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Hospital outbreak investigations are high-stakes epidemiology. Contacts between staff and patients are numerous; environmental 
and community exposures are plentiful; and patients are highly vulnerable. Having the best data is paramount to understanding an 
outbreak in order to stop ongoing transmission and prevent future outbreaks. In the past 5 years, the high-resolution view of trans-
mission offered by analyzing pathogen whole-genome sequencing (WGS) is increasingly part of hospital outbreak investigations. 
Concerns over speed and actionability, assay validation, liability, cost, and payment models lead to further opportunities for work 
in this area. Now accelerated by funding for COVID-19, the use of genomics in hospital outbreak investigations has firmly moved 
from the academic literature to more quotidian operations, with associated concerns involving regulatory affairs, data integration, 
and clinical interpretation. This review details past uses of WGS data in hospital-acquired infection outbreaks as well as future op-
portunities to increase its utility and growth in hospital infection prevention.
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INTRODUCTION 

Whole-genome sequencing (WGS) data are increasingly avail-
able to help guide hospital outbreak investigations [1]. In 
general, recovering whole genomes is only possible with next-
generation sequencing (NGS), either by shotgun sequencing 
isolates when dealing with bacteria or fungi or primary clinical 
specimens in the case of viruses [2–4]. Investigating phyloge-
netic relationships among organisms is also a natural extension 
of the data offered by diagnostic metagenomic NGS approaches, 
described in other reviews in this supplement [5]. The value 
of WGS data increasingly is leading to interest in prospective 
rather than reactive sequencing of isolates [6, 7]. Pending batch 
size and throughput, costs have continued to drop to $100-200/
isolate range, rivaling that of fully reimbursed polymerase chain 
reaction (PCR) tests. In this review, we showcase many of the 
past uses of WGS data in investigating hospital-acquired infec-
tion clusters across bacteria, viruses, and fungi, and highlight 
trends and issues in the continuing growth of WGS data in hos-
pital epidemiology.

BACTERIAL SEQUENCING IN HOSPITAL OUTBREAKS

By far the main driver of sequencing of pathogen genomes is 
the interest in understanding epidemiological relationships 
and antimicrobial resistance in bacteria. Antimicrobial resist-
ance patterns serve as an early indicator of potential clonality 
of strains; however, much richer information can be obtained 
from sequencing [8]. Sequencing DNA extracted from bacte-
rial isolates is simple, fast, and relatively inexpensive compared 
with many other sequencing approaches. The list of bacteria 
profiled by WGS in hospital outbreaks is too long to detail in 
its entirety in this review; however, it is worth noting the out-
sized impact of antimicrobial-resistant Klebsiella pneumoniae, 
Acinetobacter baumannii, and Enterococcus faecium in driving 
early adoption of genomics in hospital outbreaks [9–12]. 
Sequencing whole genomes in these organisms offer a scien-
tific and epidemiological two-fer, revealing the varied mech-
anisms of antimicrobial resistance in these organisms while 
also allowing the investigation of transmission relationships 
among isolates. While these organisms continue to be a major 
focus of deep sequencing for hospital epidemiology [13–29], 
WGS has also become standard for Enterobacter hormaechei, 
Staphylococcus aureus, and Clostridium difficile hospital out-
breaks and has even spread to more esoteric organisms such as 
Burkholderia stabilis, Mycobacterium chimaera, Mycobacterium 
porcinum, and Helicobacter cinaedi [30–41].

The sources confirmed by investigations using WGS cover the 
entire hospital or medical system—healthcare staff, a positioning 
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pillow, dental chair water units, and an ice machine [25, 42, 43]. 
When it comes to infection prevention, genomics demonstrates 
that every service and surface should be considered. Such studies 
have found that 9% of intensive care unit bloodstream isolates may 
be from clonal lineages [6], that endoscopes are commonly identi-
fied as potential vectors of transmission events in patients under-
going endoscopy [44, 45], and that lapses in contrast preparation 
and injection can be the cause of vancomycin-resistant enterococci 
and Agrobacterium spp. outbreaks in patients undergoing radio-
logical studies or interventions [46, 47]. Donor-derived bacterial 
infections have been traced to solid organ transplants in the case 
of Mycobacterium hominis and a variety of antibiotic-resistant or-
ganisms [48–50]. Mycobacterium chimaera infections have been 
genomically and epidemiologically traced to water heater-cooler 
units use in cardiac surgery cases around the world [40, 51–55]. 
After description of a decade-long Sphingomonas koreensis out-
break associated with hospital plumbing at the NIH Clinical Center 
[56], there have been a growing number of stories of hospital-
acquired infections from water systems and adaptations of bacteria 
to plumbing [57–64]. WGS has also been used to exculpate the 
hospital as a source of infection by identifying a lack of clonality 
and more likely community sources. Most notably, sequencing has 
been instrumental in helping to recognize the impressive burden 
of community-acquired C. difficile infection and/or colonization, 
along with importation into the hospital of extended-spectrum 
beta-lactamase K.  pneumoniae and carbapenem-resistant 
Enterobacteriaceae from the community [32, 33, 65–67]. In pedi-
atrics, WGS has significantly extended transmission tracking for 
S.  aureus in the neonatal intensive care unit to determine exact 
sources, subtransmissions, and multiple clusters [68] well beyond 
the resolution afforded by typical spa locus or pulsed field gel elec-
trophoresis typing [69, 70]. Transmission of specific group B strep-
tococcus clones within the hospital via breast milk has also been 
clarified using bacterial genome sequencing [71].

By leaping first into WGS-informed epidemiology, bacteria 
are also the furthest along in regulatory considerations associ-
ated with the use of WGS data in clinical epidemiology. Whereas 
much of the sequencing in the first half of the past decade was 
entirely research-driven, clinically reportable bacterial WGS 
data for strain typing and epidemiological purposes has become 
increasingly available for outbreak investigations, starting first 
in the United States from the California Department of Public 
Health Laboratories [72]. The CDC soon followed with Clinical 
Laboratory Improvement Act-approved sequencing operations, 
helping to bring on additional state public health laboratories 
in the fold. Public health testing is generally used for the most 
common foodborne bacterial infections and turnaround times 
may be too slow for a hospital looking to investigate on ongoing 
cluster. Epidemiological sequencing for hospital-acquired in-
fections is now making its way into the offerings of hospital and 
reference laboratories, including Mayo Medical Labs, ARUP, 
and University of Washington Medical Center [73, 74].

VIRAL SEQUENCING IN HOSPITAL OUTBREAKS

WGS for outbreaks of viruses in hospitals is still somewhat lim-
ited compared with bacterial WGS, mostly due to the difficulty 
of recovering viral genomes directly from clinical specimens. In 
contrast, the quantity of genetic material is much greater when 
studying bacteria, allowing for the use of shotgun sequencing. For 
recently emerged viruses with limited genetic diversity such as 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
or Zika virus, amplicon tiling approaches simplify viral genome re-
covery [75–77]. The speed of transmission of many viral infections 
and limited therapeutic implications of viral sequencing also have 
limited its use in nosocomial outbreaks. Nonetheless, with em-
phasis on SARS-CoV-2 genomic surveillance and corresponding 
investment in viral genomic epidemiology, these hindrances can 
be overcome. In addition, the use of rapid multiplex panels increas-
ingly helps infection preventionists identify potential outbreaks 
early in the same manner as antimicrobial resistance patterns may 
help recognize potentially related bacterial clones [78].

An early demonstration of the potential for real-time viral 
WGS to assist in a hospital outbreak investigation occurred in 
2016 in the context of a human parainfluenza virus 3 (HPIV3) out-
break in pediatric patients [79]. Metagenomic NGS (mNGS) was 
used to recover the viral genomes, which was generally achievable 
for most specimens in the context of the high viral loads seen in 
pediatric respiratory virus infections [80]. This study also demon-
strated the fast potential turnaround times of mNGS, with a total 
hands-on time of 6 hours, on-sequencer time of 18 hours, and 
time to result of 24 hours. Results confirmed the high genetic re-
latedness of the isolates in question and distinguished them from 
community-derived isolates from the same time period.

Interestingly, less than 5 months after the HPIV3 outbreak had 
been profiled, a very similar putative single-source hospital out-
break of rhinovirus was profiled from the same hospital with dra-
matically different results. Where the HPIV3 isolates were 100% 
identical to each other, the rhinoviruses in question were hundreds 
of years apart, despite some patients under investigation sharing 
the same room and all infections occurring on the same pod of one 
clinical unit [81]. These results highlight the incredible diversity of 
rhinoviruses as well as their exceptional widespread transmission 
such that multiple serotypes could appear to be a single outbreak.

With more than one hundred million cases and two million 
genomes sequenced to date, genomic epidemiology has no doubt 
informed hospital outbreaks of SARS-CoV-2. Investigators in 
South Korea, France, Ireland, Norway, South Africa, and the 
United States have reported nosocomial outbreaks of SARS-
CoV-2 tracked with WGS data. In Lyon, researchers used a 
unique ORF6 accessory gene deletion to track transmission of 
a specific SARS-CoV-2 variant throughout the hospital, while 
also testing its impact on host gene expression [82]. In Seoul, 
investigators demonstrated the linkage of cases between 2 hos-
pitals, reminiscent of the nosocomial transmission that drove 
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the Middle East Respiratory Syndrome Coronavirus outbreak 
in 2015 [83]. In Dublin, WGS demonstrated transmission from 
symptomatic and asymptomatic health care worker to patients 
who suffered a 33% mortality rate, while in San Francisco, 
testing throughout a nursing facility identified 3 separate intro-
ductions [84, 85]. Nanopore sequencing of SARS-CoV-2 cases 
in Norway illustrated the complex nature of suspected hospital 
outbreaks and ultimately confirmed 2 suspected outbreaks, re-
vealed a third previously undetected outbreak, and refuted a 
separate suspected outbreak [86].

Two recent large studies of real-time sequencing to inform 
hospital infection prevention for viral outbreaks illustrate the 
many uses of WGS data. The first study molecularly profiled 
more than one hundred influenza A  virus cases from hospital 
staff and inpatients from a New York City hospital over a 2-week 
period [87]. The investigation confirmed the high genetic re-
latedness of the main cluster, comprising 66 isolates, while also 
identifying 11 separate clusters that would not have been appre-
ciated without sequencing. Combining these data with electronic 
health record data helped reconstruct the early transmissions 
that led to the widespread outbreak and also demonstrated that 
the viral outbreak strain had not significantly diverged from the 
vaccine strain administered to the healthcare workers less than 
5 months earlier. A similar prospective study of norovirus trans-
mission in a hospital-acquired outbreak partitioned 13 separate 
hospital-acquired cases into 3 separate clusters [88]. The outbreak 
illustrated the critical importance of infection prevention and the 
profound impact of viral infections in immunocompromised 
individuals, as exemplified by one individual infected during 
the outbreak who was persistently positive over the subsequent 
258  days. Molecular profiling of these longitudinal specimens 
demonstrated an elevated rate of norovirus genome evolution, 
indicating the unique evolutionary forces associated with per-
sistent viral infection in an immunocompromised host.

Genome or multiple-locus sequencing has also been 
used to investigate multiple hospital outbreaks associated 
with adenoviruses [89–91]. Culture helped to enrich the 
adenoviruses in question and limited genotyping helped 
to indicate the need for WGS for 11 cases of epidemic 
keratoconjunctivitis [89]. Viral WGS can also be applied to 
healthcare settings for animals, as demonstrated by a case 
of transmission of severe fever with thrombocytopenia syn-
drome virus from a sick cat to 2 veterinary personnel with 
identical genomes across all profiled isolates [92]. Viral 
donor-derived infections in organ transplant recipients have 
also been detailed with WGS including an account of arena-
virus emergence and discovery [93].

FUNGAL SEQUENCING IN HOSPITAL OUTBREAKS

Fungal WGS is the least well-developed in infectious disease 
genomic epidemiology, as fungal genome sizes dwarf those 

of bacteria and viruses, driving up the cost of sequencing and 
informatics. Though fungi are notoriously under-sequenced, 
since many fungi are derived from soil, the evolutionary dis-
tance between hospital outbreak and unrelated isolates can be 
considerable, somewhat simplifying analyses [94]. Fungal WGS 
has been especially helpful for discovering contaminated medi-
cines as a cause of widespread hospital-acquired infections, as 
in the case of Exserohilum rostratum fungal meningitis traced 
to preparation of methylprednisolone injections at a com-
pounding pharmacy [95]. WGS analysis demonstrated nearly 
identical genomes among isolates from affected patients and 
pharmacy vials, which were separated from control isolates by 
>136 000 single nucleotide polymorphisms (SNPs) [96]. A sim-
ilar multinational South American outbreak of Sarocladium 
kiliense was traced back to anti-nausea medication using WGS 
data in the absence of a reference genome, which was helped by 
the fact that related isolates were <5 single nucleotide variants 
(SNVs) apart and unrelated isolates differed at >20,000 SNVs 
[97]. Sequencing of a cluster of donor-derived Coccidioides 
immitis infections in 2011 resulted in genomically indistin-
guishable isolates [98].

Increasingly WGS has been applied to hospital outbreaks 
of Candida auris, an organism specifically targeted by the 
CDC for WGS work. The diversity of C.  auris is matched by 
the high potential for hospital transmission in the context of 
strong antifungal selection pressures, and sequencing has iden-
tified multiple clonal lineages spreading within the same hos-
pital [99–101]. Organ transplant donor-derived transmission 
of C. auris has also been documented [102, 103]. As is typical 
of fungal pathogens, WGS of C.  auris shows strong regional 
phylogeographical hallmarks that help to pinpoint origins [104, 
105]. Though the current resolution is low, as more fungal iso-
lates are sequenced outside of the hospital, we expect to learn 
more about the specific geographical locations that human in-
fections are derived from, allowing us to further discriminate 
those arising from inside the hospital.

FUTURE OF HAI OUTBREAK SEQUENCING

Past successes have demonstrated the clear role that WGS will 
continue to play in hospital epidemiology. However, integration 
of WGS data into hospital outbreak investigations is still the ex-
ception to the rule today. There are still a number of open areas 
for progress to realize its routine use (Table 1). For instance, 
sequencing is not routinely performed in a prospective manner, 
so we do not know what we are missing, nor in a timely manner, 
that enhances actionability (Figure 1). WGS data are not auto-
matically integrated with the hyperlocal geospatial organization 
of the hospital building. Stable funding streams to bridge the 
gap between public health, hospital infection prevention, and 
the clinical laboratory are needed to allow for decentralized 
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sequencing and epidemiological investigation at scale. Here, we 
discuss what we hope the next 5-10 years will bring.

Improving Analytical and Total Turnaround Times

One of the main limitations of infectious diseases sequencing 
is that it is not sufficiently rapid given the critical need for a 
fast turnaround [108]. Most laboratories make use of Illumina 
short-read sequencers, which are highly accurate and have high 
capacities that work well for human genomic sequencing, the 
general provenance of genetics divisions. Compared with the 
many rapid infectious disease diagnostic platforms located in 

STAT labs that provide results in under an hour or two, NGS 
often takes at least a day on the instrument and most assays 
are run only once a week. Here, nanopore sequencers can offer 
much faster analytical turnaround times, finishing viral and bac-
terial genomes in hours [106, 109]. While nanopore sequencing 
is increasingly used in the context of outbreak sequencing 
abroad and in research, to date it has failed to make inroads into 
the clinical US sequencing market, where Illumina dominates  
[77, 110, 111].

Total turnaround time for sequencing is further exacer-
bated by the highly batched nature of Illumina sequencing. 
A  common experience of outbreak sequencing is as follows. 
An outbreak is recognized and all the isolates of concern or 
all known positives for a given organism are rounded up and 
subjected to this highly batched sequencing process. The high 
genetic relatedness of the isolates is confirmed and the result 
is communicated to infection control. The lab is thanked and 
then promptly informed that there are 1-5 more isolates that 
are now of concern. Unfortunately, 1-5 isolates cannot really 
be sequenced in a validated or cost-effective manner with 
standard Illumina sequencers, especially when controls are in-
cluded. A waiting game may ensue as more cases slowly accrue 
in a way that will align with laboratory workflow for testing 
that is, by nature, not reimbursed. Nanopore sequencing also 
has something to offer beyond its rapid pace, since the analyt-
ical capacity of the Oxford Nanopore Flongle or Minion takes 

Time (days)
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Figure 1. Next frontiers for whole genome sequencing to inform hospital-acquired infection investigations. (A) Real-time prospective sequencing of isolates 
with environmental sampling. The dotted line indicates infection prevention intervention. (B) Automated geospatial analysis of whole genome data that is 
informed by hospital building plans on a hospital-by-hospital basis. (C) Nationwide fungal whole genome sequencing to increase resolution and demonstrate 
environmental sources of fungal infections both inside and outside of the hospital environment. (D) Sustainable funding from public health for decentralized 
sequencing of pathogens in hospital clinical laboratories.

Table 1. A Wishlist for Better Hospital-Acquired Outbreak Investigation 
With WGS Data

Wish Actualized

Prospective sequencing Roach et al. [6]; Casto 
et al. [88]

Smaller batch size, fast turnaround time Quick et al. [106]

Routine clinical metadata integration Berbel Caban et al. [107]

Clinical Laboratory Improvement Act-approved sequencing Salipante et al. [73]; 
Kozyreva et al. [72]

Hospital building plan integration T.B.D.

Metagenomic sequencing integration with phylogenetic  
analysis of all species detected

T.B.D.

Hospital lab sequencing, billed to public health T.B.D.

Significantly increasing number of fungal genomes for  
geospatial and temporal resolution

T.B.D.

Abbreviations: T.B.D., to be determined.
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advantage of smaller batch sizes that work well with the need 
for rapid decision-making in the course of an ongoing hospital 
outbreak [112, 113]. Certainly, more work is required to deter-
mine the cost-effectiveness of pathogen sequencing in different 
settings, and it is likely that hospital outbreak sequencing is one 
of the most cost-effective use cases for microbial WGS.

The way infectious disease sequencing is organized has not 
helped drive sequencing growth. Isolate sequencing is not a re-
imbursable benefit for individual medical care and so it has been 
difficult to translate what can be done with what can be done 
sustainably. Since 2013, public health has dominated isolate 
sequencing, which has helped prime sequencing databases and 
analytical tools. However, public health financing can be fickle 
and public health laboratories are rarely staffed sufficiently or have 
the pre-analytics to provide rapid turnaround times required in 
clinical testing or outbreak sequencing. Furthermore, with public 
health entities offering sequencing for free and the potential 
need to connect sequencing with public health investigation, the 
market for reference clinical laboratory work in epidemiological 
sequencing has been inherently limited. The limited demand be-
gets a vicious cycle of low volume in the lab, leading to prolonged 
turnaround times (listed as 30 days and 7-21 days from the refer-
ence labs detailed above), further limiting routine use.

Getting Paid for Sequencing, Getting Paid for Ordering Sequencing

All of the above trends could be helped by new payment models 
for sequencing. The now millions of sequenced SARS-CoV-2 iso-
lates have demonstrated the remarkable sequencing capacity that 
exists and potential for more routine infectious disease sequencing. 
What has largely limited bringing this capacity online in the United 
States for all but the most concerning of threats is the lack of reim-
bursement associated with isolate sequencing [114]. Commercial 
insurance and Medicare payment models of reimbursing care for 
individual beneficiaries do not adequately capture the benefits 
accrued by epidemiological sequencing, where the benefit is dis-
tributed across a population. Instead, the costs of investigating a 
healthcare outbreak are borne by the hospital or related institution. 
It seems unlikely that isolate sequencing will become a reimburs-
able benefit for individual medical care anytime soon.

Instead, we must look to public health authorities to depu-
tize and fund clinical laboratories to sequence isolates, since the 
capacity of public health cannot be routinely relied upon.

National SARS-CoV-2 sequencing efforts demonstrate a new 
way forward with CDC contracting directly with national and 
regional reference laboratories for isolate sequencing. These con-
tracts couple the detection of SARS-CoV-2-positive specimens 
with the genome recovery, while setting standards for data up-
load. In effect, they recognize that the nation’s clinical laboratories 
are part and parcel of the nation’s public health system [115]. In 
addition to recognizing reality, this practice enhances turnaround 
time since there is no need to spend time finding isolates to ship to 
an additional laboratory for intake before sequencing. One hopes 

that the funding streams for this work will be maintained post-
SARS-CoV-2 as the sequencing infrastructure can be used for all 
infectious diseases, as described above.

Democratization and Standardization of Analysis

Isolate sequencing has been further helped by increasing the stand-
ardization of informatics analysis protocols, algorithms, and plat-
forms. Less than 5 years ago, analysis was entirely do-it-yourself 
and every outbreak performed analyses almost de novo, using a 
panoply of wet-lab protocols, sequencing platforms, read mappers, 
cutoffs, and visualizers, with limited quality control. Certainly, a 
great degree of diversity in outbreak sequencing still exists today; 
however, platforms such as NCBI Pathogen Detection for bacterial 
outbreaks and Nextstrain for viral WGS data have helped unite the 
field in visualization and analysis strategies [116, 117]. Here, NCBI 
Pathogen Detection deserves special mention as it can take raw 
data directly submitted to the NCBI Short Read Archive and in-
tegrate overnight into its growing phylogenetic trees, separated by 
SNP clusters, and detect antimicrobial resistance markers [118, 
119]. While these global analyses have progressed considerably in 
recent years, in the world of hospital outbreak epidemiology, more 
work is needed on the microscale for integrating sequencing, 
building design, and clinical data [107].

There is much to be accomplished, however, as the scale of 
sequencing increases, shining a light on the scale of the problem. 
The need for new tools and to democratize outbreak sequencing 
outside of state public health is readily highlighted by the tens of 
thousands of different clusters for each well-sequenced bacterial 
species seen in NCBI Pathogen Detection. Not every hospital or 
even state can afford a genomic informatician to sort through 
and analyze the data from sequencers. Actionable insights for 
infection preventionists, medical laboratory scientists, nurses, 
and physicians should be able to be derived directly from the se-
quencer with minimal intervention. At least the number of iso-
lates involved in a given hospital-acquired infection outbreak is 
generally small and achievable without significant infrastructure, 
which makes deputizing the laboratory work and epidemiological 
investigation all the more possible. Nonetheless, the analysis tech-
niques and interpretations are still sufficiently niche that at least 
another 5-10 years of provider education and/or sincere attention 
to product design will be required before the results of outbreak 
sequencing analysis can be consumed in a routine manner.

Out of the Literature, Into the Lab

Over a decade of literature has now demonstrated the promise of 
pathogen WGS for outbreak epidemiology. The realization of this 
potential has been slowed by payment models that favor individual 
beneficiaries and also by waiting for providers to understand the 
value and potential of WGS and for clinical laboratories to be able 
to perform WGS. Intriguingly, the SARS-CoV-2 pandemic may 
have catalyzed overcoming these barriers by vastly increasing the 
supply of automated PCR diagnostics, leading laboratories to look 
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to new opportunities for growth, as well as new payment models 
with an emboldened public health system that is increasingly fo-
cused on molecular epidemiology with a willingness to contract 
directly with the private sector to increase sequence generation 
and execute on its results. While it is unlikely that pathogen WGS 
will reflect the availability of rapid PCR anytime soon, these trends 
portend a growing realization that sequence information is useful 
and important for clinical care and public health, along with an 
expectation that isolates should be sequenced. Whereas even 
5 years ago, genomic epidemiology for hospital outbreaks consti-
tuted major publications, now the challenge is in getting out of the 
journals and into routine laboratory operations.
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