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Abstract: Brucella is a foodborne pathogen globally affecting both the economy and healthcare.
Surface Enhanced Raman Spectroscopy (SERS) nano-biosensing can be a promising strategy for
its detection. We combined high-performance quasi-crystal patterned nanocavities for Raman
enhancement with the use of covalently immobilized Tbilisi bacteriophages as high-performing
bio-receptors. We coupled our efficient SERS nano-biosensor to a Raman system to develop an
on-field phage-based bio-sensing platform capable of monitoring the target bacteria. The developed
biosensor allowed us to identify Brucella abortus in milk by our portable SERS device. Upon bacterial
capture from samples (104 cells), a signal related to the pathogen recognition was observed, proving
the concrete applicability of our system for on-site and in-food detection.

Keywords: quasi-crystals; nano-biosensing; SERS; nanocavities; bacteria

The contamination of food and drinks with pathogenic bacteria is a problem affecting
both the economy and healthcare. Brucella abortus is a central example of this problem
because it is among the main zoonosis affecting the global economy [1]. It infects livestock
and wild-life animals, resulting in loss of reproductive efficiency and abortion [2]; moreover,
it is transmitted to humans by ingestion of contaminated food.

The gold standard method for the diagnosis of Brucella is blood culture, but this
method is characterized by different drawbacks [3], not last the long time required for
cell cultivation. Serological tests, including the agglutination test to detect the anti-
lipopolysaccharide (LPS) O-antigen antibodies, are also available but are characterized by
poor specificity due to structural similarities among different bacteria [4,5].

The control of Brucellosis is of prime importance in the endemic areas of poor coun-
tries, and the salubrity of animal source foods, in particular milk, is crucial to avoid the
transmission of this disease from livestock to man [6]. The availability of simple and afford-
able tests to detect the pathogen presence in food of animal origin can therefore represent
an important instrument to limit human outbreaks. Efficient analyses for the detection of
Brucella are already available but not without important compromises: They are usually
time-consuming, costly, and unsuitable for the on-site pathogen detection [2,7–9]. High-
sensitivity polymerase chain reaction (PCR)-based and enzyme-linked immunosorbent
assay (ELISA) methods are important examples of culture-free methods, but despite their
great specificity and sensitivity, they are time-consuming and still suffering from opera-
tional simplicity [8,9]. Electrochemical Impedance Spectroscopy (EIS) is another method
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that has been recently employed for the Brucella melitensis [10] detection; however, EIS
often demonstrates insufficient selectivity [11]. New attempts are therefore ongoing to
develop a reliable, fast, and on-site method for Brucella detection [12,13].

A very promising approach to address this problem is the use of optical biosensors.
Over the last decade, the combined efforts of the scientific community have driven the
technological advancement towards high-performing, versatile, and compact optical de-
vices [14] for industrial and point-of-care applications [15–17].

Among the different spectroscopy strategies employed to develop high-performance
biosensing, Surface Enhanced Raman Spectroscopy (SERS) certainly offers appealing ad-
vantages. SERS is a label-free transduction method that exploits the plasmonic properties of
metal nanomaterials (Localized Surface Plasmon Resonance, LSPR) to enhance the scattered
Raman signal of several magnitudes [18] with reproducible and reliable features [13,17–21].
The possibility to define a SERS fingerprint spectrum for the specific identification of an
analyte, from small molecules up to whole cells, is surely remarkable [22,23]. The SERS
sensitivity and specificity can therefore allow a short time and effective detection of the
pathogen, bypassing the need for cultures or multistep procedures.

A limiting factor of SERS-based sensors is the intrinsic loss of specificity in complex
matrices that hampers their applicability and commercial distribution. The most promising
strategy used in the literature to overcome this problem is the creation of a receptor layer
specific for the analyte of interest. Antibodies are commonly used as receptors of biosensors,
even suffering from natural sensitivity to variable operating conditions and being very ex-
pensive. A novel and workable alternative to antibodies is the use of bacteriophage viruses
able to bind the organism in study. Bacteriophages not only present an excellent specificity
for the host bacteria, but they are also characterized by a remarkable tolerance against criti-
cal conditions (e.g., organic solvent, extreme temperatures) [24]. Phages are viruses that can
specifically infect the target host bacteria and utilize its replicative machinery to produce
the progeny phages. The specific recognition and binding to the host bacteria occurs via
phage tail fibres and baseplate [25]. The specificity of this phage-bacteria bond can be also
higher than antibodies and other bioreceptors commonly used to detect pathogens such as
aptamers and antimicrobial peptides. Moreover, phages are characterized by lower costs
and can be cultured in adequately equipped microbiological laboratories. In particular, the
Tbilisi bacteriophage specifically recognizes B. abortus and it has been used for decades for
Brucella species identification in the diagnosis and epidemiology of brucellosis [26].

We already successfully showed the feasibility of our SERS nanosensors for Brucella
analysis [12] and the quality of the achieved results encouraged us to further explore the
efficiency of our technology for the detection of the live pathogen in real food samples.

In this communication, we explored a new optimized approach in which a sensitive
deterministic aperiodic nanocavity (DANC) patterned gold layer was covalently function-
alized with Tbilisi (Tb) bacteriophages via diazo-coupling for a detection of the Brucella
abortus in a food matrix. The developed sensor was also used to detect the viable form of
Brucella abortus in milk by a portable SERS device of our creation [12] (Figure 1).

In recent times, different SERS sensors have been developed using metallic nanopat-
terned surfaces to reveal weak Raman scattering bio-specimen in low concentration
ranges [27,28]. These nanomaterials are distinguished not only by the noble metal used but
also by the pattern features. Indeed, the structure-dependent SERS enhancement is linked
to the size, geometry, symmetry, and order of the nanopatterned structure.

In particular, quasi-crystal Au nanocavities (NCs) arranged in Thue-Morse array
(ThMo) were chosen for the realisation of the SERS-based sensor. ThMo aperiodic ge-
ometry is generated by the iterative substitution rule: A → AB, B → BA that can be
extended to two dimensions [29]. Optical properties of the ThMo nanopattern have been
widely investigated and their peculiarities (singular continuous Fourier/Diffraction spec-
tra, self-similar hierarchy of pseudoband-gap regions, omnidirectional reflectivity, and
light emission enhancement) make such geometries attractive candidates for the realization
of high-performance plasmonic nanosensors [23,30–36]. Despite the greater difficulty of
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both design and fabrication that they require compared to conventional periodical pattern,
aperiodic arrangements show important advantages for the realization of sensing systems.
As reported in the literature, they provide the necessary balance between their resonant
modes and the spatial distribution of large field intensity over extended sensing areas,
resulting in largely improved sensitivity respect to periodic crystals cavities, which are
limited by the small overlap of the analyte with localized field [37]. Due to the higher
structural disorder, the aperiodic arrays are strongly coupled in both the plasmonic near
field regime (short-range coupling) and the photonic diffractive one (long-range coupling),
resulting in strong in-plane multiple light scattering [38]. This enhanced scattering enables
both field states that are spatially distributed over larger array areas and much longer
photon dwelling times with the sensing layer compared to periodic plasmonic structures in
which scattered photons easily (and faster) escape from the substrate. These characteristics
improve the light–analyte interaction, enhancing the sensitivity of the system and making
these types of patterns promising to develop advanced sensing devices.
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Figure 1. Home-made portable system for Surface Enhanced Raman Spectroscopy (SERS) analysis in situ: (a) Picture of the
system, (b) schematic representation.

The procedure followed for the nanofabrication was previously described in the
literature [39] and used here with some modifications detailed below. The plasmonic
metastructures with squar-shaped NCs based on a 10th-order ThMo array were fabricated
by a high-resolution electron beam lithography (EBL) system (Raith 150 EBL system by
Raith GmbH, Dortmund, Germany), using ZEP 520A (Marubeni Europe plc, London, UK)
as positive resist (100 nm layer). The resist was spin-coated on a 15 nm conductive ITO
coated glass substrate, baked at 170 ◦C for 5 min, and exposed to a 10.2 pA electron beam
with an area dose of 27 µC/cm2. After the development [40], a 50 nm gold layer was
evaporated on the ZEP surface by e-beam process (SISTEC CL-400C e-beam evaporator
by SISTEC, Milan, Italy). The produced quasi-crystal pattern was characterized by square
NCs having a minimum distance of a = 50 nm, and a side size of d = 185 nm [23,39] with
increasing edge-to-edge distances from 25 to 100 nm in a two-layer (ZEP/Au) configuration.

After the realisation of the metastructures (Figure 2), the sensors were morphologically
characterized using scanning electron microscopy (SEM) (Figure 3). The analysis of micro-
pictures allowed us to confirm the conformity in shape and size of the NCs produced.
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The sensor surface was then functionalized with the phages. Tb phages (LGC Stan-
dards) were propagated on Brucella abortus in a Bio-Safety Level 3 (BSL−3) facility, using a
standard protocol [12]. In particular, Tb enumeration and propagation were carried out by
the double layer agar method [41].

In order to immobilize the phages, a 4-aminothiophenol (4-ATP) self-assembled mono-
layer (SAM) was formed on the surface for the covalent binding of Tb via diazo-coupling,
as previously reported [28]. Briefly, the diazo-coupling reaction was carried out with the
support of an optical microscope in order to prevent damages to the nanostructures. After
the complete covering of the gold nanosurface with micrograins of sodium nitrite, acidic
acid was dropped on the sodium nitrite with a consequent production of nitrous acid
(HNO2) in the gaseous phase (bubble formation became visible on the chip surface). At last,
a 106 pfu/mL bacteriophage solution was added to the nanosurface and left in incubation
overnight at room temperature. Several ddH2O washings were performed prior to air blow
the chip and record the SERS spectra.
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Figure 3. Morphological characterization of the nanostructures by SEM. Detailed image of the
structure showing a cell of Brucella abortus is highlighted in red. Structure measures are distance of a
= 50 nm, and side size of d = 185 nm with increasing edge-to-edge distances from 25 to 100 nm.

Before the detection of the alive Brucella, an aqueous suspension of the bacterium
inactivated via formaldehyde treatment was used to obtain a reference spectrum. Precisely,
300 µL of Brucella abortus suspension (105 CFU/mL) in water was dropped on the phage-
functionalized nanostructures and they were left to react for 40 min. The sensor surface was
rinsed with ddH2O before SERS measurement so as to remove non-captured bacteria. SERS
analysis was performed by coupling a Raman system (QE Pro-Raman system by Ocean
Optics, Duiven, The Netherlands) with an upright microscope Olympus BX51 (Olympus,
Southend-on-Sea, England) in a backscattering configuration (Figure 1), and the spectra
were collected in the range 400−2000 cm−1 (10 s acquisition time, 50×microscope objective
with N.A. 0.75 and a laser power of 12 mW) [12]. Mean spectra were calculated from
repeated measurements on different points of the sensor and on its different replicas.

Afterwards, we worked in a BSL−3 laboratory with alive Brucella cells suspended both
in water and in milk (105 CFU/mL). In particular, the contaminated sample (300 µL) was
incubated on the sensor for 40 min and then washed away with ddH2O. The spectra were
recorded on site (in the BSL−3 facility) using an optimized homemade portable Raman
prototype [12].

In order to obtain an optical sensor suitable for the pathogen detection, we chose to
exploit as metastructure the ThMo distribution, whose potential for sensing was already
demonstrated [23,36,39]. In our previous work, we studied the plasmonic properties of
ThMo-arranged NCs by Finite Difference in Time Domain (FDTD) simulations suggesting
a characteristic near-field with a high spatial density of hot-spots [31]. Moreover, we
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demonstrated that a sensor patterned with such geometry and functionalized with 4-ATP
significantly enhanced the whole spectrum of a model protein (Bovine Serum Albumin—
BSA) [39]. 4-ATP is an ideal solution for the functionalisation of SERS sensors, as it is
indeed an aromatic thiol able to generate well-characterized Raman bands. 4-ATP can
bind the gold surface with its -SH group, forming a SAM, while the primary amine can be
exploited to covalently bind receptor-like bio-molecules [42].

The EF of the fabricated ThMo SERS sensor functionalized with 4-mercaptobenzoic
acid (4-MBA) was calculated to evaluate the performance of the metastructure as reported
in the literature [12]

EF = (ISERS × NREF)/(IREF × NSERS), (1)

where ISERS and IREF are the intensities of the 4-MBA peak at 1076 cm−1 in the SERS
spectrum and at 1084 cm−1 in the Raman spectrum, respectively. Similarly, NSERS and
NREF are the number of 4-MBA molecules contributing to the SERS and the Raman sig-
nals [28]. We realized the measurements in a dry state and the estimated values were:
ISERS = 68320 counts, IREF = 2720 counts, NSERS = 1.44 × 106 mol and NREF = 2.2 × 1011

mol, therefore achieving an average EF for our ThMo structure [39,43] of 3.8 × 106 that
suited our purpose of microorganism detection. EF > 106 are indeed adequate to reveal
Brucella at the single-cell level in aqueous suspension, as reported by Rippa et al. [12].

For the specific capture of the pathogen, the 4-ATP modified sensor was further
functionalized with the bacteriophage Tb (Podoviridae family) via diazotization. The dia-
zotization, also known as azo coupling, is an electrophilic aromatic substitution between a
nucleophilic arene and a diazonium cation (i.e., the electrophile) to generate an azocom-
pound. In this case, the diazonium (4-ATP–N≡N+) is formed by the reaction of the 4-ATP
primary amine with the nitrous acid. The following conjugation of Tb to the diazonium
takes place through the phage histidine/tyrosine residues that can act as nucleophiles [42].
After the diazo bond formation, well-distinguishable vibrations [28,42] appeared in the
SERS spectrum. In particular, the comparison between the 4-ATP SERS spectrum (green
line, Figure 4a) and the other spectra reported in Figure 4a (diazonium spectrum, blue
curve; covalently immobilized phage, black curve; captured Brucella, red curve) allowed us
to clearly note the presence of a new peak at 1322 cm−1 related to the vibrational stretching
of the diazo-bond (4-ATP–N=N–Tb) [39,42]. This peak at 1322 cm−1 represents a valuable
SERS marker [28,42] and we used its area as reference. In particular, we calculated the
area increase of this reference peak due to a binding event, as previously reported [28].
A remarkable 30-fold amplification of the reference peak after phage immobilization was
estimated with respect to the diazonium (4-ATP–N≡N+) spectrum (Figure 4a).

At first, we detected the B. abortus presence in aqueous samples (105 CFU/mL),
noticing an amplification of 1.3-fold for the peak located at 1322 cm−1 (red line, Figure 4b
and Table 1).

As previously reported in literature [44], the SERS is based on a very short-range
phenomenon and it is possible to assess via SERS the complete Raman bands only for
the chemical moieties closest to the gold nanosurface. For this reason, we were able to
assess the diazonium (4-ATP–N≡N+) SERS spectra but the successive binding events
slightly affected the achieved Raman band pattern [44,45]. Binding events occurring on
the diazonium (4-ATP–N≡N+) layer were however detectable. Indeed, they resulted
in changes in the signal enhancement, according to the literature [12,44]. The Raman
enhancement was not exclusive for just a single peak of the spectrum (Table 1) [12,39,44],
but for convenience we chose the peak at 1322 cm−1 (related to the vibrational stretching of
the diazo-bond) as a reference to evaluate the signal increment consequent to the binding.
To facilitate the spectra comparison, the SERS spectra were referenced to the zero level
and were normalized by setting the maximum intensity of the Brucella spectrum at 1 (as in
Figure 4b).
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(a) Registered SERS spectra of the 4-ATP SAM (green line), the diazonium (4-ATP–N≡N+) (blue curve), the covalently
immobilized phage (black curve), and the captured Brucella (red curve). (b) Magnification of the SERS spectra referenced to
the zero level for the covalently immobilized phage (black curve) and the captured Brucella (red curve).

Table 1. Vibrational assignment of Raman and SERS spectra.

Vibrational Assignment 4-ATP Raman
(cm−1)

4-ATP SERS
(cm−1)

Tb Phage
(cm−1)

Brucella
Enhancement in

ddH2O 1

Brucella
Enhancement in

Milk 1

SC str + NH2 rock 1086 s 1076 1075 s 1.1 3.9
CH bend 1174 w 1177 1177 m 1.1 3.8
CN bend 1206 vw - - - -

CH str 1288 w 1308 - - -
NN str - - 1322 s 1.3 4

CC str + CH + rock + NH2rock - 1391 1388 w 1.2 1.2
CC str + NH2 rock - 1440 1436 m 1.5 0.8
CC str + CH bend 1491 w 1478 - - -

CC str + NH2 bend 1590 s 1581 1574 s 1.3 4.3
SH str 2555 - - - -

1 The areas of the fitted peaks were used to calculate the enhancement of the signal as compared to the negative control (phage signal
without the bacteria).

The performances of our sensor were then tested analyzing the presence of live B.
abortus cells (105 CFU/mL) in a food matrix, i.e., micro-filtrated milk (Figure 5).

We demonstrated that quasi-crystal patterned NCs functionalized with 4-ATP and Tb
bacteriophage allowed the effective SERS detection of ≈ 104 viable Brucella abortus cells
from a reduced sample volume.

The presented SERS substrate had an EF of 3.8 × 106, suitable to reveal the microor-
ganism at single-cell level [12], and a 4-fold intensity enhancement of the marker peak
at 1322 cm−1 (vibrational stretching of 4-ATP–N=N–Tb) was observed for the bacterium
detection in milk. Such performance was due to both the covalent Tb attachment to the
sensor surface via diazotisation and the specific phage recognition of the pathogen.

These results indicated, for the first time to our best knowledge, that SERS spec-
troscopy in combination with ThMo metastructures and a 4-ATP–N=N–Tb functionalisa-
tion can offer a reliable and easy alternative for in situ detection of Brucella also in a real
matrix such as milk. Work is in progress to detect the pathogen in clinical matrices for
diagnostic purposes.
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