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A B S T R A C T

Hubs of brain networks are brain regions exhibiting denser connections than others, promoting long-range
communication. Studies suggested the reorganization of hubs in epilepsy. The patterns of connector hub ab-
normalities specific to mesial temporal lobe epilepsy (mTLE) are unclear. We wish to quantify connector hub
abnormalities in mTLE and identify epilepsy-related resting state networks involving abnormal connector hubs.
A recently developed sparsity-based analysis of reliable k-hubness (SPARK) allowed us to address this question
by using resting state functional MRI in 20 mTLE patients and 17 healthy controls. Handling the multi-
collinearity of functional networks, SPARK measures a new metric of hubness by counting the number (k) of
networks involved in each voxel, and identifies which networks are actually associated to each connector hub.
This measure provides new information about the network architecture involving connector hubs and a realistic
range of k-hubness. We quantified the disruption and emergence of connector hubs in individual epileptic
subjects and assessed the lateralization of networks involving connector hubs. In mTLE, we found pathological
disruptions of normal connector hubs in the mTL and within the default mode network. Right mTLE had re-
markably higher emergence of new connector hubs in the mTL than left mTLE. Different patterns of later-
alization of the salience network involving the abnormal hippocampus were found in right versus left mTLE. The
temporal, cerebellar, default mode, subcortical and motor networks also contributed to the lateralization of
hippocampal networks. We finally observed an asymmetrical connector hub reorganization and overall reg-
ularization of epilepsy-related resting state networks in mTLE, characterized by the disruption of distant con-
nections and the emergence of local connections.

1. Introduction

Mesial temporal lobe epilepsy (mTLE) is characterized by recurrent
seizures originating in the mesial temporal structures - amygdala, hip-
pocampus or entorhinal cortex (Engel Jr, 2001). For drug-resistant
mTLE patients, surgical resection is often offered when the epileptic
focus is well characterized. Long term post-surgical seizure freedom is
obtained in ∼65% of patients (Harroud et al., 2012), suggesting the
presence of epileptic networks involving other regions. Simultaneous
electroencephalography (EEG) and functional MRI (fMRI) studies

revealed hemodynamic responses to interictal epileptic discharges be-
yond the epileptic focus (Kobayashi et al., 2009; Khoo et al., 2017).
Functional connectivity (FC) studies brain networks by looking at the
temporally correlated fluctuations in the blood oxygen-level dependent
(BOLD) fMRI signals in remote brain regions. Using FC, resting state
networks (RSNs) are consistently found within the healthy population,
such as the default mode network (DMN) (Fox and Raichle, 2007). In
mTLE, abnormally decreased FC is also found within the mTL and DMN
(Pittau et al., 2012).

Hubs of FC are brain regions presenting with denser connections
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than others (Bullmore and Sporns, 2009). Normal brain networks have
a small-world topology characterized by many regular short-range
connections and fewer long-range connections (Bassett and Bullmore,
2006). Connector hubs participating in inter-network connectivity in-
clude long-range connections (Power et al., 2013). Being more vul-
nerable than other hubs, they are primary targets of several neurolo-
gical disorders including epilepsy (Crossley et al., 2014). In TLE, hubs
are disrupted, i.e. hub regions in healthy subjects become non-hubs in
patients, changes that are associated with damage to long connections,
resulting in the evolution from a small-world network into a regularized
network (Stam, 2014). Such evolution was observed in EEG studies
during seizures (ictal state) (Schindler et al., 2008) and interictal epi-
leptic discharges, between seizures (Bartolomei et al., 2013). Hub dis-
ruptions during resting state (RS) were also seen using fMRI (Vaughan
et al., 2016; Ridley et al., 2015). Reorganization of hubs in mTLE cor-
relates with epilepsy duration (van Dellen et al., 2009) and seizure
frequency (Douw et al., 2015), and impacts post-surgical outcome
(Wilke et al., 2011; van Dellen et al., 2014; Liao et al., 2016). However,
the patterns of connector hub reorganization specific to mTLE and the
characterization of the epilepsy-related networks involving these ab-
normal connector hubs remain largely unknown.

We recently developed a “SParse general linear model (GLM)-based
Analysis of Reliable k-hubness (SPARK)” to study connector hub orga-
nization using RS fMRI (Lee et al., 2016). SPARK handles the multi-
collinearity of RSNs based on a biologically plausible sparsity as-
sumption that a voxel can be involved in more than one but not all RSNs
(Karahanoğlu and Van De Ville, 2015). The multicollinearity of RSNs is
difficult to detect using conventional methods based on Pearson's cor-
relation. For example, if regions A and B are temporally correlated
through a functional process while regions B and C are correlated
through another functional process, Pearson's correlation may connect
A and C. The hubness metrics in graph theory, such as degree centrality,
count the number of all pairwise significant correlations between
voxels, up to several thousands (Bullmore and Sporns, 2009). SPARK
measures a discrete hubness by counting the number (k) of networks
involved in each voxel that are often<10, and identifies which net-
works are actually associated to each connector hub. This allows ana-
lyzing more specifically the network architecture in individual con-
nector hubs. The robustness and test-retest reliability of SPARK were
already validated using realistic simulations and real data (Lee et al.,
2016).

We hypothesized that RSN reorganization occurs in mTLE with: (i)
hub disruption where brain regions corresponding to connector hubs in
healthy subjects, become non-hubs in patients, and (ii) hub emergence
where brain regions corresponding to non-hub in healthy subjects, be-
come connector hubs in patients. We focused our analysis on the mTL
and DMN, as the involvement of these regions was suggested by other
studies (Pittau et al., 2012; Vaughan et al., 2016). We estimated the
connector hub organizations from RS fMRI acquired from 14 right (R)-
lateralized mTLE and 6 left (L)-lateralized mTLE patients, and com-
pared with the connector hub organization found in 17 healthy con-
trols. To quantify the local reorganization of connector hubs within
each volume of interest (VOI), we formulated a linear regression model
to estimate the hub disruption index (HDI) and hub emergence index
(HEI). We identified for each patient several epilepsy-related RSNs in-
volving the pathological and contralateral hippocampi and assessed the
lateralization of such epilepsy-related RSNs.

2. Material and methods

2.1. Subjects

2.1.1. Patients
From the database of drug-resistant patients with epilepsy who

participated in EEG-fMRI studies at the Montreal Neurological Institute
(MNI) between 2007 and 2016, we identified consecutive patients with

mTLE based on the following inclusion criteria: (i) history of seizures
with autonomic (i.e., epigastric sensation) or psychic features (e.g., déja
vu or dreaming state) as the first ictal symptom, followed by arrest of
activity, staring, and automatisms (mainly oroalimentary); (ii) interictal
EEG epileptiform abnormalities over temporal or frontotemporal re-
gions and ictal onset over the same regions; (iii) unilateral epileptogenic
focus, which was lateralized based on clinical history, interictal and
ictal video-EEG recordings, and neuroimaging; (iv) right-handed or left
hemispheric dominance for language determined by neuropsycholo-
gical evaluations and etomidate speech and memory test when in-
dicated (Jones-Gotman et al., 2005).

We excluded some patients from whom we could not find one or
more 6-min RS fMRI run showing (i) no indication of sleep, (ii) no ictal
and less than three interictal epileptic discharges, (iii) no excessive
motion during the 6-min scan. Specifically, for each patient, an expert
epileptologist reviewed the simultaneous EEG recordings to select a 6-
min run of RS fMRI which did not fulfill the exclusion criterion (i) and
(ii). For the remaining runs, after applying motion correction of fMRI
time series, we removed the time frames with excessive motion (frame
displacement> 0.5mm) from each run by scrubbing (Power et al.,
2012). Then, we excluded some runs if> 35% of the time-points were
removed by scrubbing because we wanted to have a sufficient length of
time-course for our analysis. We also excluded some runs that had
translation higher than 1mm or rotation higher than 3°. Finally, we
analyzed 6 patients with left (L) mTLE (age: 24 ± 7, 1F/5M) and 14
with right (R) mTLE (age: 32.9 ± 14.5, 11F/4M). 5/6 L mTLE patients
and 13/14 R mTLE had MRI abnormalities over unilateral mesial
temporal structures (see Table 1 for patient demographics).

2.1.2. Controls
We recruited 21 age-matched (two-sample t-test, p < .05) right-

handed healthy controls (age: 33 ± 12.5, 13F/8M) for comparison. All
control subjects had no history of any neurological or psychiatric dis-
orders and no evidence of structural lesions on T1 weighted MRI. After
fMRI preprocessing, four healthy subjects were excluded due to

Table 1
Patients demography.

ID. Age Sex Syndrome Handedness Aetiology
(MRI)

Epilepsy
duration
(yr)

Age of
seizure
onset (yr)

R1 28 F R mTLE R Enlarged
RH

10 18

R2 39 F R mTLE R MTS 16 23
R3 17 F R mTLE R MTS 7 10
R4 18 M R mTLE R Gliosis w/o

atrophy
1 17

R5 50 M R mTLE R MTS 50 0.5
R6 25 F R mTLE R MTS 12 13
R7 56 M R mTLE R MTS 11 45
R8 20 F R mTLE R MTS 10 10
R9 17 F R mTLE R MTS 12 5
R10 22 M R mTLE R MTS 13 10
R11 39 F R mTLE R MTS 38 1
R12 53 F R mTLE R Non-

lesional
37 16

R13 49 F R mTLE R HS 39 10
R14 27 F R mTLE R MTS 21 6
L1 21 F L mTLE R MTS 4 17
L2 28 M L mTLE R MTS 10 18
L3 19 M L mTLE R MTS 5 14
L4 31 M L mTLE R MTS 24 7
L5 30 M L mTLE R Enlarged

LH
2 28

L6 46 M L mTLE R Non-
lesional

15 31

F: female, M: male. L/R mTLE: left/right mesial temporal lobe epilepsy. LH/RH:
left/right hippocampus, HS: hippocampal sclerosis, MTS: mesial temporal
sclerosis.
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excessive motion evaluated by the same quality control as in patients
(see the exclusion criteria (iii) for patients), resulting in 17 healthy
controls for our connector hub analysis.

The study was approved by the MNI Research Ethics Board. Each
subject gave written informed consent in accordance with the MNI and
Hospital Research.

2.2. Simultaneous EEG/fMRI acquisition

EEG/fMRI acquisition, processing, and analysis were identical to
that performed in previous studies (Khoo et al., 2017; Pittau et al.,
2012). EEG was continuously recorded inside a 3 T MRI scanner (Sie-
mens, Trio, Germany). EEG was acquired with 25 MR-compatible scalp
electrodes (Ag/AgCl) using the 10–20 (reference FCz) and the 10–10
(F9, T9, P9 and F10, T10, and P10) systems. Two electrodes were
placed on the shoulder to record the electrocardiogram. Data were
transmitted from a BrainAmp amplifier (Brain Products, Munich, Ger-
many; 5 kHz sampling rate) to the EEG monitor outside the scanner
room via optic fiber. A T1-weighted anatomic acquisition was obtained
(1mm slice thickness, 256× 256 matrix; echo time [TE]= 7.4ms and
repetition time [TR]= 23ms; flip angle 30°) and used to superimpose
functional images and for intersubject coregistration. The functional
data were acquired in runs of 6min using a T2⁎-weighted echo-planar
imaging (EPI) sequence, with two acquisition protocols (protocol 1:
64×64 matrix; 25 slices, 5× 5×5mm, TE=30ms, TR=1.7 s, or
protocol 2: 64×64 matrix; 33 slices, 3.7× 3.7×3.7mm, TE=25ms,
TR=1.9 s; flip angle 90°; from protocol 1 to protocol 2 we increased
the number of coil channels to improve signal quality). Patients were
instructed not to move and to stay with eyes closed, resting. 10/14 R
mTLE patients, 5/6 L mTLE patients, and all healthy controls were
scanned using the protocol 2.

2.3. EEG preprocessing

The gradient artifacts were offline corrected using Brain Vision
Analyzer software (Brain Products), and the remaining artifacts were
removed by a 50Hz low-pass filter. The ballistocardiographic artifact
was removed by averaged artifact subtraction-based methods (Allen
et al., 1998) or independent component analysis (Bénar et al., 2003).
For patients, an expert epileptologist reviewed the EEG recording to
mark the interictal epileptic discharges and excluded the runs showing
patterns of sleep and more than three interictal epileptic discharges. As
a result, one to four 6-min resting-state EEG-fMRI recordings were
identified for each subject.

2.4. fMRI preprocessing

We used NIAK 0.13.0 for fMRI preprocessing (Bellec et al., 2010)1

with the Minc Tool Kit2. The EPI volumes were first corrected for inter-
slice timing differences. Rigid-body motion (3 translations and 3 rota-
tions) was estimated within and between sessions using the median
volume of the first session as a target, by maximization of correlation
coefficient using Minctracc (Collins et al., 1994). T1 anatomical MRI
scans were preprocessed using CIVET pipeline (Ad-Dab'bagh et al.,
2006), according to the preprocessing pipeline suggested in Zijdenbos
et al. (2002). Linear coregistration of a T1 anatomical scan in native
space to the MNI stereotaxic space was performed with a nine para-
meter transformation (3 translations, 3 rotations and 3 scales) by
maximization of correlation coefficient using Minctracc (Collins et al.,
1994). The target template brain model was the mni-models-icbm152-
nl-2009-1.0 template (Fonov et al., 2011). To correct for local de-
formation in the volume and shape of brain areas, non-linear

coregistration from T1 native to the MNI ICBM 152 template (Collins
et al., 1995; Collins and Evans, 1997) was then performed by max-
imization of correlation coefficient embedded within a multiresolution
iterative strategy. Non-uniformity correction (Sled et al., 1998) and
brain extraction (Park and Lee, 2009) were applied twice first in native
space and then in the MNI template after nonlinear coregistration. In-
dividual coregistration from an EPI volume (the median volume of the
first session as defined during the motion estimation) to T1-weighted
volume in native space was performed for each subject using Minctracc.
To do so, both anatomical and functional volumes were corrected to
have a zero mean inside their brain masks, and values outside the masks
were set to zero. Those volumes were then linear coregistered using a
rigid-body transformation (3 translations and 3 rotations) by max-
imization of the mutual information between volumes (Maes et al.,
1997; Collignon et al., 1995), and this procedure was refined in a
multiresolution iterative strategy. Finally, the EPI volumes were re-
sampled in the MNI space by combining a linear transformation from
EPI to T1 and non-linear transformation from T1 to the MNI template at
a voxel resolution of 4×4×4mm3.

Then, we removed the time frames with excessive motion (frame
displacement> .5mm) by scrubbing (Power et al., 2012). Slow time
drifts were filtered out with the basis of discrete cosines using a .01Hz
cutoff. Several additional confounds were also regressed out from the
fMRI data to reduce the influence of spatially structured noise: motion
parameters, the average signals in the white matter and the lateral
ventricles. Specifically, a twelve parameters model for motion was built
by including the six rigid-body motion parameters (3 translations and 3
rotations) as well as their square (Lund et al., 2006). Then, a principal
component analysis was used to retain 95% of the variance of these
twelve parameters. Finally, each fMRI run in the MNI stereotaxic space
was spatially smoothed using an isotropic Gaussian blurring kernel with
8mm FWHM, which might allow for an improvement of the signal-to-
noise ratio, mitigating the potential impact of misregistration between
functional areas across subjects. Several runs were excluded when>
35% of the total time frames were removed by scrubbing, transla-
tion> 1mm or rotation>3°. Finally, only the fMRI run associated with
a minimal motion was selected for each subject for the connector hub
analysis.

For these runs, gray matter voxels were selected by coregistering
and resampling a modified automated anatomical labeling (AAL) tem-
plate to the average of the functional images in the MNI space (Tzourio-
Mazoyer et al., 2002). By default, NIAK package provides a modified
version of AAL template, because NIAK uses the different stereotaxic
space for coregistration than the one used by Tzourio-Mazoyer et al.
(2002). The modified AAL template was generated by NIAK using non-
linear coregistration to the MNI ICBM 152 template (Fonov et al.,
2011), using the same coregistration strategy applied for our pre-
processing. Therefore, we resampled the modified AAL template at a
voxel resolution of 4× 4×4mm3, the resolution used for resampling
of our EPI images, and selected gray matter voxels belonging to the AAL
mask. The segmentation of cortical regions defined by the modified
AAL template was further used to identify several volume of interests in
our analyses.

2.5. Individual functional connector hub analysis using SPARK

This section will overview the SPARK procedure to detect connector
hubs from individual RS fMRI based on the sparse general linear model
(GLM). A summary diagram of the SPARK procedure is illustrated in
Fig. 1. After preprocessing of an individual RS fMRI (Y), the SPARK
procedure was performed including the following steps. First of all,
individual parameters, such as the total number N of expected net-
works, for the sparse GLM were estimated for the fMRI data Y. In Ap-
pendixA, we presented our new development for the automatic esti-
mation of these individual parameters. Using a sparse dictionary
learning algorithm for the sparse GLM, the whole brain fMRI data was

1 http://niak.simexp-lab.org.
2 http://en.wikibooks.org/wiki/MINC.
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decomposed into N resting state networks. By doing this, N temporal
and spatial patterns of resting state networks were estimated from data.
Using the sparse GLM, the BOLD signals in each voxel was modelled as
a voxel-specific linear combination of k atoms, selected among N atoms
from the data-driven dictionary. This means that “connector hubness”
of each voxel was modelled by k resting state networks that are spatio-
temporally overlapping and specifically contributing to the signal in
this voxel. Details of the sparse GLM are described in Section 2.5.1. An
important contribution of SPARK is that statistical reproducibility of the
data-driven sparse GLM was estimated and only the reproducible
components in our estimation will remain after thresholding. The as-
sessment of statistical reproducibility in SPARK was based on a boot-
strap resampling based strategy, which will be described in Section
2.5.2. Taking advantage of this assessment, we could finally analyze
only individually reliable connector hubs in each subject.

2.5.1. The sparse general linear model for SPARK
SPARK provided a multivariate FC hub analysis to identify con-

nector hubs of overlapping brain networks, reliably from individual RS
fMRI using a sparse GLM data analysis framework (Lee et al., 2011).
The sparse GLM models the whole brain fMRI data Y∈ℝT×V (T time
samples × V voxels) using a data-driven global dictionary Ω∈ℝT×N

and a sparse coefficient matrix X∈ℝN×V with the corresponding noise
E∈ℝT×V:

where yi is a time-course measured in a voxel i and ∥xi ∥0 indicates
the L0 norm of a vector xi, i.e. the number of non-zero elements. Each
column of Ω is an atom ωj, i.e. a network-characteristic temporal fea-
ture that should be shared by a subset of voxels. Each column of X (xi) is
a sparse code for the voxel i, where the number of non-zeros in xi de-
fines the sparsity level ki given the total number of atoms (N). The
coefficients indicate the signal amplitudes of the atoms. This sparsity
level ki provides also information on how many networks the time
course of a particular voxel i is involved with, therefore providing a
discrete measurement of hubness: number of networks associated to
this voxel. Therefore, each row of X provides the spatial map, which
could be interpreted as a network of voxels sharing the similar time
course in each atom. The BOLD signal yi measured in the voxel i can be

represented by a weighted linear combination of ki atoms, indicating
the ki networks involved in the voxel where the whole brain activities
can be represented by N (> ki) networks that recruit different sets of
voxels. We estimated Ω and X that best described the data using a
sparse dictionary learning algorithm, a variant of K-SVD algorithm (vK-
SVD) (Aharon et al., 2006; Lee et al., 2016).

The vK-SVD algorithm considered for sparse GLM decomposition
actually requires two parameters to be specified: an initial value of k
(kinit) and the total number of atoms (N), i.e. the scale of networks
characterizing the whole brain activities (see Fig. 1). In order to find the
voxel-specific sparsity level ki for each voxel i, the vK-SVD algorithm
requires the initialization of sparsity level in all voxels. In this paper, we
proposed three-steps procedure for the automatic estimation of the
subject-specific scale of whole brain networks (N) and an initial value of
k (kinit) for the sparse GLM using the minimum description length
(MDL) criteria (Saito, 1994) (see AppendixA, Fig. A6). The MDL criteria
is one of the model order selection methods suggested for sparse models
of functional data.

2.5.2. The SPARK procedure to estimate reproducible hub structures
Using SPARK, the individual-level reproducibility of the estimated

connector hub structures could be assessed by a bootstrap resampling-
based strategy (Lee et al., 2016). First, we applied the circular block
bootstrap resampling to the preprocessed RS fMRI data matrix (Y) and
generated B=200 resampled datasets with equal dimension
(Y(b)∈ℝT×V, b=1, …,B). The length of temporal blocks for each
bootstrap sample was randomly chosen between 10 and 30 time sam-
ples to preserve the temporal structure in the BOLD signals (Bellec
et al., 2010). Then, vK-SVD was applied on each resampled data (Y(b))
in order to estimate a dictionary (Ω(b)) and the corresponding sparse
representation (X(b)). The parallel process generated 200 dictionaries
Ω(b) (of N time-courses) and 200 sparse coefficient matrices X(b) (of N
spatial maps). The main objective of this parallel process was to find a
spatially reproducible set of atoms across the 200 resampled datasets. C
nearest neighbor spatial clustering was applied to the collection of all
200×N spatial maps to identify C=N clusters and the maps were
spatially averaged in each cluster.

Fig. 1. The procedure to detect reliable functional connector hub organization from individual resting state fMRI using SPARK. After preprocessing of an individual
resting state fMRI (Y), individual parameters for the sparse general linear model (GLM) are estimated. A bootstrap resampling strategy preserving temporal structures
in fMRI is applied to generate B resampled datasets (Y(b), b=1, …, B). Each resampled fMRI data is modelled using the sparse GLM in parallel: a dictionary of data-
driven temporal features (Ω(b)) and the corresponding sparse coefficient matrix (X(b)) are estimated for each Y(b). The outputs of all resampled datasets are collected
and a spatial clustering algorithm is applied on the spatial maps. Nsig+noise is the number of atoms in each dictionary and equivalent to the number of average spatial
maps estimated by averaging the spatial maps in each cluster. After evaluating and removing statistically unreliable elements in the average spatial maps and noise-
related atoms, only the signal atoms representing meaningful networks remain, i.e. Nsig atoms. Finally, the SPARK procedure provides: (i) spatial maps of resting state
networks, (ii) k-hubness in each voxel measured by counting the number of atoms (resting state networks) involved in each voxel, and (iii) the identification of which
(k) networks are involved in each connector hub for an individual resting state fMRI, which are associated with k-hubness.
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Then, we removed inconsistent elements in the resultant N maps,
i.e. low signal amplitudes after the averaging, assuming a Gaussian
distribution of the background noise. Elements that were less re-
producible, exhibiting an amplitude lower than the threshold, were
considered as background noise. We chose a higher threshold (p < .01)
for removing the background noise than the one used in our previous
work using real data obtained from healthy controls (p < .05) (Lee
et al., 2016). Considering that fMRI data obtained from patients might
be less stable than healthy controls due to the presence of pathological
brain activity, we used the higher threshold p < .01 to avoid a po-
tential bias in our comparison between the patients and healthy con-
trols. This resulted in some voxels with k=0, indicating that the in-
volvement of this voxel in those spatially reproducible RSNs was not
significantly consistent, while we focused our RSN estimation on only
highly reproducible structures. It however does not mean that this voxel
was never involved in any functional brain network. We also classified
several atom maps that included physiological noise such as remaining
significant cardiac, respiratory artifacts or subject motion, and some
redundant atoms that had<30 active voxels based on the manual
classification criteria given by visual inspection (Griffanti et al., 2017).
After all, it resulted in NSig(<N) reliable RSNs for each subject. Finally,
k-hubness was quantified by counting the number of associated net-
works for each voxel, and connector hubs were identified as the voxels
that had k-hubness> 1.

2.6. A linear regression model for hub reorganization using k-hubness

After finishing the whole SPARK procedure for individual RS fMRI,
we ended up with a k-map for each subject, in which the gray matter
voxels have the estimated k-hubness value. We were interested in de-
tecting local reorganization of connector hubs within a particular vo-
lume of interest (VOI) associated with the pathology in mTLE. We de-
fined three VOIs: the L and R mTL regions - amygdala, hippocampus
and parahippocampus, and the DMN - the anterior/posterior cingulate,
medial prefrontal, precuneus, angular and mid temporal gyri, and
temporal poles. Our definition of the DMN did not include parts of the
mTL, which were included in the description of DMN in other studies
(Andrews-Hanna et al., 2010; Thomas Yeo et al., 2011), because we
wanted to study connector hub reorganization in the mTL specifically.
These definitions of the mTL and DMN are used throughout this paper.

To quantify the connector hub reorganization in a patient in com-
parison to normal connector hubs estimated from the group of controls,
we formulated a linear regression model for k-hubness that is similar to
the one suggested for graph theory in Achard et al. (2012). Let kp de-
note k-hubness at voxel i measured from a patient, μkC and σk, iC denote
the mean and standard deviation of the k-hubness measured at voxel i
over the group of controls. i is the index of a voxel belonging to a VOI. p
or c denotes an individual patient or healthy control subject, and P or C
denotes a group of patients or controls. We first estimated the re-
organization of k-hubness in each voxel by subtracting the mean k over
the healthy controls (μk, iC) from the subject-specific k measured from a
patient (kip) and then dividing the difference by the standard deviation
of k in controls (σk, iC), as follows:

Local trend of the reorganization of k-hubness was estimated from
the voxels belonging to each VOI, by plotting this normalized difference
of subject-specific k (dip) with respect to the normalized group average k
in controls (μk, iC/σk, iC). We formulated this model as follows:

where a is a coefficient or slope and b is a y-intercept, assuming
Gaussian distribution of k values. In Achard et al. (2012), they sug-
gested drawing a scatter plot where x-axis denotes μk, i

C and y-axis
denotes kip− μk, i

C, whereas ki indicated circ centrality in their study.
The pattern of such scatter plots was shown to exhibit a linear re-
lationship. Then, a slope of the linear fit should give us a measure of
circ to which the connector hubs in healthy controls were disrupted in
an individual patient. They suggested to define the slope as hub dis-
ruption index (HDI), i.e. HDI= a. Note that we proposed in Eqs. 2 and 3

to normalize the k values by the standard deviation of k in controls (σk,
i
C). This normalization was not considered in previous studies when
estimating HDI.

In this model, we actually could define a new metric of connector
hub reorganization, the hub emergence index (HEI) using the intercept b,
i.e. HEI= b. A negative coefficient a indicates that some connector
hubs in controls become non-hub in the patient and a positive a in-
dicates that k-hubness of the normal connector hubs become even
higher in patients. Then, a positive intercept b would indicate the
emergence of new connector hubs: some non-hubs in controls became
connector hubs in the patient. The intercept b cannot have a negative
value, because a voxel cannot be involved in a negative number of
networks. a=0 and b=0 together would indicate that there was no
difference in k-hubness between the patient and the group of controls.
However, the parameter b has never been utilized in previous studies.
For comparison purposes, HDI and HEI estimated for each of the in-
dividual healthy subjects (kic) deviating from their group average were
also computed.

2.7. Reorganization and lateralization of patient-specific networks involving
the hippocampus

We further investigated the patient-specific network reorganization
associated to the hippocampus by measuring the proportion of hippo-
campal volume involved in each network from the outputs of SPARK.
SPARK can provide, for each voxel, the hubness level as well as the
characterization of which networks are contributing to the signal of that
voxel. We used such a property to estimate the volume proportion by
counting the number of hippocampal voxels involved in each RSN j
(njhipp) with respect to the total number of voxels in the hippocampus
(nhipp).

The identification of the total volume of hippocampus in each pre-
processed individual fMRI was performed in the MNI stereotaxic space
using the AAL template (Tzourio-Mazoyer et al., 2002). This AAL
template itself was also previously coregistered and normalized to the
linear and nonlinear MNI space (the same MNI152 template) using the
same method for fMRI preprocessing. It is noteworthy to mention that
the linear and non-linear coregistration and normalization strategies
considered in our study were also used successfully for the segmenta-
tion and volumetric analyses of the hippocampus, amygdala and other
medial temporal lobe structures, for instance, to study pathological
volume changes in patients with Alzheimer's disease (Zandifar et al.,
2017) and developmental volume changes from childhood to adoles-
cence (Hu et al., 2013). The AAL template was resampled to (4mm)3

isotropic voxels. At this point, the EPI image and the AAL template were
in the same space with the same resolution. In all patients, the hippo-
campus was delineated from the normalized template space using the
AAL template. Doing so, our approach did not consider any possible
volume loss of the pathological hippocampi (in case of hippocampal
sclerosis), that was indeed partially compensated by the spatial nor-
malization and AAL template measure. Assessing hub reorganization
using SPARK as a function of patient specific volume loss in the hip-
pocampus is a topic of great interest that will be considered in our
future investigations.

Several major RSNs involved within the left or right hippocampus
(LH/RH) were identified for each individual by selecting the networks
for which>10% of the hippocampal volume was involved, i.e. %
voljhipp≥ 10. These RSNs are the following: the temporal network -
anterior, lateral, mesial, and posterior parts of the temporal lobes, the
salience network - anterior cingulate and insula cortices, the subcortical
network - basal ganglia, limbic system, thalamus, and hypothalamus,
the visual network - primary and secondary visual area in the occipital
lobes, the motor network - primary and secondary motor area in the
pre/post-central gyri and supplementary motor area, and the cerebellar
network involving the cerebellum. Note that our definition of the DMN
in Section 2.6 includes the middle temporal gyri and temporal poles,
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which are also included in the definition of the temporal network.
However, the definition of DMN had its main focus in the midline core
components including the medial prefrontal, precuneus, posterior cin-
gulate and angular gyri.

Second, we measured the lateralization index (LI) for each network j
by computing the difference of the volume proportion between the ipsi-
and contra-lateral hippocampi, as follows:

We also estimated the absolute lateralization index, i.e.
∣LI∣= ∣ % voljipsi− % voljcontra ∣, because we wanted to study if there
was a significant change in the overall amplitudes of lateralization in-
dices measured in all types of hippocampal networks in patients, when
compared to controls. Finally, to study more specifically which hippo-
campal networks were actually contributing to the lateralization, we
drew a diagram for each patient showing the k-hubness map and all
major hippocampal networks involved within the LH and RH.

3. Results

Using SPARK, the individual fMRI was decomposed into several
temporal features, each being associated with a specific consistent RSN.
During this decomposition process, the BOLD signal in each voxel was
modelled as a weighted linear combination of a small number of fea-
tures (sparse number k) mainly contributing to the signal, among all
features characterizing the whole brain (Lee et al., 2011). A voxel-
specific level of sparsity (k) indicated how many RSNs were involved in
each voxel, therefore providing the k-hubness map. The total number of
RSNs characterizing the whole brain activities and the voxel-specific
sparsity levels were automatically estimated for each subject. The es-
timated total numbers of whole-brain RSNs were 19.7 ± 1.5
(mean ± standard deviation; SD) in L mTLE patients, 21.7 ± 3.6 in R
mTLE patients, and 21.8 ± 2.5 in controls (Fig. A7). The distributions
of the estimated numbers were not significantly different between
groups (two-sample t-test). The reliability of SPARK decomposition at
the single subject level was ensured using a bootstrap resampling
strategy to keep only the most reproducible features (Bellec et al., 2010;
Lee et al., 2016).

3.1. Disruption and emergence of connector hubs

To quantify the local connector hub reorganization within the mTL
and DMN from each patient (p), we formulated a linear regression
model for k-hubness, as suggested by Achard et al. (2012). We defined
three VOIs - the L ad R mTL regions and the DMN. Using the linear
regression model, we estimated the reorganization of k-hubness from
the voxels belonging to each VOI in each patient, when compared to the
k-hubness values from the same set of voxels estimated in the group of
healthy controls. Two patterns of connector hub reorganization, dis-
ruption and emergence, were quantified by the slope (hub disruption
index, HDI) and intercept (hub emergence index, HEI) of a straight line
fitted to the scatter plot of our data, as described in Section 2.6.

Fig. 2 illustrates the estimation of local HDI and HEI in the L and R
mTL regions from the groups of L and R mTLE patients when compared
to the group of healthy controls. For each group of patients, we drew a
scatter plot for k-hubness measured in the voxels belonging to each VOI.
For group comparisons, we estimated dP=(μkP− μkC)/σkC, which is the
normalized difference between the group average k-hubness in patients
(μkP) and controls (μkC). The local HDI and HEI were estimated, at the
group-level, using the slope and intercept of the estimated linear fitting
line for each scatter plot for each group of patients. L mTLE patients
exhibited abnormal hub reorganization in both ipsilateral (HDI: −
0.58, HEI: 0.28) and contralateral (HDI:− 0.53, HEI: .24) mTL. R mTLE
patients showed an even greater abnormal hub reorganization in both
ipsilateral (HDI: − .89, HEI: 1.12) and contralateral (HDI: − .74, HEI:
.93) mTL, consisting of both hub disruption and hub emergence pat-
terns.

We were interested in estimating the local HDI and HEI in patients

at the individual level, taking advantage of SPARK for individual re-
liability. For comparison purposes, we estimated HDI and HEI on every
healthy subject to assess their distributions within the control group.
When estimating the HDI and HEI in each patient using dp, we also
observed a similar linear pattern of scatter plot in every patient, while
the plot exhibited a discrete distribution of scattered dots due to the
discrete nature of k-hubness (kp). As a result, L mTLE patients exhibited
significant abnormal hub disruptions in the ipsilateral mTL only (HDI:
median=−.6; interquartile range, IQR= .6; two-tailed Wilcoxon rank
sum test, p < .005), while for R mTLE patients, significant hub dis-
ruptions were found in ipsi- (HDI: median=−.8, IQR=1; p < .001)
and contralateral (HDI: median=−1, IQR=1.2; p < .01) mTL
(Fig. 3). The interquartile range (IQR) refers to the difference between
the 75th and 25th percentiles of the values. L mTLE patients did not
show significant hub emergence in the mTL when compared to controls,
while, again, R mTLE patients showed highly significant hub emergence
in both ipsi- (HEI: median= .7, IQR=1.4; p < .001) and contralateral
(HEI: median= .9, IQR=1.6; p < .005) mTL. Within the DMN, both L
and R mTLE patients exhibited abnormal hub disruptions. The median
and IQR of HDI were− .3 and .1 in L mTLE (p < .005) and− .2 and
0.3 in R mTLE (p < .005). There was no significant hub emergence in L
mTLE, while R mTLE showed a slightly significant emergence of new
connector hubs (HEI: median= .3, IQR= .4; p < .05).

To evaluate a potential effect of combining data acquired using two
acquisition protocols on our hub analysis, we performed the two-tailed
Wilcoxon rank sum tests using only the HDI/HEI values estimated from
those 10 R mTLE patients, 5 L mTLE patients and 17 healthy controls
who were scanned using Protocol 2. The tests were same as those using
the entire datasets. As a result, both L and R mTLE patients showed
significant connector hub disruption in the ipsilateral mTL region (L:
p < .01, R: p < .05). We also found significant connector hub emer-
gence in both the ipsi- (p < .005) and contra-lateral (p < .05) mTL
regions in patients with R mTLE, where we did not find any mTL hub
emergence in patients with L mTLE. Within the DMN, we found a sig-
nificant connector hub disruption in both L mTLE (p < .005) and R
mTLE (p < .05), while we did not find any significant connector hub
emergence in both L and R mTLE. These results being similar than the
ones obtained considering the complete database, we assumed that the
change of acquisition protocol had overall little impact on the proposed
connector hub analysis using SPARK.

3.2. Reorganization of the networks involving the hippocampus

For our patients and healthy controls, we found a set of functional
RSNs similar to those typically found in the FC literature (Smith et al.,
2009). Among those RSNs, we studied more specifically the RSN or-
ganizations associated to the L or R hippocampi (LH/RH) (see Section
2.7 for the regions involved in each RSN). We measured the proportion
of hippocampal volume (%vol) involved in each RSN, by counting the
number of voxels in the hippocampus associated with a specific net-
work to the total number of voxels in each hippocampus. The total
volume of each hippocampus in each preprocessed individual fMRI was
defined using the AAL template in the same MNI space with the same
voxel resolution, i.e. (4mm)3. The total number of hippocampal voxels
identified in the MNI template space was 115 for the LH and 120 for the
RH. We identified some important “hippocampal networks”, RSNs in-
volving>10% of the voxels of the hippocampus (%vol > 10%). The
occurrence rate for each hippocampal network was computed by
counting the number of occurrences of a specific hippocampal network
in each population to the total number of all hippocampal networks
occurred in this population. For the healthy controls, the LH or RH
involved a median of 2 networks (IQR=2): Temporal (occurrence rate:
47% of the population), salience (31%), DMN (10%), visual (6%),
subcortical (3%), and cerebellar (3%) (Fig. 4(a)). For the L mTLE pa-
tients, each hippocampus involved a median of 2 networks (IQR=1):
Temporal (occurrence rate: 46%), salience (27%), motor (18%) and
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subcortical (9%). For the R mTLE patients, each hippocampus involved
a median of 2 networks (IQR=2): Temporal (occurrence rate: 46%),
cerebellar (18%), subcortical (14%), salience (11%), default mode
(7%), and visual (4%). The consistency of the subject-specific networks
(atoms) across subjects was measured by the percentages shown in
Fig. 4(a), while the circ of functional involvement of the hippocampus
was different in each individual. We observed in some patients that
parts of the temporal networks were actually mixed into the salience,
subcortical and cerebellar networks, resulting in new patient specific
RSNs identified by SPARK. Consequently, we classified such mixed
networks as occurrence of the salience, subcortical and cerebellar net-
works respectively, when drawing the pie-plots presented in Fig. 4(a).

3.3. Lateralization of the networks involving the hippocampus

Among the hippocampal networks shown in Fig. 4(a), 21/39(54%)
networks found in patients involved both the LH and RH, whereas 22/
32(69%) networks in controls involved both hippocampi. The re-
maining networks involved either the LH or RH. Moreover, in patients,
the proportion of LH versus RH volumes involved in specific RSNs (%
vol) was remarkably different even when both were involved in some
networks. These results suggest decreased FC between the two

hippocampi within a network, i.e. lateralization. We estimated the la-
teralization index (LI) for each network by the % volume difference
between the ipsi- and contralateral hippocampi in patients (LI=%vo-
lipsi−%volcontra), while for controls, the LI=%volRH−%volLH. The
absolute lateralization indices estimated for all hippocampal networks
were significantly larger in patients (∣LI∣: median= 13.1, IQR=16.9)
than in controls (∣LI∣: median=4.9, IQR=6.8; p < .001, two-tailed
Wilcoxon rank sum test) (Fig. 4 (b)). We also compared the LI estimated
for each type of hippocampal networks. For the temporal networks, the
SD of LI was larger and more variable in patients (Fig. 4(c)). The di-
rection of laterality (ipsi> contra or ipsi< contra) was however in-
consistent. When considering subjects for whom the salience network
was functionally connected to the LH or RH, the LI estimated for the
salience networks in 2 patients with L mTLE and 3 patients with R
mTLE were significantly different from the LI estimated for 10 controls
(p < .01 for both L/R mTLE, two-tailed Wilcoxon rank sum test). In
one patient with L mTLE, we found two sub-networks of the salience
network, resulting in two data points from this patient in Fig. 4(d). The
direction of laterality was ipsi> contra in R mTLE and ipsi< contra in
L mTLE (Fig. 4(d)). Other types of networks were also analyzed but are
not reported because of a too small number of occurrences.

Fig. 2. Estimation of local connector hub disruption
and connector hub emergence indices using the
linear regression model from the groups of L and R
mTLE patients in comparison to healthy controls
(CONT) in the left (a-b) and right (c-d) mesial tem-
poral lobe regions. For each group of patients, we
drew a scatter plot for k-hubness measured in the
voxels belonging to each VOI. Each dot denotes a
voxel in the gray matter belonging to each VOI. In
each plot, x-axis denotes the normalized group
average k-hubness in healthy controls (μkC/σkC) and
y-axis denotes dP=(μkP− μkC)/σkC, which is the
difference between the group average k-hubness in
patients (μkP) and controls (μkC) normalized by the
standard deviation (SD) of k in controls (σkC). The
local HDI and HEI were estimated using the slope (a)
and intercept (b) of the estimated linear fitting line
(in red) for each scatter plot.
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3.4. Patient-specific hippocampal network reorganization

We analyzed which networks specifically contributed to such la-
teralization observed with hippocampal FC in individual patients. Six
examples from 4 patients with R mTLE (R1–4) and 2 with L mTLE
(L1−2) are illustrated in Fig. 5. For R1, the pathological RH was more
involved in the temporal (%vol, RH: 40% > LH: 16.5%) and salience
(RH: 30.8% > LH: 7.8%) networks and less in the DMN (RH:
1.7% < LH: 32.2%) than the LH (Fig. 5(a)). For R2, the RH was less
involved in the cerebellar network and the DMN (Fig. 5(b)). For R3, the
RH was more involved in the salience network and functionally less
connected to the subcortical and visual networks (Fig. 5(c)). For R4, the
RH and LH were involved in the salience, subcortical, and temporal
networks, however exhibiting less lateralization compared to other
patients (Fig. 5(d)). For L1, the LH was functionally disconnected from
the two sub-networks of salience function whereas the RH remained
functionally connected (Fig. 5(e)). Finally, for L2, the LH was func-
tionally disconnected from the salience network and functionally less
connected to the temporal network than the RH (Fig. 5(f)).

3.5. Clinical relevance

In our patients, duration of disease was not significantly different
between the groups of L and R mTLE patients. We did not find a cor-
relation between disease duration and the HDI and HEI. However, R
mTLE patients exhibited a significant correlation between the age of
seizure onset and connector hub disruption (the amplitude of HDI)
(r= .6, p= .03) in the ipsilateral mTL. We did not find a significant
correlation between the age of seizure onset and connector hub emer-
gence (the amplitude of HEI) (r= .5, p= .08). We did not find any
correlation in the contralateral mTL. L mTLE patients exhibited a sig-
nificant correlation between the age of seizure onset and connector hub
disruption in the contralateral mTL (r= .9, p= .02). We did not find a
correlation between the age of seizure onset and connector hub emer-
gence in L mTLE.

4. Discussion

In this study, we analyzed the patterns of connector hub re-
organization in a group of drug-resistant mTLE patients. We

Fig. 3. Hub disruption index (HDI) and hub emer-
gence index (HEI) were estimated by measuring the
changes of the k-hubness values in each L and R
mTLE patient (dp) deviating from the group average
k-hubness across all the healthy control subjects
(CONT) in the voxels belonging to each VOI. We
defined three VOIs: the L and R mTLs (left top corner
of (a)), and the DMN (left top corner of (e)). Each
point indicates the hub index estimated from a single
subject. Bold/dotted lines in red: mean/median of
the points. The points were laid over a 1.96 standard
error of the mean (SEM) (95% confidence interval)
in red and a 1 SD in blue. *p < .05, **p < .01,
***p < .005, ****p < .001, two-sided Wilcoxon
rank sum test for equal medians.
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hypothesized that RSN reorganization in mTLE includes normal con-
nector hubs becoming non-hubs when involved in epilepsy-related
RSNs and newly emerging connector hubs. We adopted a novel ap-
proach called SPARK (Lee et al., 2016) to detect and analyze connector
hubs from RS fMRI. We estimated a hub disruption index (HDI) and
defined a new metric of connector hub emergence (HEI). We also in-
vestigated, at the individual level, the lateralization of epileptic resting
state networks involving the pathological hippocampus, taking ad-
vantage of the ability of SPARK to identify which networks are actually
involved in each connector hub. We found significant pathological
connector hub disruptions within the mTL and DMN. Also, our results
suggest an asymmetrical connector hub reorganization in mTLE: Pa-
tients with R mTLE showed remarkably higher emergence of new
connector hubs in the mTLs compared to those with L mTLE. Different
patterns of lateralization of the salience network involving the patho-
logical hippocampus were found in R vs L mTLE in those patients who
exhibited functional involvement of the hippocampus in the salience
network (i.e. 2 patients with L mTLE and 3 patients with R mTLE). The
temporal, cerebellar, subcortical, default mode and motor networks
also contributed to the lateralization of hippocampal networks. Finally,

the patterns of connector hub reorganization indicate a regularization
of the epilepsy-related RSNs, characterized by the loss of distant con-
nections and emergence of local connections. Another important con-
sequence of our findings is that we do not recommend flipping the brain
images in the L-R direction for patients with mTLE in order to increase
the size of the population, since one cannot assume similar patterns of
FC in both hemispheres.

Specifically, connector hubs in the mTL regions were disrupted bi-
laterally in mTLE, although ipsilateral disruptions were slightly
stronger than contralateral disruptions in L mTLE. Our results agree
with a RS fMRI study using graph theory, which showed that R-sided
epilepsy exhibited more connector hub disruption within the whole
brain than L-sided epilepsy (Ridley et al., 2015). We however analyzed
a more homogeneous group of patients with unilateral mTLE, and
found a local connector hub disruption index (HDI) larger than the
whole brain HDI in the group of patients they studied. Several ex-
planations to the disruptions of mTL connector hubs can be suggested:
(i) intra-hemispheric disconnection between the mTL and their neigh-
boring temporal cortices (Bettus et al., 2009; Maccotta et al., 2013), (ii)
inter-hemispheric disconnection between the ipsi- and contralateral

Fig. 4. Reorganization of the networks involving the hippocampus in mTLE. (a) Types of resting state networks involving the L or R hippocampus (LH/RH) from 17
healthy controls (CONT) and 6 L and 14 R mTLE patients. (b) The comparison of absolute lateralization indices estimated from all hippocampal networks presented in
(a). Each dot indicates the laterality index estimated for each network. (c–d) The comparisons of lateralization indices specific for the temporal and salience networks
involving the hippocampi. For patients, lateralization indices were estimated by the % volume difference between the ipsi- and contralateral hippocampi (%
volipsi−%volcontra). For controls, (%volRH−%volLH). Bold/dotted lines in red: mean/median of the points. The points were laid over a 1.96 SEM (95% confidence
interval) in red and a 1 SD in blue. **p < .01, ****p < .001, two-tailed Wilcoxon rank sum test.
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temporal structures (Vaughan et al., 2016; Pittau et al., 2012), or (iii)
disconnection between the mTL and distal regions, such as those in-
volved in the DMN (Pittau et al., 2012).

An important finding of our study is that the emergence of new
connector hubs in bilateral mTL was prominent only in R mTLE, while
there was no emergence of mTL connector hubs in L mTLE when
compared to healthy controls, suggesting it as a candidate biomarker
for mTLE lateralization. An increased FC between the mTL structures or
between the mTL and distributed networks can be at the origin of such
hub emergence in R mTLE. In our subsequent analyses, the variability
of RSNs associated to the LH or RH in individuals was lower in L mTLE
than in R mTLE, when compared to healthy subjects (Fig. 4). A RS fMRI
study found decreased ipsilateral FC within the mTL structures with
increased FC in the non-epileptic side in mTLE (Bettus et al., 2009). A
high-density EEG study reported more abnormal directed connections
from ipsilateral to contralateral temporal lobes in R TLE than in L TLE,
while the abnormal FC changes were associated with cognitive im-
pairments only in R TLE (Coito et al., 2015). Such findings including
our study raise the possibility of epileptic or compensatory re-
organization of FC associated with the emergence of new connector

hubs in the bilateral mTL specific to R mTLE.
Connector hubs within the DMN were significantly disrupted in

both L and R mTLE, but R mTLE exhibited significantly more hub
emergence in the DMN regions compared to L mTLE. Disruptions of
connector hubs in the DMN are likely due to the loss of long-range
connections, as connector hubs are often found in DMN regions of
healthy subjects (Power et al., 2013). Decreases in hubness in mTLE
was already described in parts of the DMN (Vaughan et al., 2016), and
other studies suggested decreased FC within the DMN and between the
mTL structures and the DMN (Pittau et al., 2012; Maccotta et al., 2013;
Liao et al., 2011). Also, decreased FC between the anterior and pos-
terior parts of DMN was associated with increased seizure frequency
(Douw et al., 2015).

We observed clear reorganization of RSNs associated with the hip-
pocampus in mTLE patients when compared to healthy controls
(Fig. 4). The types of RSNs involving the hippocampus were less vari-
able in L mTLE than in controls, and for patients with R mTLE, the types
of hippocampal networks were similar to those found in controls.
However, the occurrence rate of the salience, subcortical and cerebellar
networks were clearly different. We also demonstrated significantly

Fig. 5. Hippocampal networks reorganization in patients with R or L mTLE. The k-hubness map estimated from each patient is shown at the bottom, and the circles
indicate the ipsi- (red) and contralateral (black) hippocampi. Each line connects the hippocampus and the network involving this hippocampus, and the hippocampal
volume proportion involved in each network is presented beside each line. Beside each k-hubness map, the mean and SD of k-hubness within the ipsi- and contra-
lateral hippocampus (〈k〉ipsi, 〈k〉contra) are shown.
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higher laterality index in hippocampal networks from patients than
those from controls. These results suggest decreases in FC between the
ipsi and contralateral hippocampi when involved in epilepsy-related
RSNs. Our specific illustrations, taking advantage of the ability of
SPARK to identify which networks are actually involved in each hub,
allowed us to further characterize the lateralization of hippocampal
RSNs (Fig. 5). In a sense, hub disruptions and emergence found in the
mTL and DMN could be further understood by the trends suggested by
these detailed analyses, showing FC of hippocampal sub-regions in-
volved in different epilepsy-related RSNs.

Even though we could study the laterality of the salience network
reorganization only in a small number of patients (3 R and 2 L mTLE
patients, see Fig. 5), the direction of this reorganization was clearly
distinguishable between the L and R mTLE. In healthy subjects, the
salience network includes both insula and anterior cingulate cortex. It
functions to segregate the most relevant among internal and external
stimuli, switching between other networks to facilitate access to at-
tention (Menon and Uddin, 2010). We observed that the ipsilateral
hippocampus is more functionally connected to the salience network in
R mTLE than the contralateral one, with an opposite pattern in L mTLE
(Fig. 4(d)). These preliminary results suggest different mechanisms in-
volving the salience network in R versus L mTLE. Maccotta and col-
leagues (Maccotta et al., 2013) showed that the affected temporal lobe
has increased FC with the ipsilateral insula and neighboring subcortical
regions, suggesting a facilitated pathway of seizure propagation invol-
ving the insula (Isnard et al., 2000). The involvement of the insula in
the epilepsy-related RSN has been also suggested to participate to the
concept of temporal plus epilepsy, which is characterized by the in-
volvement of neighboring regions in addition to a temporal epileptic
focus (Barba et al., 2017). Considering more bilateral hub abnormalities
in R TLE than in L TLE, a possible scenario may be that the insula takes
a role in the spread of FC abnormality to broader areas in R TLE. Such
scenario may be associated with the more frequent impairment in at-
tention in R TLE than in L TLE (Helmstaedter, 2013).

We observed that the hippocampal FC involved in the temporal
networks was more lateralized in mTLE patients than in controls
(Figs. 4(c) and 5). The direction of this laterality was however incon-
sistent in patients, and we were not able to propose a pattern to char-
acterize L versus R mTLE. In some patients, parts of the temporal net-
works were mixed with the subcortical, cerebellar, and salience
networks, suggesting enhanced FC between temporal and extra-tem-
poral structures. We confirmed the involvement of DMN in the ab-
normal lateralization of hippocampal FC in mTLE. In two patients with
R mTLE, the RH was less functionally connected with the DMN than the
LH (Fig. 5(a,b)). These results are in agreement with previous work
showing decreased FC between the hippocampi and between the ipsi-
lateral hippocampus and DMN, as well as increased FC between the
contralateral hippocampus and the DMN (Pittau et al., 2012; Voets
et al., 2012; McCormick et al., 2013). The lateralization of hippocampal
FC in the cerebellar network was also interesting, since it was mainly
found in R mTLE patients (4/14 patients, Fig. 4(b), results not shown).
Such lateralization of cerebellar networks from RS fMRI in mTLE might
be explained by similar processes involved in crossed cerebellar dia-
schisis seen with interictal glucose hypometabolism and ictal blood
flow (Nelissen et al., 2006).

Finally, we estimated if there was any correlation between patients'
clinical information and the measures of connector hub disruption and
emergence. We did not find a significant correlation between disease
duration and connector hub disruption and emergence, whereas we
found a significant correlation between the age of seizure onset and
connector hub disruption in both L and R mTLE patients. Although we
had a small sample size, it is possible that connector hubs may be
particularly sensitive to disruption at an early age, when they are in
development. This hypothesis should be further validated by studying a
larger population of mTLE patients.

Our results using the HDI and HEI suggest that SPARK can be a

promising tool to study hub reorganization in epilepsy and also in
different neurological disorders. Indeed, our connector hub analyses in
the hippocampus clearly showed that some voxels that were hubs in
controls became non-hubs in patients and several other voxels that were
non-hubs in controls became hubs in patients, suggesting different
patterns of connector hub reorganization in sub-regions of the hippo-
campus. While many functional connectivity studies considered only
the average signal within the whole hippocampus as a seed region or
single node in graph theory, using either atlas-based methods or patient
specific segmentations (Liao et al., 2010; Pereira et al., 2010), our
analysis of the HDI and HEI using SPARK considered that functional
reorganization associated with neuropathology might exhibit different
patterns in sub-regions of the conventionally defined nodes in graph
theory. Whereas in our proposed analysis, the same preprocessing was
applied to all data (non-linear co-registration, spatial sampling), further
characterization of sub-field of the hippocampus on such connector hub
reorganization, obtained from patient specific segmentation, would be
of great interest and will be considered in future investigations. For
example, it would be interesting to study if the anterior versus posterior
hippocampus in individual patients show different patterns of con-
nector hub reorganization using SPARK with a higher spatial resolution
(i.e. < 2mm) in individual patient's native space, as suggested from
recent studies on the functional organization of the hippocampus
(Strange et al., 2014; Abdallah et al., 2017). Whereas we assume that in
our proposed analysis, any possible hippocampal volume loss was at
least partially compensated during the nonlinear registration, it would
be of great interest to correlate reorganization of connector hubs esti-
mated using SPARK with structural abnormalities specific to mTLE
(Voets et al., 2012), but this was out of the scope of present study.

It should be noted that we could not evaluate the effect of drugs on
connector hubs due to the heterogeneity of antiepileptic drug therapy.
It should be also discussed that the measure of k-hubness provides
discrete k values that are often bounded to a narrow interval such as [0,
5]. Therefore, k-hubness values are not normally distributed, making
standard voxel-wise statistical tests for k-hubness difficult. We already
validated the test-retest reliability and spatial consistency of k-hubness
using real data from 25 healthy controls (Lee et al., 2016). Future work
with larger cohorts may enhance the statistical power to perform a
voxel-wise group comparison and enable us to detect the spatial con-
sistency of the changes in k-hubness in patients compared to healthy
controls. From a clinical point of view, it would be interesting to cor-
relate in individual patients connector hub disruption with a possible
cognitive disruption involving multiple left hemisphere functions, and
connector hub emergence with preserved cognitive function in the right
hemisphere. Whereas we acknowledge that studying a more extended
population should be considered in future studies, our proposed method
SPARK together with HDI and HEI was able to find unique features
characterizing L versus R mTLE, suggesting a possible candidate bio-
marker of mTLE at the single subject level.

5. Conclusion

In this study, we analyzed resting state functional MRI in 20 mTLE
patients and 17 healthy controls using SPARK. SPARK provides a rea-
listic measure of hubness, by counting the number (k) of networks in-
volved in each voxel, with the unique ability to identify the networks
associated to each connector hub. In mTLE, we found pathological
connector hub disruptions within the mTL and default mode network.
The emergence of new connector hubs in the mTL was prominent in
right but not in left mTLE. Hippocampal connector hubs were differ-
ently reorganized between left and right mTLE, when involved in the
salience network. This study suggests an asymmetrical connector hub
reorganization and network regularization in mTLE, including the dis-
ruption of distant connections and the emergence of aberrant local
connections.
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Appendix A. A New Development for SPARK: Individual Parameter Estimation

A.1. Method

The vK-SVD algorithm considered for sparse GLM decomposition actually requires two parameters to be specified: an initial value of k (kinit) and
the total number of atoms (N), i.e. the scale of networks characterizing the whole brain activities (see Fig. 1) (Aharon et al., 2006; Lee et al., 2011). In
order to find the voxel-specific sparsity level ki for each voxel i, the vK-SVD algorithm requires the initialization of sparsity level in all voxels. While
we previously proposed in Lee et al. (2016) that we could automatically estimate a subject-specific initialization of sparsity level (kinit) using the MDL
criteria (Saito, 1994), the total number of whole-brain networks or scale (N) was yet manually fixed to 20 for all subjects.

In our previous work (Lee et al., 2016), our idea was that kinit can be given by the global level of sparsity (kg), which was estimated assuming that
the sparsity level ki in voxel i was common to all voxels (∀i, kg= ki). Specifically, we applied K-SVD to Y varying kg from 1 to N/2. For each model
estimated using different kg values, we computed the description length. The description length suggested for sparse GLM consisted of two terms: the
goodness-of-fit and complexity of the model. Models using a higher kg might provide a better fit to data (lower error), while becoming more
complicated than using lower kg. Varying kg, an optimal kg could be determined for each subject when the description length reached the minimum
giving the best tradeoff between the two terms. Finally, kinit was given by the estimated optimal kg, i.e. ̂=k kinit g.

Fig. A6. The proposed three-steps procedure for the automatic estimation of the subject-specific scale of whole brain networks (N) and an initial value of k (kinit) for
the sparse GLM. In order to find the voxel-specific sparsity level ki for each voxel i, the vK-SVD algorithm requires the initialization of sparsity level in all voxels. kinit
can be given by a global level of sparsity (kg), which can be estimated using the proposed method assuming that the sparsity level ki in voxel i was common to all
voxels. (a) Step 1: applying K-SVD to an individual fMRI run, while varying N from 10 to 30 and varying kg from 1 to N/2 for each N. Description length was
computed for each combination of N and kg. Colorbar indicates the value of description lengths. Note that we varied N with the interval of 2 to reduce computation
time. (b) In Step 2, we first computed for each N the mean of description lengths measured varying kg values (i.e. the mean over the values in each row in Fig. A6(a)).
Then an optimal N was determined by the value that gave the minimum of the mean description length. (c) Given the optimal N, Step 3 determined an optimal kg
providing the MDL among the values in the selected row (e.g. kg=5 for N=22). Finally, kinit was given by the estimated optimal kg. This example shows that the
proposed method provided a good estimation of the two parameters for the individual subject.
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In this work, we extended this method to automatically estimate not only kinit but also the subject-specific total number of atoms or scale of
whole-brain networks (N) at the same time within the SPARK framework. Fig. A6 illustrates the proposed three-steps procedure. Step 1 includes

applying K-SVD to Y varying N from 10 to 30 and varying kg from 1 to N/2 for each N. Therefore, we tested a total of ∑
=

N/2
N 10

30
combinations of N and

kg, and the description length was computed for each combination. In Step 2, we first computed for each N the mean of description lengths that were
measured varying kg values. Then an optimal N is determined by the value that gives the minimum of the mean description length. Given the optimal
N, Step 3 determined an optimal kg providing the MDL among the values varying kg from 1 to N/2. Finally, kinit can be determined by the estimated
optimal kg.

A.2. Result

Fig. A7. Automatic estimation of the subject-specific scale of networks (N) in the whole brain and an initial value of k (kinit) for the sparse GLM in SPARK. (a) The
patient-specific network scales estimated from 14 R mTLE and 6 L mTLE patients in comparison to 17 healthy controls (CONT). (Sig+Noise) indicates the N value
estimated using the MDL criteria, while (Sig) indicates a reduced number, only including the RSNs after the screening of physiological noise atoms. (b) The estimated
subject-specific global sparsity ( ̂kg). The values were used to initialize k in all voxels in the vK-SVD optimization to find the voxel-specific sparsity level ( ̂=k kinit g).
Each point indicates an estimated value from a subject. Bold/dotted lines in red: mean/median of the points. The points were laid over a 1.96 SEM (95% confidence
interval) in red and a 1 SD in blue.

Fig. A7(a) illustrates the patient-specific scales of whole-brain networks estimated from 14 R mTLE and 6 L mTLE patients in comparison to 17
healthy controls (CONT), using the method described in Fig. A6. The NSig+Noise values were 19.7 ± 1.5 in L mTLE patients, 21.7 ± 3.6 in R
mTLE patients, and 21.8 ± 2.5 in controls. Fig. A7(b) illustrates the subject-specific global sparsity (kg) determined given the estimated network
scale (NSig+Noise): 4.2 ± .4 in L mTLE patients, 4.4 ± 1.4 in R mTLE patients, and 4.9 ± 0.9 in controls. kinit was estimated for each subject by the
selected kg values in Fig. A7(b). The estimated kinit and NSig+Noise values were further used as input parameters for vK-SVD. After the overall SPARK
procedure was done including the screening of physiological noise atoms, the total number of signal atoms or RSNs (NSig) was then reduced to
15.2 ± 1.2 in L mTLE patients, 17.1 ± 3.8 in R mTLE patients, and 17.4 ± 2.1 in controls. Two-sample t-tests on the distribution of the estimated
parameters in individual subjects showed that NSig+Noise values was not significantly different between groups, NSig values estimated from L mTLE
patients were significantly different from those from individual controls with p < .05 and not significantly different with R mTLE patients. kinit
values in both L/R mTLE were not significantly different from those from controls. In conclusion, our new development of automatic individual
parameter estimation demonstrated that we can find about 19–22 networks in the healthy controls and patients. The estimated numbers were very
close to the number 20, which was manually fixed for 25 healthy subjects from 1000 Functional Connectome Project in our previous work (Lee et al.,
2016). This confirms that our method is robust and reliable.
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