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Abstract

Background: Existing hidden Markov model decoding algorithms do not focus on approximately
identifying the sequence feature boundaries.

Results: We give a set of algorithms to compute the conditional probability of all labellings “near”
a reference labelling l for a sequence y for a variety of definitions of “near”. In addition, we give
optimization algorithms to find the best labelling for a sequence in the robust sense of having all of
its feature boundaries nearly correct. Natural problems in this domain are NP-hard to optimize.
For membrane proteins, our algorithms find the approximate topology of such proteins with
comparable success to existing programs, while being substantially more accurate in estimating the
positions of transmembrane helix boundaries.

Conclusion: More robust HMM decoding may allow for better analysis of sequence features, in
reasonable runtimes.

Background
Decoding hidden Markov models (HMMs) continues to
be a central problem in bioinformatics. Here, we move
away from traditional decoding approaches, which seek
to find a labelling or path optimizing a function of that
single labelling or path, to a more robust method, where
we seek a labelling of a sequence which has high
probability of being close to the true labelling. As such,
while the labelling we predict may not be correct, it has
very high probability of being useful in a wide variety of
standard HMM applications. One of our key observa-
tions is that since the primary use of HMMs is to divide

sequences into features, we should focus on predicting
feature boundaries nearly correctly. To that end, we
introduce a distance measure for predictions where two
labellings are “close” if they agree on the overall structure
of the sequence and place feature boundaries at nearby
sites. We seek the labelling for which the probability that
the true labelling is “close” to it is highest, according to
the probability distribution of the model. We also
present a different weighted Hamming distance measure
where we score each mismatch between predictions. We
give efficient algorithms for computing the total prob-
ability of all HMM paths close to a given labelling. We
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also give an efficient local search optimization procedure
for finding good labellings, and a global optimization
procedure for a restricted version of the problem where
we focus on paths through the model, not labellings.
Computing the labelling with maximum nearby prob-
ability is NP-hard. Finally, we have implemented our
methods, and show experimental results for predicting
transmembrane protein topology. Our methods give
results comparable to existing techniques such as Krogh’s
1-best heuristic [1], implemented in the standard
transmembrane protein topology predictor Phobius
[2], at predicting the overall topology of membrane
proteins. Moreover, they are more likely to get the
boundaries of transmembrane helices in such proteins
quite close to correct.

HMM definitions
A hidden Markov Model (HMM) is a tuple M = (A, E,
Σ, x0): A is the m × m transition matrix where aij gives the
probability of transition from state i to state j; E is an m ×
|Σ| emission probability matrix where eksis the prob-
ability of emitting symbol s Œ Σ in state k, and x0 is the
start state of the model. A path in an HMM is a sequence
of states x0, x1, ..., xn; in step i of the execution of the
model, we transition from xi-1 to a new state xi, and emit
symbol yi according to the distribution of row xi of the
matrix E. The HMM defines a probability measure over
paths and sequences: the joint probability of sequence
y = y1, ..., yn and path x = x0, x1, ..., xn is
Pr[ , ]x y a ex x x yi

n

i i i i
=

+ + +=
−∏ 1 1 10

1 .

In a labelled HMM, we add a labelling function ℓ, which
assigns to each state of the model (from 1 to m) a label,
which typically corresponds to a sequence feature. For a
path x, let l = l0, l1, ..., ln = ℓ(x0), ℓ(x1), ...,ℓ(xn) be its
labelling. Many states may share a label, so many paths
may also share a labelling.

In HMM decoding, we are interested in labellings, which
assign a feature to each position of a sequence. Often, a
labelling for a sequence will have many consecutive
positions with the same label. Given a labelling l = l0,
f1, f1, ..., f1, f2, f2, ..., f2, ..., fk, ..., fk, which consists of l0
followed by a number of positions labelled f1, then a
number of positions labelled f2 (which is different from
f1), and so on, we define its footprint to be the sequence
f = f1, ..., fk; this corresponds to the overall labelling of
the sequence, but with the feature boundaries left
entirely flexible. For a sequence of length n, its footprint
may be much shorter than n in length, assuming it has
long features.

For each label z, let Lz be the set of states with label z; let
L be the size of the largest Lz.

Distance measures for labellings
Here, we consider two different types of distance measures
for labellings of the same sequence. The appropriate
distance measure depends on the domain: our first type
is more suited to short footprints corresponding to long
features, while the second, based on Hamming distance, is
more suited to long footprints.

Consider two different labellings l and l’ for the same
sequence y. We will define their border shift distance
d(l, l’) as a function of the boundaries of their features.

First, if l and l’ have different footprints, they are
incompatible; we will set their distance to ∞.

Otherwise, let f = f1, ..., fk be their common footprint, and
let bi(l) be the position in l corresponding to the first
emission from the interval labelled fi+1. The border shift
distance between l and l’ is then maxi = 1... k-1 |bi(l) -
bi(l’)|: the maximum boundary shift between the corre-
sponding features in the two labellings. Figure 1 shows
how we compute this distance.

We also define the border shift sum distance, which is
infinite for unequal footprints, and | ( ) ( ) |b bi ii

k λ λ− ′
=
−∑ 1

1

otherwise.

A quite different measure is based on counting mismatches
between the labellings. In the generalized Hamming distance,
we first assume we have a non-negative integer-valued
distance matrix H that gives the distance between any
two labels i and j. (In the easiest case, Hij = 0 if i = j and 1
otherwise; this gives the Hamming distance.) Then,
d H

i ii

n
( , ) ,λ λ λ λ′ = ′=∑ 1

is the generalized Hamming dis-
tance between the two labellings.

For any metric d on labellings, we define the ball of
radius r around a centre l: Bd(l, r) = {l’ : d(l, l’) ≤ r}.

Figure 1
The position of borders in labellings. The ith border for
a labelling l, bi(l), is the first position in l with the label fi+1.
The shift in the ith border, between two labellings l and
l’ that share the same footprint f is |bi(l) - bi(l')|.
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With this in mind, we state our goal. Given an HMM M,
a sequence y, a distance metric d, and a distance tolerance r,
we seek the labelling l* such that Pr[Bd(l*, r)|y, M] is
maximized. This labelling has, according toM’s probability
measure, the highest probability of having the true
labelling for the sequence be at most distance r away,
according to our distance measure.

Traditional algorithms
Algorithms typically used for decoding HMMs optimize
quite different goals from ours. The most common are
the Viterbi algorithm [3], which maximizes the prob-
ability of the state path used to generate a sequence, or
the posterior algorithm, which maximizes the expecta-
tion of the number of positions in the sequence assigned
to the correct state.

Both of these algorithms experience serious problems.
The Viterbi path may itself have extremely tiny prob-
ability, and for long sequences, is highly unlikely to be
correct overall; also, since this algorithm maximizes a
global criterion, its prediction may be locally very
sloppy. The posterior algorithm gives credible guesses
for each position by itself, but does not identify intervals
of the sequence as having common features; indeed,
adjacent positions may be labelled with states that
cannot co-exist in paths in the model with nonzero
probability.

One might attempt to use generalized HMMs in this
context, where the length distribution of a state is no
longer geometric. However, this does nothing to allow
the boundary between labels to be flexible, and may not
help when multiple states share the same label.

One approach to hybridizing these methods is to
compute the path of nonzero probability that maximizes
the posterior decoding objective [4], or that maximizes
the geometric mean of the probability of assigning
correct states to positions [5]. These algorithms may
improve results, but depend on the topology of the
model being correct, and also may still give paths that
are globally quite poor. There are variants of them that
also work with labellings, not paths.

A tempting alternative might be to compute the most
probable labelling of a sequence instead of the Viterbi
path; this corresponds to our objective, but for balls of
radius zero. This objective is NP-hard to optimize [6] in
general, though Brejová et al., in addition to proving the
NP-hardness of the overall problem, do give an
optimization algorithm for some special cases. Krogh
[1] proposed the 1-best algorithm, a heuristic to find a
highly probable labelling, which is used in many

applications, including transmembrane protein topology
prediction [2]. However, even the most probable
labelling may have very small conditional probability.

Several authors have also considered sets of paths rather
than individual paths. For example, we could sample k
paths from an HMM to predict alternatively-spliced
exons [7,8]. In recent work, Brown and Golod [9]
proposed finding the k most probable paths through
an HMM, and applied this idea to transmembrane
protein topology prediction. Our methods consider an
exponential number of implicitly represented labellings,
in contrast to these methods.

Methods
Computing the probability of a labelling
and of a footprint
We begin with the simple problems of computing the
probability of a labelling l or of a footprint f. For both of
these problems, our algorithm is a variant of the
traditional forward algorithm for HMMs [3], which
computes the probability that an HMM generates a
sequence y in O(nm2) time.

To compute the probability of all paths compatible with
the labelling, we follow the usual forward algorithm, but
at position i in the sequence, we restrict to allowing only
transitions in the model between states labelled li-1 and
li; other transitions are given probability zero. This
algorithm takes less time than the forward algorithm to
run; if the largest number of edges between any two
(possibly identical) labels li and lj is q, then this
algorithm takes O(qn) time, which is O(L2n).

To compute the probability of all paths compatible with
the footprint f = f1, ..., fk, we follow the usual forward
algorithm, but on a variant HMM. We will create k
groups of states G1, ..., Gk, each corresponding to a label
set L fi

, for each position fi in the footprint: each state in
L fi

is represented in Gi. States in the new model have
exactly the same emission probabilities as in M, but we
may only make transitions from states in Gi to those in
Gi or in Gi+1, with the same transition probabilities as in
M . (To make a proper HMM, we can create a “dump”
state for paths in M that do not respect the footprint we
seek, or not bother.) See Figure 2.

We require that the initial transition is from x0 to a state
in G1, and we compute only the sum of the forward
probabilities ending in states in Gk that have made all of
the required label transitions in the footprint f. The new
model has O(Lk) states and each state has degree at most
2L, so computing the probability of a footprint can be
done using the forward algorithm in O(L2kn) time. Note
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that this could be quadratic in n, as k, the length of the
footprint, is bounded above by n.

Computing the probability of a ball of labellings
Computing the probability of B(l, r), the ball of
labellings around l with radius r can be done efficiently
for the border shift distance. As before, we produce a
group of states Gi for each position fi in the footprint f =
f1 ... fk of labelling l . Each state in Gi has nonzero
transition probability only to states in Gi or Gi+1.
However, if bi(l) is the position of the i-th border in
the labelling l, then we allow states in Gi to appear only
in positions from bi-1 - r to bi + r - 1. For each position j,
we can identify the groups that can be active at that
position in this way. Computing the ball probability is
easily accomplished using the pattern for computing the
probability of a labelling: we simply set the transition
probabilities for transitions to a new label that are found
outside of the correct interval to zero and forbid
transitions within a label after its valid interval ends.
We then run the forward algorithm on the updated
HMM, which we call M’. M’ has exactly the same states as
for computing a footprint, meaning that the runtime to
compute the probability of the ball B(l, r) is O(L2kn).
However, we can reduce this runtime. If tj is the number
of groups of states Gi that could be active at position j,
then allowing the boundaries to shift by r makes tj go up
by 1 at 2r positions. The asymptotic runtime is q∑tj,
which is O(qn + qrk). Again, since q ≤ L2, this is O(nL2 +
rkL2), which may be well less than the runtime of the
forward algorithm on the original model M, depending
on r and k.

For the border shift sum distance, we must remember the
total amount by which we have already shifted the first
j - 1 borders before we handle the next border. As such,
we can imagine the same sort of HMM as for the
maximum border shift, but with an additional parameter

in each state to keep track of this total mismatch so far
accumulated. The model winds up with r times as many
states this way, but the set of active groups at each
position, and the degree of each node in the new HMM,
stay the same. The overall runtime is r times slower than
for the maximum border shift distance, or O(qnr + qr2k).
We note also that the values of r chosen in practical
applications are likely to be much larger for this distance
measure than for the maximum border shift measure; as
such, we expect that these algorithms are not likely to be
as useful in practice.

Finally, for the generalized Hamming distance, with
label distance matrix H, we can again hybridize the
forward algorithm. Consider again our reference label-
ling l, and create a new HMM with (r + 1)m states, where
each state’s identifier is (j, d). The semantic meaning of
being in state (j, d) at position i of the sequence is that
the HMM M is in state j and we have accumulated d
distance from l in the first i positions of the sequence;
we create such states for all d in the range from 0 to r. If
there is a transition from j to k in the HMM M, and if HL

(l{i=1}), L(k) = h, then we draw an edge in our new
HMM from (j, d) to (k, d + h) for all d such that d + h ≤ r;
if d + h is more than r, then we do not allow the
transition. The new HMM has (r + 1)m states, each of
which has the same degree as inM. We compute the total
forward probabilities of all states (j, d) at position n, and
this gives the probability of B(l, r) for the generalized
Hamming distance, in runtime r times that of the
forward algorithm on the original sequence, or at most
O(m2nr).

Hardness results
We might hope that we can compute the labelling for
which B(l, r) is of highest probability for a given r and
one of our distance measures. Unfortunately, this is NP-
hard, because the problem of computing the maximum
probability labelling is also NP-hard [6], even for a fixed
HMM with only two labels.

Optimizing the ball with radius 0, B(l, 0), is exactly this
problem, so optimizing balls for general radius r is
clearly NP-hard for either the border shift or border shift
sum distances. Similarly, it is NP-hard for the generalized
Hamming distance, since if we used radius r = 0 and the
label distance matrix H with value 1 for mismatched
labels and 0 for matched labels, we are again maximizing
the probability of a labelling. We conjecture that this
problem stays NP-hard when restricted to the pure
Hamming distance on state paths, and not labels.

Furthermore, maximizing the probability of a ball of
labellings under any natural distance remains NP-hard

Figure 2
Computing the probability of a footprint. To compute
the probability of a footprint f = f1, ..., fk, we create a group
of states Gi for each entry in f, corresponding to the states in
M labelled fi. A path compatible with the footprint must first
go from x0 to one of the states in G1, then eventually go
to G2, and on to Gk. Transitions are only allowed from
Gi to Gi or Gi+1.
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even if we restrict attention to a single footprint f. The
original HMM used in the proof that maximizing the
label probability is NP-hard has only two labels, so there
are only 2n possible footprints for a sequence of length n
in this HMM. As such, if there existed a polynomial time
algorithm that finds a maximum probability ball for a
given footprint f, we could solve the most probable
labelling problem by setting r = 0 and running that
algorithm for each of the O(n) footprints.

Optimizing balls of states and paths:
local search and special cases
Still, we can hope to find good balls of labellings using
local search or global optimization in special cases. Here,
we give a very efficient local search procedure to help
optimize the probability of a ball of labellings using the
border shift distance, and a global optimization proce-
dure for computing the best centre for a ball of paths, not
labellings, with the restriction that the path that forms
the centre of the ball must divide the sequence up into
long intervals, all using a single state.

Local search heuristic
The local search heuristic starts from a candidate
labelling l . At each iteration, it computes the
probability of every ball centered at a labelling l’
matching l in all borders but one, which is shifted by
one position in either direction. We move to the l’ of
highest ball probability and iterate until no improve-
ment can be obtained by shifting a single border in the
active l. We can compute directly the ball probability for
all 2k neighbours of l; this gives runtime O(k2rL2 + knL2)
per iteration.

We can improve this runtime by noticing that the active
states at corresponding positions in l and a neighbour l’
are identical for most sequence positions: if l’ consists
of moving the border at position j in l to position j + 1,
this only changes the active states at positions j - r
and j + r.

We can precompute the forward and backward prob-
abilities of all states and positions for the ball of radius r
around l. For any HMM M, let ji(k) be the probability
that M, started at the initial state x0, emits y1, ..., yi and
that xi = k, and let b i(k) be the probability that M, started
at state k, emits yi, ..., yn. The probability that M emits y is
the dot product of ji and b i+1 for any i. We can compute
the forward and backward vectors ji and bi for all
positions i in time proportional to the runtime of the
forward algorithm. In particular, if we have computed
Pr[B(l, r)], we can also compute all of the forward and
backward vectors at all positions of the sequence in the
same asymptotic runtime.

Now, if we are considering moving the border at j to
position j + 1, we can keep the value of jj-r-1, as the active
states and probabilities are unchanged at the first j - r - 1
positions. From that point, we can use jj-r-1 and run the
forward algorithm in the slightly altered HMM with the
new border for the next 2r + 1 positions, until we
compute the forward vector at position j + r; call it ′+φ j r .
In the remaining positions, the probabilities do not
change, so Pr[ ( , )]B r j r j r′ = ′+ + +λ φ β 1 , and we can compute
the ball probability for l’ by computing only O(r)
columns in the forward algorithm. Each column might
require as many as Θ(rL) active states in extreme cases, so
the algorithm takes O(krL2) time to analyze each ball.
(Note that kL is also an upper bound on the number of
active states in any column, but this is likely a coarser
upper bound, as k may typically grow with the sequence
length, while r is a parameter of the optimization.) This
method gives O(nL2 + k2rL2) runtime per iteration of the
local search to compute the forward and backward
vectors for l and analyze all 2k neighbours l’ . In
practice, this technique sped up our algorithms by a
factor of ten for our experiments with transmembrane
protein data shown later.

Global optimization for paths with long intervals
While the general problem of finding the most probable
ball of labellings is NP-hard, the problem can be solved
in polynomial time for a special case. Here, we look for
the most probable ball of state paths rather than
labellings (which corresponds to each state having its
own label). Furthermore, we are only interested in
finding the most probable among those balls whose
centre paths have each state lasting at least 2r + 1
positions. A path satisfying this requirement is called
(2r + 1)-regular. We call a path π weakly (2r + 1)-regular
if all its states except the final one last for at least 2r + 1
positions, while the final state lasts at least r + 1
positions. A weakly (2r + 1)-regular ball is a ball centered
at such a path. Our dynamic programming algorithm
maintains variables F [j, s] corresponding to the
probability of the most probable weakly (2r + 1)-
regular ball up to position j whose centre has state s at
position j. The key idea behind the algorithm is that, by
storing the probabilities of weakly (2r + 1)-regular balls,
we can ensure that the last state of each path in
the ball is the same. This allows us to devise a
dynamic programming procedure similar to the Viterbi
algorithm.

An optimal weakly (2r + 1)-regular ball up to position j
can arise either by extending the final state of some
centre path optimal to position j - 1 or by allowing a
border to occur at position j - r because the last border
must occur at least r positions previously. The recursive
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formula for calculating the probability of the new
optimal ball is given by

F j s F j r s Q s s j

F j s a e

s

ss sy j

[ , ] max max [ , ] ( , , ) ,

[ , ]

= − − ′ ⋅ ′( )⎡
⎣⎢

−

′
2 1

1 ⎤⎤
⎦ ,

where Q s s j x s x s y x sj r
u

u
j

j r
j

j ru j r
( , , ) Pr[ , , | ]′ = ≡ ′ ≡ = ′− − + − − −= − − 2 1 1 2 2 12 11

1j−∑ />,
the probability that the model emits the sequence yj-2r-1
to yj in only the states s’ and s, and with a forced
transition between those states in the interval, condi-
tioned on starting the interval in state s’; we write x si

j ≡
as a shorthand for xi, xi+1, ..., xj = s, ..., s.

In this formula, the first term computes the probability
of the best weakly (2r + 1)-regular ball ending at s at
position j where there is a border at position j - r, and the
second computes the probability of extending the
previously optimal path in the same state.

Once we have computed the values of F [j, s] up to j = n - r,
we multiply each of these values by a sequence of
transition and emission probabilities corresponding to
extending the state s up to position n. This ensures that our
centres are (2r + 1)-regular in the strong sense. Finally, we
pick the largest probability obtained in this way and
reconstruct the actual state path.

The runtime of the algorithm is determined by the time
needed to calculate the Q(s, s’, j) values. We can calculate
these sums in amortized constant time by reusing the
values obtained for the previous value of j. This yields a
runtime of O(nm2), as for the Viterbi algorithm.

Results and Discussion
We have implemented our local search procedure and
applied it to alpha-helical transmembrane protein
topology prediction. In this problem, we are given a
membrane protein sequence, and we are asked to label
each amino acid as belonging to a cytoplasmic loop, a
non-cytoplasmic loop, or a transmembrane helix. In any
transmembrane protein topology, cytoplasmic and non-
cytoplasmic loops alternate, separated by transmem-
brane helices, so the number of possible footprints is
only linear in the length of the protein sequence.

Transmembrane protein topology predictors commonly use
HMMs as a modelling tool. Examples of HMM-based
approaches to this problem include Phobius [2], HMMTOP
[10] and TMHMM [11]. Our methods are particularly
appropriate for this problem domain for two reasons. First,
researchers already have been using approximate correctness
in helical boundary prediction. For example, the authors of
Phobius [2] count a predicted topology as correct if its

footprint is correct and the predicted location of each
transmembrane segment overlaps with its true location in at
least 5 positions, which bears some resemblance to our
border-shift distance. Second, since the length of a
transmembrane segment is bounded below by 15, while
the average length of such a segment is 21, the number of
possible footprints is low. By using our methods, we can be
explicit about trying to approximate feature boundaries in
transmembrane proteins.

Data used
We used the larger of the two data sets used to train
Phobius [2]. The data set contains 247 transmembrane
proteins, whose average length is 385 residues. The
average number of transmembrane helices per protein is
5. We also used the Phobius HMM for our experiments.
The training procedure for the model was originally
designed for use with the 1-best algorithm, which is used
in Phobius. For details about how the model was
trained, see the original paper [2].

We used two error measures to assess the accuracy of our
algorithms. The first counts a prediction as correct if its
footprint is correct and the predicted location of each
transmembrane segment overlaps with its true location
in at least 5 positions. As we noted above, the authors of
Phobius used this measure to identify correct predic-
tions, so we call it the “Phobius” measure. The second
measure we used counts a prediction as correct if its
border shift distance to the true labelling is at most 5. We
call this the “τ = 5” measure.

We note that the τ = 5 measure is much more stringent
than the Phobius measure. In our experiments, we
discovered far lower success rates for decoding algorithms
according to this measure than to the Phobius measure.
That measure does not penalize predictions that move the
borders of a transmembrane segment far away from its
centre and also allows more error when the prediction
considers a border to be too close to the centre.

Initial labellings
We tested several different methods of choosing initial
ball centres. For each of these methods, we then chose
the ball of highest probability among those found by our
local search procedure. In the first series of experiments,
the initial ball centres were obtained by sampling from
the conditional distribution of labellings given the
protein sequence, using a standard algorithm [7,8].

The second initialization method that we tested was
choosing labellings corresponding to the K most prob-
able state paths through the HMM. The K most probable
paths for each protein were obtained using the software
by Brown and Golod [9].
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Finally, to see if we could use the prediction of Phobius
as a good starting point for local optimization, we
performed local search on the single labelling obtained
from the 1-best algorithm in Phobius, and from K - 1
sampled paths augmented by the single labelling from
Phobius.

Overall results
We compared the predictions of our methods with the
predictions from Phobius. Results are shown in Table 1.

For this initial set of experiments, we used 10 samples
from a variety of methods and optimized using our local
search procedure.

Our methods are comparable to Phobius without local
optimization for its measure of correctness (162/247 vs.
166/247). For our “τ = 5” measure, our optimized
predictions from samples of the HMM space are
significantly better (93/247 vs. 79/247). We used
McNemar’s test to verify that this result is significant at
the 0.05 level for a 1-tail test.

In this experiment, our prototype implementation of our
local optimization method required approximately 13
times as much time to compute predictions as did
Phobius. However, we note that the parameters chosen
(for r, for the number of iterations in the local search,
and for the number of starting samples) were not done
so as to reduce runtime, but to explore the effectiveness
of our method.

Robustness of results
The behaviour of the local search algorithm depends on
several parameters: the radius r of the ball whose
probability we seek to maximize, the number of starting
points, and the maximum number of local search
iterations. We ran our sampling procedure for a variety of
parameter choices. Our method is robust to these
parameter choices: most experimental setups differed in
accuracy by at most 2 - 3 proteins according to the Phobius
measure. For the “τ = 5” measure, accuracies differed in a

range of about 7 - 8 proteins. Even for the latter measure,
the only parameter that noticeably affected the results was
the ball radius r. Increasing the number of starting points
from 10 to 20 had almost no influence on the Phobius
measure accuracy of the local search procedure with
sampling (results not shown). True footprints of high
probability were very likely to be sampled at least once
with only 10 samples. On the other hand, if the true
footprint had low probability, the local search procedure
would likely have chosen a ball of higher probability
instead, and more samples would not help.

Changing the maximum number of local search iterations
also did not influence the results significantly. We tested
our algorithms with 6, 20 and 80 local search iterations;
this had no effect on the Phobius measure, while letting
the algorithm come closer to convergence improved the
“τ = 5” measure at at most 2 proteins. Changing the radius
of the ball had little influence on accuracy according to the
Phobius measure (at most 2 for all tested values of r ≥ 2),
but it did affect the performance according to the “τ = 5”
measure. The number of correct predictions according to
that measure varied from 84 (34%) to 93(37.6%) when we
fixed the other parameters. Not surprisingly, the highest
accuracy is achieved at r = 5. On the other hand, setting r =
6 yields the highest accuracy for the Phobius measure.
Regardless of the radius used, the accuracies for the “τ = 5”
measure were better than the accuracy obtained by the
1-best algorithm.

Experimental conditions
Unless otherwise noted, we used r = 5 in an attempt to
directly optimize the “τ = 5” measure. We also show the
results for r = 6 for sampling since this radius value
yielded the best accuracy according to the Phobius
measure. For each algorithm, we used 10 starting points
for the local search, except the one where the local search
was carried out from the 1-best prediction from Phobius.

Substituting one of the random samples with the 1-best
prediction does not noticeably change the accuracy of
the local search algorithm. Local searches starting from

Table 1: Comparison of different algorithms

Starting set Local optimization Phobius measure τ = 5 runtime

10 samples, r = 6 Yes 162 92 132 m34 s
10 samples, r = 5 Yes 160 93 119 m53 s
Phobius No 166 79 n/a
Phobius Yes 166 94 8 m53 s
9 samples+Phobius Yes 161 93 119 m33 s
10 best Yes 141 75 116 m38 s

Comparison of accuracies for various algorithms tested. Shown are the numbers of correct predictions for various experimental conditions for two
different correctness measures. We also show the total runtime of the local search procedure for all 247 proteins. For Phobius and 10 best, runtimes
do not include the time needed to acquire initial labellings.

BMC Bioinformatics 2010, 11(Suppl 1):S40 http://www.biomedcentral.com/1471-2105/11/S1/S40

Page 7 of 9
(page number not for citation purposes)



the 1-best prediction rarely produce higher probability
balls than local searches based on sampling. Running
local search from the Phobius prediction alone substan-
tially increases the “τ = 5” accuracy for those predictions
while not giving a noticeable performance gain accord-
ing to the Phobius measure.

Initializing local search from labellings corresponding to
the 10 most probable paths yields substantially worse
accuracies than the other methods. This may be because
of a low diversity of footprints among these paths.

Analysis of errors
We have also compared the sets of proteins predicted
correctly by Phobius and by our sampling algorithm. The
results are shown in Table 2. Among the proteins
mispredicted by our local search algorithm, all but 2
have a footprint that is more probable according to the
model than the true one. Of these two proteins, one is also
mispredicted by Phobius. For all other mispredicted
proteins, our algorithm predicts more probable, but
incorrect, footprints. We have found that while correct
solutions are often found for these proteins by some local
search runs, they are discarded in favour of a wrong
prediction having more probability mass around it. These
results demonstrate that wrong predictions obtained by
our algorithm are a result of the HMM itself rather than our
decoding procedure. They also show the power of our local
search algorithm combined with sampling.

The efficiency of our local search procedure when
combined with sampling is not surprising. Since we are
trying to optimize for high probability balls, the prob-
ability of sampling a labelling somewhere within the most
probable ball should be large. As a result, the distance
between a sample and the centre of the most probable ball
will often be small, which makes the local search procedure
likely to achieve at least a good approximation of the most
probable ball. Obviously, this strategy will perform worse
if the most probable ball has low probability, but in such
cases we are not likely to obtain a good prediction anyway
from any decoding strategy.

Conclusion
We have proposed a new decoding strategy for hidden
Markov models: label a sequence in such a way that the
true labelling of a sequence is likely to be close to the

prediction. Unfortunately, this strategy is NP-hard, so we
have proposed a highly efficient local search procedure
to find good labellings using this approach in practice.
We also provided a global search procedure for a special
case of a variant of our procedure, where we focus on
paths in the HMM and not labellings, and where we
require that the path we return divides the sequence into
long intervals all using the same state.

In our initial experiments, our local search procedure is
comparable to existing algorithms at finding the overall
approximate topology of a transmembrane protein, and
for the ones that it does do a good job at approximating
the topology, it is notably better at getting the
boundaries of transmembrane helices almost exactly
correct.

Our methods offer the possibility of a more robust
method of HMM decoding, where instead of focusing on
the correct answer, we can focus on finding annotations
useful in subsequent applications. In future work, we
shall apply these techniques to gene finding, to align-
ment, and to other applications of HMMs in bioinfor-
matics and other domains. We will also consider training
techniques to improve the accuracy of this decoding
method.
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