprotic solvent (acetone, 
300 μL), vortex time of 2 min and speed of 3000 rpm. Guo, Zou, Li, Kou, Liu and Fu [106] extracted and recovered the linarin from 
Chrysanthemum indicum flowers, which is used as a herb, spice as well as one of the constituent for medicinal products, by using DESs. 
They observed highest yield (14.23 mg/g) of linarin, 1.21 times more than 80% ethanol extraction, under optimal extraction con-
ditions i.e., ChCl: ethylene glycol (1:2), water content of 30 %, liquid-solid ratio of 32 mL/g, extraction power of 340 W and extraction 
time of 32 min. Furthermore, they recovered 81.55 % linarin by macroporous resin method. Barbieri, Goltz, Batistão Cavalheiro, 
Theodoro Toci, Igarashi-Mafra and Mafra [107] conducted a study on the extraction as well as stabilization of phenolic compounds 
from rosemary in different DESs prepared by heating ChCl as HBA with various HBDs (glycerol, Ox acid, LA, 1,2-propanediol). They 
obtained higher total phenolic content (62.21 mg/g) in ChCl: 1,2-propanediol based DESs extract whereas, ChCl: Gly based DESs 
showed higher value for DPPH (155.83 mM trolox equivalent/g) which was found 4–18 % higher than ethanol (132.53 mM trolox 
equivalent/g). In addition, DESs extracted phenolic compounds were observed to be more stable in comparison to ethanol extracts due 
to the interaction between solvent and phenols present in rosemary extract that results in reduction in the movement of solute 
molecules, less contact time with oxygen and therefore, decrease in oxidative degradation. 

4.4. Plantation and oil seed crops 

Various compounds are extracted by using DESs as extracting solvent from plantation and oil seed crops (Table 3). Yuniarti, Saputri 
and Mun’im [116] optimized the method for extraction of caffeine and chlorogenic acid (CGA) from green coffee beans of Coffea 
canephora by using ChCl: sorbitol based Natural Deep Eutectic Solvent (NADES) in different molar ratios (2:1, 4:1 and 6:1) and 
observed highest yield of caffeine (5.87 mg/g) and CGA (12.24 mg/g) with ChCl: sorbitol ratio of 4:1, extraction time of 60 min and 
liquid-solid ratio of 1:30 g/mL. Moreover, the yield of CGA was found 297% higher than that by maceration method. Procentese and 
Rehmann [117] concluded that pretreatment of coffee silverskin (CS), which is a by-product of coffee industry, from ChCl: Gly (1:2) 
was found as an effective DES for higher sugar yield (0.24 gglucose/gbiomass) and lesser fermentation inhibitors. Tea contains numerous 
types of polyphenols (catechins) which is known for its antioxidant property and hence, shows positive effect in human health and 
extension of shelf-life of food products. Considering this, Bajkacz, Adamek and Sobska [118] conducted study to extract the catechins 
from tea by using DESs prepared by mixing Girard’s reagent T (GrT) with ChCl as well as with some organic acids (CA, malic acid, LA) 
in different proportions. They concluded that DESs-solid-liquid extraction is a promising technology for extraction of bioactive 
compounds as higher yield was found in malic acid: GrT (2:1) based DES as compared to ILs and conventional solvents. Deeper 
comprehension of the extraction procedures and the interaction between the solute and solvent is made possible by the COSMO-SAC 
model’s that saves money and time. Hijo, Alves, Farias, Peixoto, Meirelles, Santos and Maximo [119] experimentally observed higher 
extraction efficiency of polyphenols from mate leaves by using ionic liquid (monoethanolammonium (MEA): acetic acid (AA) with 25 
% water) and DES (ChCl: AA with 25 % water) than conventional solvents (ethanol). They confirmed these experimental results by 
using COSMO-SAC model in which they noted a greater number of regions available to form hydrogen bonding in MEA, AA and ChCl 
components by σ-profile than ethanol. Additionally, activity coefficient in infinity dilution (ln γ∞) of target compounds (i.e. caffeic 
acid, chlorogenic acid and quercetin) also supported that 25 wt% of water in ionic liquid/DES enhanced the extraction values. ChCl: 
formic acid (1:5) based DES was one of the eco-friendly methods for extracting lignin from sugarcane bagasse than sulfite-pulping, 
kraft procedure and organic solvent process [120]. 

Liu, Zhang, Yang and Yu [131] observed higher extraction yield of lignans (sesamol, sesamin and sesamolin) from sesame oil when 
ChCl and phenols-based DES was used in ultrasonic-assisted liquid-liquid microextraction as it extracted both polar as well as 
non-polar lignan instead of polyols based DESs that extracted only polar lignans. Shabani, Zappi, Berisha, Dini, Antonelli and Sadun 
[132] developed a novel electro analytical method for the determination of polar antioxidant compounds from extra virgin olive oil 
(EVOO) and they successfully used LA: Glu (6:1) based DES for the extraction of polar antioxidants from EVOO, without using toxic 
organic solvent. Manuela, Drakula, Cravotto, Verpoorte, Hruškar, Radojčić Redovniković and Radošević [133] found highest 
extraction of polyphenol from cocoa waste by employing Bet: Glu (1:1) and for the first time in the NADESs history, NADES extract 
(which contained polyphenol) was further incorporated by this research group for the preparation of polyphenol enriched chocolate 
milk drink. They observed a 2-fold increase in polyphenol amount after adding 1 % of this extract in the drink and further concluded 
that on the basis of sensory evaluation by electronic tongue, 1–10 % addition of Bet: Glu or ChCl: Glu based NADESs extract in 
chocolate milk was acceptable except 10 % ChCl: Glu ones that might be due to high concentration of ChCl which is responsible for 
displeasing odor as well taste in the final product. 

4.5. Medicinal and aromatic plants 

Countless number of plants are present on the earth which exhibit active components beneficial for human health (Table 4). Pooria 
cocosis an edible fungus generally seen on dead barks as well as roots of pine trees and its polysaccharides are known for its remarkable 
therapeutic properties such as anti-hyperglycemia, anti-tumor, anti-inflammatory etc. Considering these extraordinary biological 
activities, Zhang, Cheng, Zhai, Sun, Hu, Pei and Chen [134] studied different DESs combinations for the extraction of polysaccharides 
from Pooria cocos and found the highest yield by ChCl: Oxalic acid (1:2) based DES (46.24 %) which was 8.6 times higher than yield of 
hot water extraction (5.40 %). Similarly, Satureja montana is another plant whose parts are used as traditional medicine for various 
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diseases. Considering this, Jakovljević, Vladić, Vidović, Pastor, Jokić, Molnar and Jerković [135] conducted a study to extract rutin 
and rosmarinic acid from Satureja montana and found both ChCl: LA (1:2) as well as ChCl: LeA (1:2) based DESs most suitable for rutin 
extraction whereas, ChCl: Urea (1:2) based DES was found better for rosmarinic extraction. Additionally, ChCl: Urea (1:1) based DES 
extracts exhibited best antioxidant activity at 30 ◦C and 50 % water content. Wang, Jiao, Gai, Wang, Guo, Niu and Fu [136] used 
tailor-made DESs for extraction of bioactive compounds from fig leaves having therapeutic properties and observed higher extraction 
yield when glycerol: xylitol: fructose (molar ratio- 3:3:3) DES used as solvent in UAE and MAE as compared to UAE and MAE extraction 
based on methanol. Moreover, DES-MAE gave higher extraction yield than DES-UAE. Phenolics of Moringa oleifera leaves (MOLs) are 
also widely known for their therapeutic properties in various diseases such as cancer [137]. Wu, Li, Chen, Wang and Lin [138] 
developed an UAE method to extract phenolic compounds from MOLs by preparing 13 different DESs combinations using ChCl, Bet and 
L-proline as HBA and amides, acids and alcohols as HBD. They revealed that L-proline: Gly (2:5) based DES showed higher extraction of 
total phenol content (TPC - 29.8 mg GAE/g DW) at optimal processing parameters (37% water content, 144 W ultrasonic power, 40 ◦C 
ultrasonic temperature). Moreover, they concluded that phenol extraction by this method showed higher TPC, total flavonoid content 
and antioxidant activity than heating and maceration extraction method with water and ethanol. Wojeicchowski, Ferreira, Abranches, 
Mafra and Coutinho [139] used COSMO-RS (conductor-like screening model for real solvents) in screening of DESs for extraction of 
antioxidants from rosemary. In σ-profiles of target solutes (i.e. carnosol and carnosic acid) of rosemary showed non-polar nature which 
helped the researchers to directly came into the decision that DESs composed of hydrophobic HBA and HBD will be best to dissolve 
these target solutes (based on the principle of like dissolves like) and also, the solubility of solute will be negatively impacted by the 
addition of water. Finally, they observed 15 wt % of tetrapropylammonium chloride, 55 wt % of 1,2-propanediol, and 30 wt % of water 
mixture best for extraction of these target compounds. 

Ocimum sanctum (OS), Terminalia bellerica (TB) and Terminalia chebula (TC) are medicinal plants commonly used in Indian System of 
Medicine. OS leaf extracts known for antidiabetic and antioxidant properties whereas TB and TC are used in the preparation of triphala 
that cure various diseases. Keeping this in view, Choudhary, Guleria, Sharma, Salaria, Chalotra, Ali and Vyas [147] evaluated different 
ChCl based NADESs for extracting polyphenolic compounds from three above mentioned medicinal plants and observed that ChCl: 
Malic acid (1:2) with 30 % water content was most effective in extracting total phenolic content (mg GAE/g dw) from OS (161.59), TB 
(650.72) and TC (819.18) than methanolic extract (OS- 109.65, TB- 450.56 and TC- 614.05). The reason may be that organic acid 
based NADESs are more polar in nature, however, sugar and polyalcohol based NADESs are less polar, with polarity close to that of 
methanol. Additionally, extract obtained from this NADESs combination showed highest α-glucosidase inhibitory activity which may 
be because of higher phenolic content. Rosa roxburghii Tratt (RRT) is a traditional medicinal plant whose fruits and leaves are known to 
be high in antioxidant activity. Zhao, Wang, Yan, Cai, Fu, Gu, Liu, Jin and Fu [148] developed active food packaging film by incor-
porating RRT leaves extract, prepared by using NADESs as a solvent, in chitosan/zein matrix. Prepared film showed better water vapor 
permeability, mechanical property and light barrier property and also, having high antioxidant and antimicrobial activity which 
successfully increased the shelf life of cherry tomatoes and blueberries. 

Aggarwal, Singh, Gupta and Sharma [149] pre-treated the dried powder of Ageratina adenophora flowers, an aromatic weed plant, 
by ultrasound assisted extraction using mixture of ChCl: LA based NADES and water followed by hydro distillation for extraction of 
essential oil. They found 4.76 times increase in the yield of essential oil by employing ChCl: LA (1:3) NADES as compared to treated 
ones without NADES. Also, IC50 value of NADES treated sample was found better than control (without NADES treated). Interestingly, 
isolation of new 5,11-epoxycadin-3,4-en-8-one sesquiterpene crystal was found in essential oil obtained from NADES-treated samples. 
Both, essential oil as well as isolated new molecule showed anti-acetylcholinesterase activity, which might be due to binding of enzyme 
with volatile aromatic compounds, that can be useful for treating Alzheimer disease. Sharma, Arokiyaraj, Anmol, Rana, Sharma and 
Reddy [150] found the effective insecticidal property of essential oil obtained from roots of Nardostachys jatamansi by using water and 
ChCl: Ox (1:1), ChCl: LA (1:1) and ChCl: LA (1:2) NADESs against sap-sucking pest of leguminous crops (i.e. cowpea aphid) and 
plantation and fruit crops (cacao mealybug) due to presence of valeranone, nerolidol, viridiflorol, β-patchoulene and α–cadinol 
compounds. However, maximum yield of essential oil was noted in ChCl: MA (2:1) NADES than other NADES combinations. 

4.6. Seaweeds 

Saccharina japonica was studied for seaweed polysaccharides extraction through DESs combined with subcritical water extraction. 
The effects of DESs forms, DESs molar ratio, water content, liquid-solid ratio, extraction temperature, and extraction pressure on 
polysaccharide extraction yield were examined. Experiments revealed the optimum conditions for the extraction of a high quantity of 
alginates (28.1 %) and fucoids (14.93 %) at a temperature of 150 ◦C, pressure of 19.85 bar, water content of 70 % and an L/S ratio of 
36.81 mL/g. In addition, the obtained polysaccharides exhibited unpretentious antioxidant activity [151]. Das, Sharma, Mondal and 
Prasad [152] found that hydrated form of DESs were highly efficacious in extracting the κ-carrageenan from Kappaphycus alvarezii as 
compared to non-hydrated form of DESs. Additionally, κ-carrageenan obtained from DESs was found at par in physicochemical and 
rheological characteristics with κ-carrageenan extracted from conventional methods and found better as compared to water extracted 
κ-carrageenan. DESs are considered as appropriate solvents in comparison to tedious conventional methods for the simplistic poly-
saccharide extraction from seaweed. 

4.7. Milk 

Milk has been known as complete food as it contains good amount of protein, fat, vitamins and minerals such as selenium (Se), 
calcium (Ca) and magnesium (Mg). Various diseases such as depression, cardiovascular disease, tumor, thyroid dysfunction and viral 
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spread are associated with deficiency of Se [153]. It is available in the milk in the form of seleno-amino acids (such as selenocysteine or 
selenomethionine). Highest concentration of Se was noted in casein and whey whereas lowest in fat [154]. The remaining Se is found 
as free Se-amino acids in the water-soluble portion of milk [155]. Prior to extraction of free Se-amino acid by using conventional 
solvent requires numerous extraction steps (like separation of fat and precipitation of protein) which is laborious and time taking. In 
order to rectify this problem, López, D’Amato, Trabalza-Marinucci, Regni, Proetti, Maratta, Cerutti and Pacheco [156] developed 
single-step procedure for Se-amino acid analysis by using lactic acid: Glu (5:1) NADES in which fats and proteins are separated 
simultaneously. Researchers successfully used this method to extract free Se-amino acid in free dried Se-biofortified sheep milk, CRM 
ERM-BD 150 skimmed milk powder and cow’s milk powder samples. This developed method avoids the use of harmful chemicals as 
well as saves energy and generate less waste as compared to traditional solvents. 

DESs can also be used in quality control laboratories as it helps to detect hazardous components present in food samples (Table 5). 
Like phthalate acid esters (PAEs) used as plasticizers in polymers like polyvinyl chloride plastics (as it gives softness effect) which 
further used in packaging of food products. PAEs can easily be leached out from packaging towards the food materials as it is not 
chemically bound to polymers and disturbs the endocrine system of humans [157]. Keeping this in mind, Wang, Lu, Shi, Yang and Yang 
[158] explored a new procedure for determination of PAEs in packed milk samples based on liquid-liquid microextraction technique 
using DESs and reported highest recovery (%) of phthalates in menthol: lauric acid (1:1) based hydrophobic DES. This method was 
found green, fast and simple for detecting PAEs in milk samples. 

Likewise, Sereshti, Semnani Jazani, Nouri and Shams [165] concluded that a green method can be developed for the detection of 
tetracycline (an antibiotic) in milk samples by applying hydrophobic DESs as an extraction solvent in dispersive liquid-liquid 
microextraction technique. Ramezani, Ahmadi and Absalan [166] revealed that ChCl: ethylene glycol-based NADES improves the 
chromatographic behaviour and helps in convenient analysis of melamine, an illegal milk additive, in milk samples. 

5. Recovery of bioactive compounds from DESs 

Recovery of bioactive compounds from DESs is a major issue due to the low vapor pressure of these solvents and higher miscibility 
of DESs with water. Various methods have been used by researchers for separating bioactive compound from DESs such as solid phase 
extraction, anti-solvent precipitation, back-extraction, adsorption chromatography and macroporous resin adsorption. Chen, Jiang, 
Yang, Bi and Liu [124] uses the macroporous resin adsorption for separating Ginkgo flavonoids from DESs extract solution and reach to 
the result that use of AB-8 resin give maximum adsorption yield i.e. 93.7 % as compared to D101 (yield- 85.2%) and HPD450, HPD417, 
ADS-17 and DM130 (yield lower than 60%). In Hibiscus flower, Liu, Lyu, Fu, Jiang and Cui [167] successfully recovered 88.45 %– 
92.02 % of natural antioxidants from DESs by employing macroporous resin and concluded that recycled DESs can be used maximum 
of four times for further extraction of antioxidant from hibiscus flower. Zhuang, Dou, Li and Liu [168] also carried out macroporous 
resin method for separating flavonoid from Platycladi Cacumen but most of the resin (AB-8, X-5, HP-20, HPD- 750, LX-5 and LX- 38) 
used by this group was different from previous study and found that LX-38 gave higher yield than other resins. Panić, Gunjević, 
Cravotto and Radojčić Redovniković [169] found that by diluting the ChCl: CA NADES containing grape-pomace extract with 80 % of 
water before adsorption chromatography recovered the highest anthocyanin i.e. 99.46 % than without diluting one which was only 
70.36%. It might be because of breakage of bond between NADES and anthocyanin as water content was greater than 50 % disrupt the 
NADES structure. Furthermore, they also recycled the NADES by evaporating water fraction under vacuum and recovering the ChCl: 
CA up to 96.8 %. However, recycled NADES gave less extraction efficiency than freshly prepared NADES. Xu, Ran, Chen, Fan, Ren and 
Yi [58] successfully performed two step back extraction method by using ethyl acetate and n-butanol as back extraction solvents for 
recovery of polymethoxylated flavonoids and glycosides of flavonoids from citrus peel with recovery of greater than 86 %. This group 
also tried the anti-solvent precipitation method, but this method yields less than 17.27 % of citrus flavonoids. Depending on the type of 
NADESs, Doldolova, Bener, Lalikoğlu, Aşçı, Arat and Apak [170] recovered curcuminoids from NADESs extracts in a range of 
37.5–41.1 % by using water as anti-solvent. This lower recovery might be due to the solubility of curcuminoids in NADESs. Suresh, 
Singh, Anmol, Kapoor, Padwad and Sharma [171] successfully used HP-20 microporous resin to recover steroidal saponins of Trillium 
govanianum (a medicinal plant) from extract prepared by using ChCl: LA (1:1) NADES. Protodioscin, a steroidal saponins, exhibited the 

Table 5 
Overview of DESs application in milk samples.  

Samples Purpose of use of DESs Analyte Best DESs combination Optimum molar 
ratio 

Ref. 

Bovine Milk Extraction solvent Non-steroidal inflammatory 
drugs (NSAIDs) 

in situ DESs formation between 
Menthol and analyte 

– [159] 

Milk Chelating agent and 
extraction solvent 

Heavy metals (Cadmium, 
copper, lead) 

Menthol: sorbitol: mandelic acid 1:2:1 [160] 

Milk Extraction and 
preconcentration 

Lead ChCl: phenol 1:2 [161] 

Milk Extraction solvent/dispersive 
solvent 

Pesticides ChCl: ethylene glycol, ChCl: 
decanoic acid 

1:2 [162] 

Milk Extraction agent Chloromycetin, thiamphenicol ChCl: glycerol 1:2 [163] 
Powdered milk and 

baby formula 
Extraction Zinc ChCl: oxalic acid 2:1 [164]  
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highest yield (i.e., 39.5 mg/g) among all the targeted compounds. Furthermore, extraction yield of steroidal saponins was decreased 
(46.86 %) in recovered ChCl: LA based NADES than fresh ones. This time Suresh, Singh, Sharma and Sharma [172] utilized HP-20 
microporous resin to recover steviol glycosides of Stevia rebaudiana (calorie free sweetener) from two different multicomponent 
NADESs i.e., LA: Gly: MA: Glu (1:1:1:1) and ChCl: LA: Ox: Gly (2:2:1:1). Similar to above (and previous) study, less extraction yield was 
measured from both the recovered NADESs as compared to their fresh ones which might be due to alteration in initial molar ratios of 
NADESs components by the metabolic intermediate’s impurities of stevia tissues. 

Even though the researchers recovered the target compound from NADESs by using macroporous resin or back extraction method, 
but use of organic solvent cannot be neglected in these methods whereas the main motto behind the use of DESs/NADESs was to 
eliminate use of organic solvents. Along with it, they are costly and time-consuming methods. There is a need to discover such methods 
in which use of organic solvents will be eliminated without affecting the recovery yield of target compounds. 

6. Implementation of DESs in analytical methods in food samples 

Zinc is an essential micronutrient for human body whose deficiency can cause various problems such as decrease in fertility, 
reduction in healing process etc. Estimation of zinc in food samples is difficult due to its low concentration which is below the limit of 
detection of instrument. Keeping this in mind, Haq, Balal, Castro-Muñoz, Hussain, Safi, Ullah and Boczkaj [173] successfully devel-
oped a green method by using ChCl: phenol (molar ratio 1:2) DES for the preconcentration of zinc before its analysis by flame atomic 
absorption spectroscopy. This study recommended that developed method is appropriate for routine fish and eel analysis. With a 
pre-concentration factor (PF) of 25 and a relative standard deviation (RSD) of 1.7 %, the limit of detection (LOD) and limit of 
quantification (LOQ) were determined to be 0.041 μg/kg and 0.136 μg/kg, respectively. Similarly, Elahi, Arain, Ali Khan, Ul Haq, 
Khan, Jan, Castro-Muñoz and Boczkaj [174] discovered method for the simultaneously pre-concentration as well as determination of 
nickel and zinc in edible oils, milk and fishes by using tetrabutylammonium chloride and decanoic acid (molar ratio - 1:2) DES. LOD 
was noted 0.029 μg/kg and 1.5 μg/kg for nickel and zinc, respectively. 

Faraz, Haq, Balal Arain, Castro-Muñoz, Boczkaj and Khan [175] developed low-cost method (compared to GC and HPLC) for the 
pre-concentration and spectrophotometric determination of Niclosamide in wastewater and pharmaceutical samples. Niclosamide was 
found to be toxic for fish species, cause health problems in humans at high concentration and, therefore, it has been important to 
monitor its presence in environment. This method was found highly sensitive as its LOD and LOQ were noted around 0.112 and 0.374 
mg/L, respectively. Ul Haq, Bibi, Balal Arain, Safi, Ullah, Castro-Muñoz and Boczkaj [176] discovered new method for the determi-
nation of lead (II) ions from various commercial edible oil products. For lead (II) extraction, DES based on ChCl: phenol in a molar ratio 
of 1:2 showed the highest recovery. This study concluded that silver nanoparticles may adsorb lead (II) and help it to move from the 
aqueous phase into the DES phase. Because the sorption kinetics of the nanoparticles are so good, this stage happens extremely quickly. 
LOD and LOQ were 0.28 μg/L and 0.94 μg/L, respectively. The established approach includes all expected lead concentration levels in 
oil samples, from parts per billion to higher levels. This method is far more sensitive and many times faster (only 6.5 min/sample) than 
previously published methods. 

Elik, Fesliyan, Gürsoy, Haq, Castro-Muñoz and Altunay [177] given a novel extraction and preconcentration method using a hy-
drophobic magnetic deep eutectic solvent for the analysis of melamine (inappropriately used as additive) in milk and milk-based 
products. Air-assisted hydrophobic magnetic DES based dispersive liquid phase extraction approach had the lowest RSD (1.3%), 
highest PF (160), and shortest extraction time (3 min). LOD (0.9 ng/mL) observed in this method was lower than that of majority of 
techniques that have been published which is claimed that this method was cheaper than HPLC-UV and HPLC-PDA methods. Synthetic 
dyes used in industries such as food, textile, leather etc. are known to cause pollution in wastewater discharged from these industries 
that can further cause problems in aquatic plants and, to human health. Keeping this in view, Ullah, Haq, Salman, Jan, Safi, Arain, 
Khan, Castro-Muñoz and Boczkaj [178] successfully discovered a method for extraction of Nile red dyes from aqueous medium by 
using ChCl: phenol (molar ratio 1:2) DES. The results showed that the LOD and LOQ were 2.2 μg/L and 7.3 μg/L, respectively, with an 
enrichment factor of 40 and an RSD value of 1.35–1.5 %. The developed method benefits were validated by comparing it with existing 
analytical processes such as reduction in analysis time, sensitive, robust, easy instrumentation, and environmentally friendly. 

7. Safety regulations, cytotoxicity, and provisions for commercial use of DESs 

Choline is naturally present in various types of food such as egg, meat etc. which is required for various functions of the body. It 
produces acetylcholine (neurotransmitter) that helps in storage of memory, control of muscle etc. [179]. Excessive secretion of saliva 
and sweating, fish like body odor, low blood pressure, diarrhea and destruction to liver are some adverse effects of higher intake of 
choline. Adequate intake (AI) for choline is 550 mg/day and 425 mg/day for men and women, respectively. Tolerable upper intake 
level is 3500 mg/day for adults [180]. Choline (not less than 32 mg/100g in infant milk) and its salt i.e. ChCl are recommended for use 
in infant milk by FSSR, 2011. Additionally, ChCl can also be used as an additive whose technical functionality is to increase emul-
sification in food products. Similarly, there are other NADES components available that are similar to choline chloride in structure and 
function that may be used as solvents for extraction of bioactive compounds from different sources according to their suitability. 

Suresh, Singh, Anmol, Kapoor, Padwad and Sharma [171] checked the cytocompatibility of fifteen different NADESs on animal cell 
lines (i.e., NRK-52E and IEC-6) and found high cell viability at different concentrations (10, 50, 100 and 200 μg/mL) after 24 and 48 h 
which showed the non-toxic behavior of NADESs. ChCl: Resorcinol (1:1) NADES expressed slight cytotoxicity on IEC-6 cell lines at 48 h 
whereas, ChCl: oxalic acid (1:1) NADES showed at higher concentration (200 μg/mL) due to formation of crystals. Macário, Oliveira, 
Menezes, Ventura, Pereira, Gonçalves, Coutinho and Gonçalves [181] checked the cytoxicity of HBA (choline chloride, 
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tetramethylammonium chloride and tetrabutylammonium chloride), HBD (ethylene glycol, 1-propanol, butanoic acid, hexanoic acid 
and urea) and the DESs prepared from the combination of these HBA and HBD at molar ratio 1:1 on two human cell lines i.e. HaCaT and 
MNT-1. Toxic effect of tetrabutylammonium chloride and DES formed by this HBA showed cytotoxicity whereas, choline chloride, 
tetramethylammonium chloride and the DESs prepared from these two HBA were observed harmless for the cell lines even at high 
concentration (500 μg/mL). They suggested the potential use of these non-toxic DESs in cosmetics and pharmaceutical industries. 
Mitar, Panić, Kardum, Halambek, Sander, Zagajski Kučan, Radojcic Redovnikovic and Radošević [182] tested cytotoxicity of eight 
organic acid based DESs i.e. choline chloride: malic acid (1:1), proline: malic acid (1:1), choline chloride: proline: malic acid (1:1:1), 
betaine: malic acid (1:1), malic acid: glucose (1:1), malic acid: glucose: glycerol (1:1:1), choline chloride: citric acid (2:1); betaine: 
citric acid (1:1) on human cell lines (HEK-293T, HeA and MCF-7). They found no growth inhibition of cell lines by DESs even at higher 
concentration (2000 mg/l) and therefore, they were considered eco-friendly for environment and human beings. 

For betaine, maximum consumption of 400 mg/day (i.e. 6 mg/kg body weight per day) is considered safe [183]. Food Safety and 
Standard Authority of India (FSSAI) drafted regulations on October 29, 2020 for the amendment of Food Safety and Standards (Health 
Supplements, Nutraceuticals, Food for Special Dietary Use, Food for Special Medical Purpose, Functional Foods and Novel Foods) 
Regulations. In this new draft, they included betaine (N,N,N,-trimethylglycine) in the list of ingredients as nutraceuticals whose 
permitted range is 600–650 mg/day [184]. Naturex, Avignone (France) is a botanical company that manufactures and sells plant 
extracts, and it is the only company till date that commercially produces NADESs based extracts. These extracts are available in the 
market and its use is only confined to cosmetic products [133]. So far, after exhaustive reviewing to the best of our knowledge, no 
commercial use of NADESs based extracts is seen in food related products. 

8. Conclusions 

Eco-benign DESs replacing the conventional solvent has been easily prepared by heating and stirring method. DESs are non-toxic, 
biodegradable, easily tunable, versatile, eco-friendly, and inexpensive in nature. Also, these solvents showed higher extraction effi-
ciency, enhanced biological activity of bioactive compounds and greater stability in DESs when subjected to various storage conditions 
makes it superior than conventional solvents. DESs are successfully employed in extraction of bioactive compounds, removal of heavy 
metals, determination of pesticides, insecticides, toxins, hazardous compounds and illegal milk additives, extraction of Nile red dye 
from wastewater and in purification of antibiotics. Density, polarity, viscosity, and surface tension are some important properties that 
should be kept in mind while choosing suitable DESs for the respective work. Scanty number of research is conducted related to 
application of bioactive compounds rich NADESs extract in the food and examination of its stability. As NADESs is prepared from 
natural compounds it can be directly added into the food and eliminates the expensive and time-consuming step i.e., separation of 
target compounds. But it is suggested that the toxicity of final product, after the addition of NADESs based extract, should be tested 
before releasing the product for human consumption. Also, FSSAI and other government bodies should set the regulations for use of 
NADESs based extract further in food as it will make easy channelizing of its use in commercial food products. 
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