Cruz et al. BMC Bioinformatics (2019) 20:454
https://doi.org/10.1186/512859-019-3038-4

BMC Bioinformatics

METHODOLOGY ARTICLE Open Access

SamPler - a novel method for selecting
parameters for gene functional annotation

routines

Check for
updates

Fernando Cruz', Davide Lagoa', Jodo Mendes', Isabel Rocha'?, Eugénio C. Ferreira', Miguel Rocha' and

Oscar Dias'

Abstract

Background: As genome sequencing projects grow rapidly, the diversity of organisms with recently assembled
genome sequences peaks at an unprecedented scale, thereby highlighting the need to make gene functional
annotations fast and efficient. However, the (high) quality of such annotations must be guaranteed, as this is the

first indicator of the genomic potential of every organism.

Automatic procedures help accelerating the annotation process, though decreasing the confidence and reliability of
the outcomes. Manually curating a genome-wide annotation of genes, enzymes and transporter proteins function is
a highly time-consuming, tedious and impractical task, even for the most proficient curator. Hence, a semi-automated
procedure, which balances the two approaches, will increase the reliability of the annotation, while speeding up the
process. In fact, a prior analysis of the annotation algorithm may leverage its performance, by manipulating its
parameters, hastening the downstream processing and the manual curation of assigning functions to genes
encoding proteins.

Results: Here SamPler, a novel strategy to select parameters for gene functional annotation routines is presented. This
semi-automated method is based on the manual curation of a randomly selected set of genes/proteins. Then, in a
multi-dimensional array, this sample is used to assess the automatic annotations for all possible combinations of the
algorithm’s parameters. These assessments allow creating an array of confusion matrices, for which several metrics are
calculated (accuracy, precision and negative predictive value) and used to reach optimal values for the parameters.

Conclusions: The potential of this methodology is demonstrated with four genome functional annotations performed

in merlin, an in-house user-friendly computational framework for genome-scale metabolic annotation and model
reconstruction. For that, SamPler was implemented as a new plugin for the merlin tool.
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Background

The emergence of high-throughput sequencing tech-
niques led to a fast increase in the number of genome
sequencing projects over the years, with over 196,000
finished or ongoing projects, as of April 2018 [1]. It is
clear that, nowadays, the functional annotation of these
genome sequences is eased by automated methodologies
and workflows. Several authors have been reporting
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novel computational tools [2—6] and workflows built
essentially as meta-servers [7—15], to automate the anno-
tation of genes encoding proteins. Though the effort of
the Gene Ontology (GO) Consortium [16-18] and
others [19-23] has been notorious, the emergence of
multiple methodologies and platforms to perform gen-
ome functional annotation hindered the aim for data
unification and spread redundant information across
multiple repositories and databases. Surprisingly, mul-
tiple authors have reported errors in genes’ functional
annotations over the years, pointing out high misannota-
tion levels (up to 80% in some cases) in single-genome
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annotations [24, 25], single-gene annotations [26], large-
scale data repositories [27, 28], or even in the GO data-
base [29, 30]. Concerns about this issue increase when
assessing misannotations of molecular functions in the
four major public protein sequence databases: Universal
Protein Resource Knowledgebase (UniProtKB)/TrEMBL,
UniProtKB/Swiss-Prot, GenBank NR [31] and Kyoto
Encyclopedia of Genes and Genomes (KEGG) [32]. Ac-
cording to Schnoes and coworkers [33], the manually
curated database UniProtKB/Swiss-Prot, shows levels of
misannotation close to 0, whereas the three non-curated
protein sequences databases (GenBank NR, UniProtKB/
TrEMBL and KEGG) exhibit high levels of misannota-
tions averaging 5-63%, and in specific cases up to 80%.

Genome annotation can be divided into structural
annotation and functional annotation. Whereas some of
the mentioned computational tools and meta-servers
can perform both [7-14], this work will focus on a novel
method for leveraging genome functional annotations,
namely enzyme and transporter protein functional
annotation.

Detailed, accurate and useful gene products’ descrip-
tions are regularly sought when retrieving high-level gene
functional annotations. Although simple terms, such as
dehydrogenase, can describe gene products, accurate and
thoroughly refined terms as pyruvate dehydrogenase
(NADP+) should be used instead. Additionally, besides
systematic database accession numbers and gene products’
descriptions, special identifiers such as the Enzyme
Commission (EC) [34] and Transport Classification (TC)
numbers [35] are vastly used nowadays to classify enzym-
atic and transporter proteins, respectively. These special
identifiers should, whenever possible, be included in the
annotations, to increase the scope and decrease the ambi-
guity of genome functional annotations.

Most publicly available frameworks for the automation
of genome functional annotations are complex pipelines
made of multiple processes using several tools and
algorithms, based on similarity and/or profile searches
[2, 3, 9-11], subsystem-based functional roles [12],
domain prediction and annotation [8, 11], genome anno-
tations comparison [5, 6, 15]. These, in turn, are sensi-
tive to parameters, cut-offs and quality assessments.

Cases in which the need to obtain fast gene products’
annotations justifies the use of such frameworks, should
also guarantee the quality of the annotation. Interestingly,
current frameworks indeed claim to provide both fast and
accurate genome annotations. Nevertheless, parameters
and cut-off thresholds are rarely changed when submitting
data, and descriptions of the methodologies that lead to
specific outcomes are seldom available [5, 7-14]. Hence,
the annotations of genes encoding proteins may have been
inferred from biased and redundant data without user’s
awareness.
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Genome-wide functional annotations are often per-
formed using similarity search algorithms, such as the
Basic Local Alignment Search Tool (BLAST) [36], Smith-
Waterman alignments [37] or HMMER [38]. These and
other similar algorithms compare sequences with other
sequences (typically in sequence databases), providing
clusters of genes with similar sequences, which in theory
should have similar functions.

Occasionally, functional annotations may be errone-
ously inferred due to: a biased taxonomic distribution of
the homologous genes, which may be systematically
reported by alignment algorithms; the presence of incor-
rectly annotated homologous genes; the systematic pres-
ence of homologous genes assigned with unknown
functions or hypothetical proteins; and, the spread of
redundancy across multiple databases. These problems
enhance the need to manually curate gene functional
annotations. However, manual curation is often time-
consuming and requires a huge effort, even from expert
curators.

Cases in which the user is allowed to configure the an-
notation workflow may benefit from a prior meticulous
analysis of the data and a fine tuning of the computational
algorithm parameters, which may hasten downstream
processing.

Moreover, other authors highlighted the importance of
pairing manual curation (namely, inferred from litera-
ture) with computational predictions or using multiple
databases as information sources, to update genes’ anno-
tations [5, 6, 15, 20, 23, 39].

As far as our knowledge allows, here we provide the
only method (SamPler) aimed at determining the best set-
tings for the parameters of genome functional annotation
algorithms, through the manual annotation of a random
sample of entities.

The approach demonstrated in this study is used to
determine the best configuration of merlin’s [2] enzyme
annotation algorithm, setting the o parameter, which
leverages two scores (namely the frequency and tax-
onomy scores), while proposing upper and lower thresh-
olds to automatically accept or reject gene’s metabolic
annotations, respectively.

Furthermore, this strategy prevents the utilization of
biased and redundant data.

The method was implemented as a new plugin for
merlin’s current version, and thus made available for the
community, making the reproducibility of our results
possible with minimum effort. Using the SamPler plugin,
one can now choose between two gene functional annota-
tion routines available in merlin: automatic first-hit anno-
tation or SamPler for leveraging the enzyme’s annotation
algorithm.

Remarkably, this method can have many other applica-
tions besides the one demonstrated herein.
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Methods

merlin

merlin is a user-friendly computational tool which,
among other features, allows performing genome-wide
metabolic (re-)annotations and the reconstruction of
genome-scale metabolic models [2].

merlin performs two types of metabolic (re-) annotation,
namely the enzymes and transporters annotation. The
methodology proposed in this work was implemented as a
new plugin that leverages the enzymes annotation algo-
rithm, thereby being fully available for merlin’s current
version.

In merlin, the enzymes annotation involves performing
remote similarity searches (either with BLAST or
HMMER) and assigning a function to each gene, taking
into account the homologous genes functions. Genes
encoding enzymes should have at least one homologous
gene assigned with an EC number. The likelihood of a
gene being assigned with an EC number is determined by
an internal scoring algorithm that takes into account both
the frequency (cardinality of such EC number among the
orthologous genes) and the taxonomy (taxonomic proxim-
ity between the organisms for a given EC number), to
calculate a score (between 0 and 1). The higher the score,
the higher the chance of that gene encoding such enzyme.
More information on this algorithm can be found in [2].

The trade-off between the frequency and the taxonomy
scores is attained by a parameter, the o value. In previous
versions of the framework, the user set this parameter and
the challenge of this work is to provide an automatic
method to calculate this value, found to be of a great
importance in the results of the annotation.

merlin also allows performing automatic gene functional
annotations. In this case, a first-hit annotation pipeline is
followed by using an annotation workflow such as the one
described in Additional file 1. Nevertheless, manual cur-
ation and other factors influencing the outcome of the
annotation such as the frequency of a given annotation is
not considered.

Implementation
Currently, the methodology described in this work, Sam-
Pler, is implemented and used to select a value for the «
parameter, together with the thresholds for accepting
annotations and rejecting genes as enzymatic. The pro-
posed method suggests the curation of a random sample
of entries from an annotation project, using these to
automatically select the parameters for configuring the
algorithm that performs automatic enzymes annotation,
being integrated in the software merlin.

Alternatively, the method can be used to configure any
other annotation algorithm or workflow. For this to be
possible, these computational tools or meta-servers
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should return a score or other rank for each entry as a
function of the parameters configuration.

Selection and annotation of a standard of truth

This process begins by setting an initial sensible value
for all parameters and automatically running the enzyme
annotation algorithm or workflow. Then, a sample with
x1 genes (5% to 10% of the genes/proteins to be anno-
tated) should be (randomly) selected, guaranteeing that
all possible score intervals are represented and the num-
ber of entities in each interval is similar.

These records should be manually curated with a de-
fined workflow (an example of a manual curation work-
flow for merlin is shown in the Additional file 1). These
entries will become the standard of truth for evaluating
the genes functional annotations proposed by the tool.

Parameters assessment

This evaluation starts with the creation of a multi-
dimensional array, of dimensions (x1, x2) that features
the selected genes on the rows and all possible combina-
tions of parameters (¥2) on the columns, as shown in
Fig. 1.

This array will comprise the framework’s automatic
annotations for sample x1, for all possible combinations
of the algorithm’s parameters (x2). These combinations
may lead to different automatic annotations that, when
compared to the standard of truth, allow assessing the
best configuration of the parameters’ settings.

This comparison allows creating a new multi-dimen-
sional array of dimensions (¢, x2), which helps simplify-
ing the analysis of the results. Such array will have score
thresholds (¢) between the minimum and the maximum
score in the rows, and all possible parameter combina-
tions x2 in the columns. Each intersecting cell will con-
tain a confusion matrix for each (¢, x2) pair, as shown in
Table S.1 of the Additional file 2.

These confusion matrices evaluate the performance of
the different conditions of the algorithm or workflow
and report the number of incorrect annotations (IA —
similar to false positives), incorrect rejections (IR — simi-
lar to false negatives), correct annotations (CA — similar
to true positives) and correct rejections (CR — similar to
true negatives), according to Fig. 2.

The two former conditions represent type I and type
II errors. The first case (IA) may be the outcome of two
distinct situations: the algorithm annotation is incorrect
(A =B), or the entity should not be annotated (A = ©),
though the algorithm annotation score is higher (or
equal) than the provided threshold. The second case (IR)
may also arise from two distinct situations: the algo-
rithm’s annotation score is below the threshold, despite
being correct (A = A) or even if it is incorrect (A = B).
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Curated Genes Parameters |y .p =0.1;P,=02;P, =09 |x2;:P, =0.2;P,=02;P, =09 |2,
x1,:LO 0001 - DNA helicase RecC Hypothetical Protein DNA helicase RecC x1,x2,
x1,: LO 0036 - Aldolase Aldolase Aldolase x1,x2,
x15: LO 0305 - Heat Shock Protein IbpA Heat Shock Protein IbpB Heat Shock Protein IbpB x13x2,
x1,: LO 0402 - Enolase phosphopyruvate hydratase phosphopyruvate hydratase x1,x2,
X1, x1,,x2, x1,,x2, x1,x2,
Fig. 1 Scheme of a multi-dimensional array (x1, x2). This scheme is used for evaluating randomly selected annotations (x1) automatically
proposed by a tool, against annotations curated through a manual curation workflow (standard of truth). The multi-dimensional array allows
evaluating all possible combinations of values for the tool's parameters (x2)

_

Finally, the two latter cases represent cases in which
automatic annotations, above or equal to the threshold,
are in agreement (A =A) with the curated annotation
(CA), or entities that should not have been annotated

the conditions of the algorithm and the curation work-
flow, will provide different outcomes that will lead to
distinct classifications.

Confusion matrices allow calculating several differ-

(A =@) have annotation scores below the threshold
(CR), respectively.

Nevertheless, these rules can be changed and adapted
to other situations, depending on the paradigm and ob-
jective of the annotation. Different premises regarding

ent metrics. For this work, accuracy, precision and
negative predictive value ( NPV) will be considered.
Accuracy reveals how often the workflow makes cor-
rect annotations and rejections, and is calculated as
follows:

Standard of Annotation Classification
Truth Tool
2 Threshold —— CA
A
< Threshold —— IR
A
2 Threshold — |A
B

< Threshold —— IR

2 Threshold — IA

@ > A
< Threshold —— CR

Fig. 2 Evaluation of an annotation algorithm when compared with the Standard of Truth (A or @), determined with a manual curation workflow.
If the manual annotation is equal to the algorithm’s annotation (A = A) and has a score above the threshold (= Threshold), it is classified as CA.
When the algorithm’s annotation is below the threshold (< Threshold), it is classified as IR. Alternatively, when the annotation is different from
the manual curation (A # B), the annotation will be classified either as IA or IR, when above (= Threshold) or below (£ Threshold) the threshold,
respectively. Finally, the manual curation may indicate that the entity should not be annotated (&), whereas the tool assigned an annotation (A).
These cases will be classified as IA or CR, whenever the annotation’s score is above or below the threshold, respectively
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CA + CR
accuracy —
Y T CA+CR+IA+IR

(1)

On the other hand, precision assesses how often the
algorithms assignments are correct, according to:

CA

—_— 2
CA+IA @)

precision =
Finally, the NPV evaluates how often the algorithm’s
rejections are correct:

CR

NPV = ————
CR+ IR

(3)

These rates allow selecting the best values for several
parameters, together with upper and lower thresholds
for the annotations’ scores. The average accuracy of each
column allows determining which parameters’ settings
(x2) attain higher accuracy, i.e. which set of values for all
parameters yields more correct annotations and rejec-
tions. Then, for such column, precision and NPV are
used to determine the upper and lower thresholds, re-
spectively. Every row t with a precision of 1 indicates
that the algorithm’s annotations are always correct above
the respective threshold, hence these should not require
curation. Likewise, rows with NPV of 1 indicate that the
annotation algorithm correctly rejects all annotations
below such ¢.

Therefore, the upper threshold should be the lowest ¢
with the highest precision (ideally 1), and the lower
threshold the highest ¢ with the highest NPV (ideally 1).
This methodology allows accepting annotations with
scores above the upper threshold, reject all below the
lower threshold and encourages manual curation of en-
tries with scores in between.

However, incorrect automatic annotations of the sam-
ple retrieved for the standard of truth, with very high or
very low scores, may impair this methodology, by requir-
ing the annotation of a large number of entries. Hence,
it should be allowed to relax precision and NPV thresh-
olds to values below 1, so that the manual curation ef-
forts are not so demanding. For instance, lowering
precision will increase the number of annotations auto-
matically accepted. Likewise, lowering NPV increases the
number of annotations automatically rejected. Therefore,
relaxing these metrics introduces a new trade-off that,
though accepting erroneous annotations, increases the
number of records automatically annotated/rejected, de-
creasing curation efforts.

An example of the steps required to implement Sam-
Pler, is presented in Tables S.2-S.4 of the Additional
file 2. As shown in Table S.2 of the Additional file 2, a
sample of 50 (x1) genes, roughly 5% of the potentially
metabolic genome, was manually curated to determine
whether such genes encoded enzymes and which EC
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numbers should be assigned to them, thus becoming the
standard of truth for such genes.

The automatic annotations for nine (0.1- 0.9) different
a values (x2) were then calculated and compared with
the standard of truth in the array (x1, x2).

Setting the parameter values to both edges (0.0 and
1.0) may be too extreme, as it may completely eliminate
a component of the scorer, thus biasing results. There-
fore, combinations with extreme values for the parame-
ters should be carefully considered.

Next, the confusion matrices for each pair (¢, x2) were
computed, as shown in Table S.3 of the Additional file 2.
For instance, when calculating the confusion matrix for
the pair (¢ x2) = (0.5, 0.2), all correct annotations with
scores equal or above 0.5 are considered correct (29)
and inserted in the CA cell. Every correct annotation
below 0.5 (12) was inserted in the IR cell. Likewise, all
incorrect merlin assignments with scores above 0.5 (4)
are inserted in the IA, whereas wrong annotations below
the threshold (5) are included in the CR cells. This
process is repeated until confusion matrices of all (¢, x2)
pairs are calculated. Worth mentioning is the fact that
the example presented herein only depicts analysis for
merlin’s o value, and upper and lower thresholds, to
present a clear and concise demonstration.

Finally, as shown in Table S.4 of the Additional file 2,
these matrices allow calculating accuracy, precision and
NPV. merlin’s annotation algorithm highest mean accur-
acy is associated with a = 0.1. For this a, all annotations
with ¢ above 0.9 have a precision of 1, which means that
merlin’s algorithm is correct 100% of the times. Likewise,
annotations with ¢ below 0.2 have a NPV of 1, which
means that merlin correctly rejects these annotations
100% of the times.

As shown in Table S.5 of the Additional file 2, the
user will have to curate manually 301 genes, which
represent 30% of the genes that potentially encode
enzymes. Often, the a with the highest accuracy is
simultaneously the one with the highest number of
entities to be manually verified. Thus, a curation ratio
score, which compromises accuracy with the percent-
age of records to be curated, is also calculated, ac-
cording to Eq. 4.

X X accuracy ;
curation ratio score = —— Yentries to be curated

(4)

This allows a trade-off between of accuracy and cur-
ation efforts. Moreover, merlin allows users to accept
lower precision and/or NPV (to at least 75%) to decrease
the number of entities that will be curated, thus consent-
ing errors in the automatic annotation.
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SamPler evaluation

SamPler was used to calculate the parameters for several
organisms. Four complete genome sequences, for
Lactobacillus rhamnosus (taxonomy identifier: 568703),
Streptococcus thermophilus (taxonomy identifier: 322159),
Lactobacillus helveticus (taxonomy identifier: 326425)
and Nitrosomonas europaea (taxonomy identifier: 228410),
were retrieved from the National Center for Biotechnology
Information (NCBI) database. These organisms are of inter-
est for the host group and are being studied in different
projects.

S. thermophilus, L. helveticus and Lactobacillus rham-
nosus belong to the lactic acid bacteria group (Lactoba-
cillales Order), thus having a considerable number of
strains and taxonomically close microorganisms, avail-
able in the UniProtKB database, whereas, N. europaea is
the only sequenced strain for this organism, with a rela-
tively low number of taxonomically close microorgan-
isms available in UniProtKB.

After integrating SamPler’s plugin in merlin, an auto-
matic genome functional annotation was performed for
each genome using the BLAST algorithm against the
UniProtKB. A random sample of genes was then auto-
matically collected by SamPler. These entries were
manually curated inside merlin’s environment, following
the manual curation scheme in the Additional file 1. Fi-
nally, the best parameters settings were calculated by
SamPler, for both precision and NPV of 100%. An illus-
tration of the SamPler workflow implemented in merlin
for selecting the best parameters of the annotation algo-
rithm is shown in Fig. 3.

Furthermore, besides assessing the best parameters for
the annotation algorithm of the above mentioned organ-
isms, another organism’s annotation (L. rhamnosus) was
analyzed in detail. In this case, the annotation was per-
formed using initially UniProt/SwissProt as the BLAST
database and later, for records without homology hits,
against UniProtKB. However, in this case, all EC number
annotations were reviewed with the curation workflow
(described in Additional file 1), which allows assessing
SamPler’s calculations and predictions.

Results and discussion
SamPler allows determining the best settings for the
parameters of genome functional annotation algorithms,
hereby contributing to the improvement of annotations,
even when based on biased and redundant data. The
manual annotation of a random sample of genes to-
gether with the computation of confusion matrices, de-
creases the manual curation efforts, often required after
submitting data to automatic procedures.

SamPler was implemented as a plugin for merlin’s
enzymes annotation algorithm, allowing to select the
best parameter values along with the thresholds that
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determine the number of protein coding genes to be
manually annotated.

The analysis performed with L. rhammnosus was used to
validate SamPler's methodology. All enzymatic genes
were manually annotated using the workflow shown in
Additional file 1. SamPler was used to calculate parame-
ters for two sets of genes, namely genes annotated
against UniProt/SwissProt and genes annotated with
UniProtKB.

As shown in Figs. 4, 5, Tables S.7 and S.8 of the
Additional file 2, these annotations allowed assessing
precision and NPV to sample size and type of database
used for annotation (curated, non-curated and merging
of both). Hence, these analyses were performed for re-
cords annotated against UniProt/SwissProt (334 genes),
UniProtKB (973) and both (1307), for two sample sizes
in triplicate (three manually curated samples). The anno-
tation performed with the UniProt/SwissProt provided
few records with lower scores. Therefore, to balance the
distribution of scores in the sample, the sizes were 42
and 75. For the same reasons, the larger sample size for
UniProtKB had 98 entries, whereas, for latter assess-
ment, the sample sizes were 50 and 100.

As expected, generally, lowering the acceptable preci-
sion and NPV allows annotating more records, though
accepting errors in such annotations (Tables S.6, S.7 and
S.8 of the Additional file 2).

SwissProt results

When using 42 genes to assess the parameters, lowering
the acceptable overall precision to 95% will not increase
the average number of automatically annotated entries,
thus also not adding errors to the annotation. However,
selecting the parameters to automatically accept annota-
tions with an overall 85% precision will automatically
annotate 290 +5 more entries, though 34 +6 of these
are incorrectly annotated. Yet, in this case, the mean
overall effective precision will be ~88 % + 2%. Likewise,
when configuring SamPler to select parameters that pro-
vide an overall annotation precision over 75%, 313 + 12
entries are automatically annotated, though 49+5 of
these are wrong, thus the overall effective precision is
~84% *1%.

As shown in Table S.6 of the Additional file 2, using
75 genes to determine the standard of truth, provides
roughly the same results. Accepting an overall precision
of 95% automatically includes 225 + 5 genes in the anno-
tation, being 5 + 4 incorrect. For an overall precision of
85% , 253 +7 genes are automatically annotated, 16 + 3
of which are incorrect. Finally, lowering the acceptable
precision to 75% will automatically annotate (318 +2)
genes, from which 43 + 1 will be wrongly annotated. The
effective precisions would be ~98% +2,~94% +1 and
~86 % + 1 respectively. For both sample sizes, the a and
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merlin

Manual

Random Selection of x1 Genes (5%
to 10% of the sequences to be
annotated)

Manual Curation of x1 genes

Standard of Truth

Select a for
the highest
ratio

Automatic

ratio =

Fig. 3 Scheme of the semi-automated method implemented in merlin's EC number annotation tool. Merlin proposes X 1 entries (5 to 10% of the
sequences to be annotated) for manual curation which will become standard of truth. Then, for each a value the corresponding automatic
annotations are retrieved and assessed against the standard of truth. After assessing each entry for each a value, merlin calculates a confusion
matrix for each pair (threshold, a value). This multi-dimensional array, of confusion matrices, allows calculating the accuracy of each @, and the
precision and NPV of each pair. Finally, the number of records between thresholds (taking into account the error allowed in precision and NPV)
are assigned as entries to be curated and the curation ratio score helps determining the best a value and thresholds as a function of the highest
accuracy divided by the ratio of entries to be curated. An error up to 25% is allowed in both precision and NPV

for each a value (x2)

Retrieve Automatic Annotations

merlin‘s
Annotations

for each threshold (t)

Array of Confusion Matrices (one
for each pair (t, x2))

Metrics Calculation: Accuracy;
Precision; Negative Predictive Value
(NPV)

Highest Precisions Upper Thresholds

Highest NPVs Lower Thresholds

Determine the corresponding threshold to
each error (o) allowed in Precision or NPV
(0%; 5% ... 25%)

Count Number of Entries Between
Thresholds for each error (o)

Calculate ratio for each pair (o, 0):

accuracy

percentage of entries to be curated

Select the Adequate Error (o) for Both Upper
and Lower Thresholds

the upper threshold values tend to go down, when accept-
ing lower precisions.

When analyzing annotations obtained with this data-
base, for both sample sizes in all replicates, lowering the

overall NPV does not affect results, hence no incorrect
rejections are performed in the annotation. Likewise, the
lower threshold and & remain stable for all acceptable
NPV.
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incorrect W correct —e=threshold
Fig. 4 Analysis of the number of genes automatically annotated by merlin, according to SamPler’s proposals for the a parameter and upper
threshold. Results shown for genes annotated against UniProt/SwissProt, using 42 genes as standard of truth, for 100, 95, 85 and 75% precision

.

UniprotKB results Configuring SamPler to provide an overall precision of
The analyses performed for entries annotated against 95%, for the 50 genes’ sample, does not misannotate any
UniProtKB provided overall results similar to the previ-  genes, thus providing an effective precision of 100%. Fur-
ous ones. Again, as shown in Table S.7 of the Additional thermore, when the algorithm is configured to accept
file 2, the effective precision is always within the range  15% of error in precision, only 7 +7 incorrect entries,

accepted by SamPler. within 188 + 10, are automatically accepted as correct
( N
Accepted annotations
350 1,0
0,9
300
08
250 07
% 06
g 200
S 0,5
8
150
E 04
=z
100 03
02
50
01
0 0,0
1 2 3 1 2 3 1 2 3 1 2 3
100% 295% 285% 275%
Precision
incorrect mmmcorrect =—e=threshold
Fig. 5 Analysis of the number of genes automatically annotated by merlin, according to SamPler’s proposals for the a parameter and upper
threshold. Results shown for genes annotated against UniProt/SwissProt, using 75 genes as standard of truth, for 100, 95, 85 and 75% precision

.
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(precision =96 % + 4). Finally, SamPler has a precision of
89 % + 4, which corresponds to 23 + 10 misannotations
for 211 + 13 automatically annotated records, when cal-
culating the parameters for a minimum precision of 75%
in the sample’s annotations.

Regarding the analysis of the results obtained with the
larger sample (98 genes), accepting 5% of error in the
precision of the annotation, provides similar results to
the default 100 % precision. In this case, the mean of the
automatically annotated genes is 166 + 9, with 1 + 2 mis-
annotations, instead of 162 + 4. Again, decreasing the ac-
ceptable precision, allows automatically annotating more
entries, without significant errors 193 +3 (6 + 2 misan-
notations) and 229 + 33 (36 + 24 misannotations), for
85% and 75 % precision respectively. For annotations in
UniProtKB, though the threshold decreases along with
precision, the mean of the a parameter remains fairly
constant (average of 0.73 - 0.8 for the smaller sample
and 0.63 — 0.77 for the larger sample).

Analyzes of the automatically rejected entries in
UniProtKB provided interesting results. Most annota-
tions with low scores corresponded to incorrect annota-
tions, thus the proposed lower threshold rejected
hundreds of annotations. In fact, for a special case (gene
CAR87684.1), according to the workflow, the annotation
proposed by merlin was correct, though with a very
small score (0.12). Hence, whenever this gene was
present in the sample, the NPV would be significantly
affected. Nevertheless, this effect can be softened by
accepting a 5% error in NPV, as shown in Table S.7 of
Additional file 2, although this was the only overall NPV
for which the mean of the effective NPV ’s was below
the acceptable, for both sample sizes. Overall, the aver-
age a varied between (0.73 and 0.9) for both samples. As
expected, the lower threshold tended to increase with
the decrease of the NPV.

Merged databases

Performing these analyzes for all entries annotated with
both homology searches, provides results similar to the
entries annotated against UniProtKB, as =73% of the
annotations were obtained from that database. As ex-
pected, the mean of the effective precision is above the
minimum limits configured in SamPler, for all intervals
in all samples. Regarding the NPV, results are also very
good, although when configuring SamPler to provide an
overall NPV of 85% or 95%, analyses show that the
means of the effective NPV are slightly below the limit,
for both samples.

Also, the upper threshold decreases together with
precision and the lower threshold increases when lower-
ing the NPV. The a parameter values are fairly constant
for both samples and metrics, though (for a precision of
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100%) in sample 50.1 the calculated a is low when com-
pared to samples 50.2 and 50.3.

Other organisms’ results

Regarding S. thermophilus, merlin’s SamPler suggested
an a value of 0.4 (accuracy of 0.691) with a curation
ratio score of 1.8 (Table 1), and the manual curation of
331 entries (38% of the number of potentially enzymatic
genes), when setting the lower and upper thresholds to
0.2 to 0.6, respectively. As shown in Table S.9 of the
Additional file 2, three o values, viz. 0.1, 0.3 and 0.7, had
a higher calculated accuracy (0.696), but the number of
entries to be curated would be 40%, 45% and 46%, re-
spectively. Thus, the increase in accuracy would not jus-
tify the extra curation efforts.

Regarding L. helveticus, merlin’s SamPler proposed an «
value of 0.7, with a curation ratio score of 2.11 (Table 1),
and the manual curation of 264 entries (36% of the num-
ber of potentially enzymatic genes), when setting the lower
and upper thresholds to 0.3 and 0.8, respectively. For this
organism, as shown in Table S.10 of the Additional file 2,
only one a value (0.9) had a higher accuracy (0.758), but it
required the curation of 45% of the annotations, that is 67
more entries than for a =0.7.

Finally, for N. europaea, SamPler’s results are substan-
tially different from the previous. The proposed o was
0.2 and the thresholds were 0.8 and 0.1, for upper and
lower thresholds, respectively. Recall that this organism
has few closely related species available in the BLAST
database. If a =0.1 was selected, instead of the current
624, 693 records would have to be curated (Table S.11
of the Additional file 2).

The complete calculation reports, provided by merlin’s
SamPler, are available in Tables S.9 to S.11 of the
Additional file 2, for S. thermophilus, L. helveticus and
N. europaea, respectively.

Table 1 Main results of implementing the semi-automated
method in merlin's EC number annotation tool using three
complete protein sequences as test cases, one of each single-
different organism

Organism S. termophilus L. helveticus N. europaea
a 04 0.7 0.2
Upper Threshold 0.6 0.8 0.8
Lower Threshold 0.2 03 0.1
Genes to Be Curated 331 264 624

% for curation 38% 36% 56%
Accuracy 0.691 0.753 0.591
Curation ratio score 1.8 21 1.05
Sample size 50 (5.8%) 50 (6.7%) 60 (5.4%)
Potentially metabolic 862 741 1114
Genome 1716 1685 2462
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Indeed, the results provided by SamPler are correlated
with the organisms’ taxonomic families’ presence in the
BLAST databases. For instance, the recommendation of
ag, = 0.4 for S. thermophilus or ay,, = 0.7 for L. helveticus,
can be associated with the fact that these microorganisms
have multiple strains and an even higher number of
closely related microorganisms (surprisingly from the
same genus) with complete genome functional annota-
tions available in UniProtKB. Hence, both the frequency
of the EC number and the taxonomy of the homologous
genes annotated with such EC numbers should be taken
into account when calculating the annotation score.

On the other hand, N. europaea is poorly described in
UniProtKB. Hence, it was expected that the selected
a (0.2) would enhance the taxonomy component in the
final score ( Qe =0.2 % SCOT€fiequency + 0.8 SCOTC1x0m0my)-
The absence of taxonomically close, well characterized,
organisms increases the relevance of the few related
records, enhancing the taxonomy score. Notice that N.
europaea also presents the highest percentage of genes
that should be manually curated.

Conclusions

Here SamPler, a tool aimed at improving genome func-
tional annotations, is showcased. The results of this work
show that the parametrization of merlin’s enzyme annota-
tion is not straightforward. In fact, the selected a values
for two Lactobacillales were 0.4 and 0.7, for S. thermophi-
lus and L. helveticus, respectively. Still, for N. europaea’s
the a parameter value was 0.2. The automatic annotation/
rejection thresholds also varied significantly among the
projects. These results show that each project is unique,
with several factors influencing the outcome of the anno-
tation, such as the availability of manually curated or
incorrect annotations for the organism’s genes.

Analyses of the complete curation of L. rhamnosus
show that using non-curated databases to perform anno-
tations provide very few correct annotations when com-
pared with the curated ones. Also, the effective errors
when allowing values both for precision and NPV below
100%, are mostly within acceptable ranges. Therefore,
the results of this work demonstrate that larger projects
can benefit from lower precision and NPV thresholds, as
these may decrease the curation efforts, while incorrectly
annotating (or rejecting) very few entries.

Hence, performing high-quality semi-automatic gen-
ome functional annotations should involve systematic
and reproducible methodologies, that reduce both hu-
man error and data bias, such as the SamPler presented
in this work. Indeed, SamPler accepted and rejected a
significant number of entries for all organisms while
proposing a well-aimed number of genes that should be
manually curated, clearly improving, guiding and hasten-
ing the manual curation process.

Page 10 of 11

Additional files

Additional file 1: Example of a manual curation workflow for the
genome functional annotation of the microorganism Lactobacillus
rhamnosus using merlin. (PDF 173 kb)

Additional file 2: SamPler demonstration. Results obtained after

applying SamPler procedure to 4 genome functional annotations. (XLSX
65 kb)
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