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Polymerase delta-interacting protein 2
deficiency protects against blood-brain
barrier permeability in the ischemic brain
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Abstract

Background: Polymerase δ-interacting protein 2 (Poldip2) is a multifunctional protein that regulates vascular
extracellular matrix composition and matrix metalloproteinase (MMP) activity. The blood-brain barrier (BBB) is a
dynamic system assembled by endothelial cells, basal lamina, and perivascular astrocytes, raising the possibility
that Poldip2 may be involved in maintaining its structure. We investigated the role of Poldip2 in the late BBB
permeability induced by cerebral ischemia.

Methods: Transient middle cerebral artery occlusion (tMCAO) was induced in Poldip2+/+ and Poldip2+/− mice.
The volume of the ischemic lesion was measured in triphenyltetrazolium chloride-stained sections. BBB breakdown was
evaluated by Evans blue dye extravasation. Poldip2 protein expression was evaluated by western blotting.
RT-PCR, zymography, and ELISAs were used to measure mRNA levels, activity, and protein levels of cytokines
and MMPs. Cultured astrocytes were transfected with Poldip2 siRNA, and mRNA levels of cytokines were
evaluated as well as IκBα protein degradation.

Results: Cerebral ischemia induced the expression of Poldip2. Compared to Poldip2+/+ mice, Poldip2+/− animals
exhibited decreased Evans blue dye extravasation and improved survival 24 h following stroke. Poldip2 expression was
upregulated in astrocytes exposed to oxygen and glucose deprivation (OGD) and siRNA-mediated downregulation of
Poldip2 abrogated OGD-induced IL-6 and TNF-α expression. In addition, siRNA against Poldip2 inhibited TNF-α-induced
IκBα degradation. TNF-α, IL-6, MCP-1, VEGF, and MMP expression induced by cerebral ischemia was abrogated in Poldip2
+/− mice. The protective effect of Poldip2 depletion on the increased permeability of the BBB was partially reversed by
systemic administration of TNF-α.
Conclusions: Poldip2 is upregulated following ischemic stroke and mediates the breakdown of the BBB by increasing
cerebral cytokine production and MMP activation. Therefore, Poldip2 appears to be a promising novel target for the
development of therapeutic strategies to prevent the development of cerebral edema in the ischemic brain.
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Background
Polymerase δ-interacting protein 2 (Poldip2, also known
as PDIP38 and mitogenin 1) is a multifunctional protein
originally identified as a human DNA polymerase inter-
acting protein [1]. Several recent studies suggest that
Poldip2 mediates many cellular functions such as mito-
chondrial morphology [2, 3], DNA replication and repair
[4], reactive oxygen species generation via activation of
NADPH oxidase-4 [5], cytoskeletal remodeling, and cell
migration [5], as well as cell cycle progression [6]. We
have recently demonstrated that Poldip2 is necessary for
integrity and function of conduit arteries [7]. Heterozy-
gous deletion of Poldip2 reduces H2O2 production in
vivo, leading to increases in extracellular matrix
deposition and greater vascular stiffness and resulting in
protection against aneurysms. In contrast, loss of
Poldip2 decreases angiogenesis and formation of capil-
laries and arteries and impairs matrix metalloproteinase
(MMP) activity in a hind limb ischemia model [8]. Thus,
Poldip2 seems to play an essential role in vascular physi-
ology and perhaps also in modulating vascular
pathology, depending on the insult. However, its func-
tion in the brain and cerebral vasculature is completely
unknown, and the cell types in which it is expressed
have not been identified.
The blood-brain barrier (BBB) forms the interface

between the vasculature and the brain. It is composed of
endothelial cells, the basal lamina, and astrocytic end-
feet processes and regulates the passage of substances
from the intravascular space into the brain [9]. The
permeability of the BBB is determined not only by the
integrity of interendothelial tight junctions but also by
the interaction between astrocytic end-feet processes,
endothelial cells, and the basement membrane. Accord-
ingly, approximately 95% of the BBB is embraced by
astrocytic end-feet processes [10, 11]. The BBB is
particularly sensitive to hypoxia. Specifically, cerebral is-
chemia is well known to increase the permeability of the
BBB by perturbing interactions between components of
the BBB. Early after the onset of the ischemic injury, as-
trocytes release pro-inflammatory cytokines that lead to
degradation of the extracellular matrix by MMPs, redis-
tribution of interendothelial tight junctional proteins,
and increased permeability of the BBB with the develop-
ment of cerebral edema [12, 13]. Increased production
of reactive oxygen species also contributes to disruption
of the BBB [14].
Because several functions of Poldip2, including regula-

tion of reactive oxygen species, matrix remodeling, and
cytoskeletal dynamics, are known to be involved in the
response of the BBB to ischemic insult, we postulated
that Poldip2 may represent a potential novel mechanism
regulating BBB permeability. To test this hypothesis,
wild-type and Poldip2 heterozygous null mice were

subjected to transient middle cerebral artery occlusion
(tMCAO) to induce BBB disruption. Our data show that
Poldip2+/− mice had reduced mortality and BBB perme-
ability after cerebral ischemia. Our results further sug-
gest that increased expression of Poldip2 following the
onset of cerebral ischemia leads to a Poldip2-regulated
pro-inflammatory response in astrocytes and likely other
cell types, increasing the late-phase permeability of the
BBB. Thus, Poldip2 represents a potential target to
attenuate the development of edema in the ischemic
brain and other neurological diseases associated with
increased permeability of the BBB.

Methods
Animals
Poldip2 gene trap mice on the C57BL/6 background
were produced by the Texas A&M Institute for Genomic
Medicine (College Station, TX). A gene trap construct
was inserted into the first intron of Poldip2 in mouse
embryonic stem cells. The location of the gene trap was
verified by polymerase chain reaction and sequencing.
Mice were genotyped using a standard three-primer
PCR method. Because homozygous deletion of Poldip2
is perinatal lethal, Poldip2+/− mice were used for this
study. Characterization of these mice has been published
previously [6].

Animal model of cerebral ischemia
Transient middle cerebral artery occlusion (tMCAO)
was induced in 9- to 13-week-old male mice. Animals
were anesthetized with isoflurane (oxygen delivered at
0.5 L/min with 3% isoflurane for induction and 1.5% for
maintenance), and the middle cerebral artery (MCA)
was occluded for 30 min with a 6-0 nylon filament
inserted in the left carotid artery as described elsewhere
[15]. Cerebral perfusion (CP) was monitored throughout
the surgical procedure with laser Doppler (Perimed Inc.,
North Royalton, OH), and only animals with a > 70% de-
crease in CP after occlusion and complete recovery after
filament removal were included in this study. Heart rate,
systolic, diastolic, and mean arterial blood pressure were
controlled with an IITC 229 System (IITC-Lice Science;
Woodland Hills, CA).
For additional experiments, non-reperfusion cerebral

ischemia was induced by temporary ligation of the right
common carotid artery followed by 7.5% hypoxia induc-
tion for 30 min. The core body temperature was main-
tained at 37.5 ± 0.5 °C using a rectal thermoprobe
coupled to a heating lamp, according to the protocol
described previously [16].

Lesion volume
Twenty-four hours after tMCAO, mice were anesthe-
tized and perfused with ice-cold phosphate-buffered
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saline. The brains were removed and sliced into 2-mm
coronal sections, and the volume of the ischemic lesion
was measured in 2,3,5-triphenyltetrazolium chloride
(TTC)-stained sections as described elsewhere [17]. The
lesion volume was calculated using ImageJ.

Behavioral testing
Motor performance was tested using an accelerated
RotaRod (0207-003 M; Columbus Instruments, USA)
challenge before and after sham surgery or temporary
ligation of the right common carotid artery, followed by
7.5% hypoxia induction. Animals were placed on the
RotaRod at a starting speed of 4 rpm, followed by
acceleration to 20 rpm. Latency to fall was recorded. All
animals were trained on the RotaRod in three consecu-
tive daily sessions consisting of three trials separated by
no more than 5 min. The results of the three trials were
used to calculate a daily session average. The baseline
measurement for each animal was calculated by aver-
aging the results of the three RotaRod sessions preceding
surgery. Identical RotaRod sessions were repeated 6 and
24 h after surgery. Motor data are presented as mean
duration (three trials) on the RotaRod, expressed as
percent of baseline for each animal. All behavior testing
was performed in a blinded fashion.

Real-time investigation of cerebral blood flow dynamic by
laser Doppler perfusion imaging
Laser Doppler perfusion imaging (LDPI) was used to
evaluate the cerebral blood flow (CBF) dynamics in
Poldip2+/+ and Poldip2+/− mice under normocapnic
and hypercapnic conditions. Anesthetized animals
were endotracheally intubated and attached to a
mechanical ventilator (PhysioSuite, Kent Scientific)
delivering gas with 2% of isoflurane. End-tidal CO2

pressure (PhysioSuite, Kent Scientific) was monitored,
and the intact skull was scanned in the prone
position using LDPI (MoorFLPI-2; Moor Instruments
Inc.). Hypercapnia was induced by 5% CO2 inhalation
(in 21% O2/74% N2) for 5 min alternating with
normocapnia (21% O2/79% N2) for 5 min. Hypercap-
nia and normocapnia exposures were repeated three
times during each experiment, and the highest CBF
increase during hypercapnia was considered to be the
maximum response for each animal. The baseline
CBF was recorded with the MoorFLPI software in
arbitrary perfusion units (flux), and the change of
CBF (ΔCBF%) was normalized to the baseline CBF.
The cerebrovascular reactivity (CVR) was calculated
as the increase of CBF (%) divided by the maximum
increase in end-tidal CO2 pressure (Δ mmHg) during
hypercapnia [18].

Micro-CT imaging of brain vasculature
A quantitative micro-CT-based method was used for the
evaluation of cerebral vasculature as previously reported
[19]. Briefly, animals were anesthetized and perfused at
physiological pressure through the left ventricle with pa-
paverine hydrochloride (4 g/L) in normal saline, followed
first with normal saline and second with 10% neutral
buffered formalin. Animals were subsequently perfused
with a lead chromate-based contrast agent (MICROFIL
MV-122 Yellow, Flow Tech Inc.), which was allowed to
polymerize overnight at 4 °C before the brain tissue was
retrieved. The intact whole brain was removed from the
cranial cavity and stored in 10% buffered formalin until
micro-CT examination was performed. Brain vasculature
was imaged using a micro-CT system (μCT 40, Scanco
Medical; Bassersdorf, Switzerland), at 16-μm resolution
(isotropic voxel size, creating 1024 × 1024 pixel slices)
with a voltage of 55 kV and a current of 145 μA. Serial
tomograms were reconstructed from raw data using a
cone beam filtered backprojection algorithm adapted
from Feldkamp et al. [20]. The noise was removed using
a low-pass Gaussian filter (σ = 1.2, support = 2). The
brains were evaluated individually to quantify the 3D
histomorphometric values vascular volume, connectivity,
number, and spacing between vessels. These parameters
are standard for the analysis of the trabecular bone
microstructure [21] and have been used previously for
microvascular networks [22]. Horos medical imaging
software was used to render 3D models, presented here
as 2D maximal intensity projections.

Transmission electron microscopy
Poldip2+/− mice and Poldip2+/+ mice were anesthe-
tized with isoflurane and perfused transcardially with
3% depolymerized paraformaldehyde and 0.15%
glutaraldehyde in 0.1 M phosphate buffer. The brains
were sliced into 100-μm sections using a vibratome.
Sections were washed with 0.1 M phosphate buffer
(pH 7.4) and post-fixed in 1% osmium tetroxide in
the same buffer. Sections were dehydrated through a
graded ethanol series to 100% and flat-embedded in
Eponate 12 resin (Ted Pella Inc., Redding, CA).
Following resin polymerization in a 60 °C oven, the
cortical area of interest was isolated, re-embedded in
the resin, and then placed in the oven for further
polymerization. Ultrathin sections were obtained on a
Leica UltraCut ultramicrotome (Leica Microsystems)
at 70 nm and counter-stained with 5% aqueous uranyl
acetate and 2% lead citrate. Sections were examined
on a Hitachi HT-7700 transmission electron micro-
scope (Hitachi High Technologies of America, Inc)
equipped with an Advanced Microscopy Techniques
CCD camera (Woburn, MA).
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BBB permeability assays
Alterations in the brain vascular permeability were deter-
mined by intraperitoneal injections of Evans blue dye
(Sigma-Aldrich, St Louis, MO). Evans blue binds to serum
proteins such as albumin and can be used to quantify al-
terations in vascular permeability, since albumin does not
cross the endothelial barrier under basal physiological
conditions [23, 24]. Briefly, mice were injected with 2%
Evans blue solution in normal saline (4 mL/kg of body
weight) 24 h following tMCAO. Evans blue was allowed
to circulate for 3 h. Mice were euthanized and perfused
with 50 mL of ice-cold phosphate-buffered saline. The
brains were then removed and divided into ipsilateral and
contralateral hemispheres. Evans blue was extracted at
55 °C overnight with formamide. Dye concentration was
quantified spectrophotometrically in the supernatant at
620 nm and normalized to hemisphere weight.

TNF-α treatment
An intraperitoneal injection of recombinant mouse
TNF-α (5 μg/mouse—PeproTech Inc. Rocky Hill, USA)
was administered to Poldip2+/+ and Poldip2+/− mice im-
mediately after tMCAO. This dose has previously been
shown to increase vascular permeability [25]. Twenty-
four hours after TNF-α administration, BBB permeability
assays were performed.

Western blotting
Twenty-four hours after tMCAO, animals were deeply
anesthetized and perfused with 50 mL of ice-cold
phosphate-buffered saline. The brains were removed,
and the regions of interest quickly collected, frozen in
liquid nitrogen, and stored at −70 °C until use. The
tissue was homogenized at 4 °C in extraction buffer
(Tris, pH 7.4, 100 mmol/L; EDTA 10 mmol/L; PMSF
2 mmol/L; aprotinin 0.01 mg/mL). Whole cell lysate was
prepared from cultured astrocytes using the same
extraction buffer used for the brain samples. The ho-
mogenates were centrifuged at 14,000×g at 4 °C for
20 min, and protein concentration of the supernatant
was determined using the Bradford assay. The material
was stored in sample buffer (Tris/HCl 125 mmol/L,
pH 6.8; 2.5% (w/v) SDS; 2.5% 2-mercaptoethanol,
4 mmol/L EDTA, and 0.05% bromophenol blue) at −
70 °C until gel loading. Following separation by SDS-
PAGE, proteins were transferred to a nitrocellulose
membrane and assessed by western blotting with
primary antibodies against Poldip2 (ab181841; Abcam or
custom made by GenScript Corporation, Piscataway,
NJ), IκBα (ab32518; Abcam), β-actin (A5441; Sigma),
and β-tubulin (21465; Cell Signaling). Blots were incu-
bated with horseradish peroxidase (HRP)-conjugated
secondary antibodies depending on the species of the
primary antibody [anti-mouse (NA931; GE), anti-goat

(205-295-108; Jackson), and anti-rabbit (70745; Cell Sig-
naling)] and assessed using enhanced chemilumines-
cence (ECL, GE). HRP-induced luminescence was
detected with Amersham Hyperfilm ECL (GE). Detected
bands were scanned, and densitometry was performed
using ImageJ.

RNA extraction and RT-qPCR
Total RNA was purified with the RNeasy Plus kit (Qiagen
Chatsworth, CA). Reverse transcription was performed
using Superscript II reverse transcriptase (Invitrogen
Carlsbad, CA) with random primers, and cDNA was puri-
fied with the QIAquick kit (Qiagen). cDNA was amplified
with primers against β-2 microglobulin (B2M) (5′-GGC
CTGTATGCTATCCAGAA-3′, 5′-GAAAGACCAGTCC
TTGCTGA-3′, annealing temperature (Ta) 55 °C), glycera
ldehyde 3-phosphate dehydrogenase (GAPDH) (5′-CTGG
AGAAACCTGCCAAGTA-3′, 5′-TGTTGCTGTAGCCG
TATTCA-3′, 58 °C), ribosomal protein L13A (RPL) (5′-A
TGACAAGAAAAAGCGGATG-3′, 5′-CTTTTCTGCCT
GTTTCCGTA-3′, 58 °C), IL-6 (5′-GTCTATACCACT
TCACAAGTC-3′, 5′-TGCATCATCGTTGTTCATAC-
3′, 50 °C), TNF-α (5′-CTATGTCTCAGCCTCTTCTC-3′,
5′-CATTTGGGAACTTCTCATCC-3′, 52 °C), TGF-β
(5′-CATCTCGATTTTTACCCTGG-3′, 5′-AAAGGTAG
GTGATAGTCCTG-3′, 51 °C), MMP-2 (5′-ACAGGACA
TTGTCTTTGATG-3′, 5′-TACACAGCGTCAATCTTT
TC-3′, 51 °C), MMP-9 (5′-CTTCCAGTACCAAGAC
AAAG-3′, 5′-ACCTTGTTCACCTCATTTTG-3′, 51 °C),
TIMP1 (5′-CTAGAGACACACCAGAGATAC-3′, 5′-CC
CATGAATTTAGCCCTTATG-3′, 51 °C, TIMP2 (′GGAT
TCAGTATGAGATCAAGC-3′, 5′-GCCTTTCCTGCAA
TTAGATAC-3′, 51 °C), IκB (5′-CAGAATTCACAGAGG
ATGAG-3′, 5′-CATTCTTTTTGCCACTTTCC-3′, 51 °
C), MCP-1 (5′-AGCACCAGCCAACTCTCACT-3′, 5′-T
CTGGACCCATTCCTTCTTG-3′, 63 °C), and VEGF (5′-
CAGACCAAAGAAAGACAGAAC-3′, 5′-TACGTTCGT
TTAACTCAAGC-3′, 55 °C) using Platinum Taq DNA
polymerase (Invitrogen) in the presence of SYBR green I
(Invitrogen). Reactions were carried out in glass capillar-
ies, using a LightCycler 1.2 (Roche Applied Science, In-
dianapolis, IN) real-time thermocycler. Data analysis was
performed using the mak3 module of the qpcR software
library [26, 27] in the R environment [28].

Gelatin zymography
MMP-9 levels in ischemic brain homogenates were mea-
sured by gelatin zymography as described by Toth and
Fridman [29]. Mice were deeply anesthetized and trans-
cardially perfused with ice-cold phosphate-buffered
saline. The brains were dissected and placed at − 80 °C
until use. Each tissue was homogenized on ice with
300 μL lysis buffer (25 mM Tris-HCl, pH 7.5; 100 mM
NaCl; 1% Nonidet P-40 and 0.1% protease inhibitor
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cocktail (SIGMAFAST Protease Inhibitor Cocktail Tab-
lets, EDTA-Free, Sigma). The lysates were spun at
16,000×g for 10 min at 4 °C, and the supernatants were
collected. Total protein concentration was determined
using the Bradford assay method. Thirty micrograms of
lysates were loaded in each lane and separated using
a 10% precast polyacrylamide gel with gelatin (Bio-Rad,
Hercules, CA). After electrophoresis, the gel was incu-
bated with Zymography Renaturating Buffer (Bio-Rad)
for 30 min at room temperature, followed by incubation
with Zymogram Development Buffer (Bio-Rad) for 42 h
at 37 °C. After incubation, the gel was stained with
SimplyBlue™ Safe Stain (Invitrogen, Carlsbad CA) for 1 h
and destained with water for 6 h.

Confocal microscopy
Mice were deeply anesthetized and subjected to trans-
cardiac perfusion with a buffered saline solution,
followed by a fixative solution containing 4% paraformal-
dehyde (PFA) dissolved in 0.1 mol/L phosphate buffer
(PB, pH 7.4). The brains were collected, post-fixed in
PFA for 4 h, and transferred to a 30% sucrose solution
for 48 h in PB to ensure cryoprotection. The brains were
sectioned with a cryostat. Seven micrometer-thick cor-
onal sections were incubated for 12–16 h with anti-glial
fibrillary acidic protein (GFAP) (#12389, diluted 1:300,
Cell Signaling, Danvers, MA) and anti-Poldip2 (diluted
1:500, custom made by GenScript) antibodies diluted in
0.3% of Triton X-100, containing 0.05% normal donkey
serum (Abcam, Cambridge, MA, ab166643). Following
three washes of 10 min each with PB, sections were in-
cubated for 2 h with secondary antibodies conjugated to
specific fluorophores for detection (1:50 anti-goat Cy5.5,
Abcam, ab6951 for Poldip2, and 1:50 anti-rabbit Alexa
Fluor 568, Thermo Fisher Scientific, Waltham, MA,
A10042 for GFAP), and Isolectin IB4 from Griffonia
simplicifolia conjugated to Alexa Fluor 488 (Invitrogen/
Molecular Probes Eugene, OR). Samples were mounted
in Vectashield mounting medium containing DAPI
(Vector Laboratories, Inc. H-1200). Images were
obtained using a Zeiss LSM 510 META Laser Scanning
Confocal Microscope System using a Plan-Apo 40× oil
objective lens and Zeiss ZEN acquisition software. Con-
trols with no primary antibody showed no fluorescence.
To convert acquired Z stacks into a 3D projection in all
planes and different angles and for making videos,
Bitplane Imaris 6.4.2 was used. MP4 files were made
using the open source platform VCL and MPEG Stream-
clip software.

Cell culture and oxygen-glucose deprivation
C8-D1A mouse type I astrocytes (ATTC) were grown in
DMEM/F12 media (Invitrogen) supplemented with 10%
fetal bovine serum, 2 mmol/L L-glutamine, 100 units/

mL penicillin, and 100 mg/mL streptomycin. Media was
changed every 2 days until cells reached confluence.
Oxygen-glucose deprivation (OGD) treatment in vitro
was used to most closely resemble the in vivo hypoxic
conditions as previously described [30]. Cells were
washed twice and incubated in glucose-free DMEM
(Invitrogen) under hypoxic conditions (0.1% O2/5%
CO2/95% N2 at 37 °C) for 4 h. At the end of the OGD,
astrocytes were incubated in their regular DMEM/F12
media and reintroduced to the regular atmospheric
oxygen level for an additional 3, 6, 8, or 24 h (reoxygena-
tion). In each experiment, cultures exposed to OGD
were compared with normoxic controls supplied with
DMEM/F12 containing glucose and maintained in
standard incubation conditions (normoxia; 21% O2/5%
CO2 at 37 °C).

siRNA
For transfection with siRNA, astrocytes (2 × 106) were
transfected with mouse siPoldip2 (siPoldip2; sense: 5′-G
UCUACUGGUGGCGCUAUU[dT][dT]-3′, antisense: 5′-
AAUAGCGCCACCAGUAGAC[dT][dT]-3′; Sigma) or
the Allstars control siRNA (siNegative; sense: 5′-GGGU
AUCGACGAUUACAAAUU-3′, antisense: 5′-UUUGUA
AUCGUCGAUACCCUG-3′; Qiagen) using a Nucleofec-
tor (Amaxa Biosystems) set to the T20 program. After
transfection, the cells were allowed to attach on the
collagen-coated substrate in complete media overnight.
The following day, cell media were changed to serum-
reduced media (0.1% FBS) for an additional 16 h until
hypoxia experiments were performed. Gene silencing was
confirmed using immunoblotting. Cells were transfected
with a final siRNA concentration of 25 nmol/L.

Multiplexed ELISAs
The brains were harvested 24 h after tMCAO, divided
into ipsilateral and contralateral hemispheres, and ho-
mogenized at 4 °C in lysis buffer for ELISA (Signosis,
Santa Clara, CA, USA). The homogenates were centri-
fuged at 20,000×g at 4 °C for 10 min, and the protein
concentration of the supernatant was determined using
the Bradford assay. The production of IL-6 and TNF-α
was measured, using 75-μg supernatant per well, with a
Meso Scale Discovery (MSD) custom multiplex high-
sensitivity ELISA plate and the MESO QuickPlex SQ
120 high performance, electrochemiluminescence
immunoassay detection system per the manufacturer’s
instructions (Meso-Scale Discovery, Gaithersburg, MD).

Statistical analyses
Data are expressed as the mean ± SEM. Statistical ana-
lyses were performed using one-way ANOVA followed
by Tukey’s multiple comparison post hoc tests or 2-way
ANOVA, followed by Bonferroni’s multiple comparison
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test as indicated in the figure legends. p < 0.05 was con-
sidered statistically significant. Analysis of tMCAO sur-
gery survival was calculated using online calculators
from GraphPad.com (http://graphpad.com/quickcalcs/
confInterval2/). Data are expressed as % survival ± 10%
confidence intervals. Confidence intervals were calcu-
lated according to the modified Wald method, and a 2 ×
2 contingency table was analyzed using a two-tailed
Fisher’s exact text.

Results
Characterization of the cerebral vasculature and cerebral
blood flow following Poldip2 depletion in vivo
Micro-CT and LDPI studies were performed in order to
investigate whether Poldip2 depletion affects the
anatomic organization of the cerebral vasculature and
cerebral blood flow, respectively. For the micro-CT stud-
ies, several morphological parameters were quantita-
tively assessed. No difference was observed in vascular
volume (4.00 ± 0.38 vs. 4.36 ± 0.47 connections per
mm3), vessels per unit area (0.40 ± 0.03 vs. 0.45 ±
0.03 mm2), mean thickness (0.096 ± 0.002 vs. 0.095 ±
0.002 mm), or spacing between vessels (2.62 ± 0.20 vs.
2.30 ± 0.20 mm), and only a small increase in connectiv-
ity (0.05 ± 0.005 vs. 0.08 ± 0.009, p < 0.04 mm3) was
observed (Additional file 1: Figure S1a). Segmentation
analysis of images from nine to ten mice of each geno-
type showed no obvious abnormalities in the Circle of
Willis of Poldip2+/− mice. Specifically, the distribution of
the MCA branch appeared to be normal, as did the
connection between the anterior and posterior cerebral
arteries (Additional file 1: Figure S1b). As shown in
Additional file 1: Figure S1c, no significant difference at
baseline of CBF flux was observed between Poldip2+/−

mice and Poldip2+/+ mice (317 ± 50 vs. 322 ± 23 flux).
Cerebrovascular reactivity (CVR) induced by hypercap-
nia was found to be similar between Poldip2+/− mice
and Poldip2+/+ mice (Additional file 1: Figure S1d). Hy-
percapnia induced by 5% CO2 inhalation induced a simi-
lar global increase in CBF in Poldip2+/+ and Poldip2+/−

mice (Additional file 1: Figure S1e).
In addition, electron microscopy was performed to

examine the ultrastructure of small capillaries in the
brain cortex. As shown in Additional file 1: Figure S1f,
at baseline, the brain capillaries were intact and structur-
ally similar between Poldip2+/− mice and their littermate
controls, suggesting that BBB integrity is normal.

Poldip2 protein expression colocalizes with cortical
astrocytes
As demonstrated by histological analysis of the Poldip2+/+

mice cortical brain sections, Poldip2 was clearly, although
not exclusively, expressed in glial fibrillary acidic protein
(GFAP)-expressing perivascular astrocytes (Additional file 2:

Figure S2 and Additional file 3: Video S1), as well as neu-
rons, microglia, and to a lesser extent endothelial cells (data
not shown). The specificity of the Poldip2 antibody used in
those experiments has been reported previously [6].

Poldip2 protein expression is increased in ischemic brain
tissue following tMCAO
We first tested whether Poldip2 expression is regulated
in ischemic brain tissue following tMCAO in wild-type
mice. Poldip2 protein levels were monitored 3, 6, and
24 h after reperfusion. We found significantly increased
Poldip2 protein expression in the ischemic hemisphere
6 h after reperfusion (p < 0.05) compared with sham-
operated mice (Fig. 1).

Poldip2 does not affect lesion volume but participates in
permeabilization of the BBB during the late phase of the
ischemic injury and impacts survival and motor
performance
To evaluate whether or not Poldip2 depletion affects the
lesion volume following tMCAO, Poldip2+/+ and Poldip2
+/− brain slices were analyzed using TTC staining.
Twenty-four hours after reperfusion, no significant dif-
ferences were found between Poldip2+/+ and Poldip2+/−

mice (Fig. 2a).
Disruption of the architecture of the BBB during cere-

bral ischemia leads to neutrophil infiltration and influx
of plasma proteins and, subsequently, to the formation

Fig. 1 Poldip2 protein expression is upregulated in the ischemic
brain tissue. Mouse brains were harvested after sham surgery or
tMCAO, followed by reperfusion for the indicated time. Poldip2 was
measured in the ischemic hemisphere by western blotting and
densitometry. Representative blots are shown. The bar graph
represents means ± SEM of four independent experiments normalized
to β-actin. One-way ANOVA *p < 0.05 vs. sham

Hernandes et al. Journal of Neuroinflammation  (2018) 15:45 Page 6 of 16

http://graphpad.com
http://graphpad.com/quickcalcs/confInterval2/)
http://graphpad.com/quickcalcs/confInterval2/)


of cerebral edema, which is responsible for much of the
morbidity following stroke [31–33]. To determine if the
loss of Poldip2 affects the integrity of the BBB perme-
ability, we injected Evans blue intraperitoneally and
examined its extravasation into the brain in Poldip2+/+

and Poldip2+/− mice 24 h following reperfusion. As ex-
pected, increased Evans blue staining was observed in
the brains of Poldip2+/+ mice, which is indicative of se-
vere late BBB disruption following cerebral ischemia. In
contrast, Poldip2+/− mice were significantly protected
against late BBB permeability after tMCAO. Evans blue
extravasation was not observed in either Poldip2+/+ or
Poldip2+/− sham-operated mice (Fig. 2b). The decreased
permeability observed in Poldip2+/− mice after tMCAO
was further confirmed by horseradish peroxidase ex-
travasation (data not shown) as well as in an alternative
cerebral ischemia model induced by temporary unilateral
carotid artery ligation followed by 7.5% hypoxia induc-
tion (Additional file 4: Figure S3).

As less edema should correlate with better survival, we
hypothesized that the loss of Poldip2 would positively
influence survival. Indeed, 24 h following reperfusion,
the overall survival of Poldip2+/− mice was significantly
higher than that of Poldip2+/+ mice (Fig. 2c). Next, we
analyzed the impact of Poldip2 depletion on motor per-
formance after stroke by employing the RotaRod test.
Poldip2+/− mice presented significantly improved motor
performance 6 and 24 h following cerebral ischemia
induction when compared to Poldip2+/+ mice (Fig. 2d).

Astrocyte activation is suppressed following Poldip2
depletion in vivo
Because astrocytes are an important component of the
BBB, we examined the effect of Poldip2 depletion on
astrocyte activation using GFAP, a canonical marker for
astrogliosis. To test if Poldip2 regulates the astrocytic re-
sponse to cerebral ischemia, Poldip2+/+ and Poldip2+/−

mice were subjected to tMCAO, and GFAP expression

a b

c d

Fig. 2 Poldip2 deletion reduces blood-brain barrier disruption, increases the survival rate and motor function 24 h after tMCAO. a Comparison
between the mean volume of the ischemic lesion in Poldip2+/+ and Poldip2+/− mice 24 h after tMCAO. The bar graph represents means ± SEM of
5-7 mice per group. b Mice received intraperitoneal injections of Evans blue 3 h before sacrifice. The brains were harvested and photographed before
separation of hemispheres. Dye extravasation was quantified spectrophotometrically after overnight extraction and normalized to the corresponding hemi-
sphere weight. The bar graph represents means ± SEM of three to six mice per group. Two-way ANOVA ***p< 0.001 vs. Poldip2+/+ sham and §§p< 0.01
vs. Poldip2+/+ ischemic mice. c Poldip2 depletion increases the survival rate 24 h after tMCAO. **p< 0.01. Bars represent % survival ± 10% confidence inter-
vals, calculated using the modified Wald method. Postoperative deaths due to surgical complications were excluded from the data ana-
lyzed. d Comparison between the RotaRod performance in Poldip2+/+ and Poldip2+/− mice 6 and 24 h after cerebral ischemia induction. Data points
represent the means ± SEM (time on RotaRod vs. pre-surgery in percent) of five to six mice per group. Two-way ANOVA ***p < 0.001 vs.
Poldip2+/+ sham 6 h; &&&p < 0.001 vs. Poldip2+/+ sham 24 h; §p < 0.05 vs. Poldip2+/− ischemic mice 6 h and #p < 0.05 vs. Poldip2+/− ische-
mic mice 24 h
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was evaluated in the cortex. Twenty-four hours after
cerebral ischemia induction, a dramatic increase in
GFAP immunoreactivity was observed in the peri-infarct
penumbra cortex in Poldip2+/+ mice. Importantly, astro-
cytes appeared hypertrophic, which is indicative of their
activation. Heterozygous depletion of Poldip2 abrogated
the tMCAO-induced increased GFAP immunoreactivity,
suggesting that Poldip2 signaling plays a role in promot-
ing astrogliosis in the cortex (Fig. 3).

Oxygen-glucose deprivation upregulates Poldip2 protein
expression and mediates upregulation of IL-6 and TNF-α
mRNA in cultured astrocytes
Activated astrocytes are important sources of inflamma-
tory cytokines. We therefore used a model of cultured
astrocytes exposed to OGD to mimic in vivo ischemia
and test the possibility that Poldip2 might regulate cyto-
kine induction in this cell type. Initially, we monitored
Poldip2 protein expression following 4 h hypoxia and 3,
6, and 24 h reoxygenation. Similar to our in vivo find-
ings, Poldip2 protein expression increased in response to
hypoxia and 6 h reoxygenation (Fig. 4a). Poldip2 mRNA
levels did not change under these conditions, suggesting
that hypoxia/reoxygenation stimulates Poldip2 protein
synthesis or inhibits its degradation (Fig. 4b).
To test whether or not the increase in Poldip2 protein

expression correlates with increased TNF-α and IL-6 in
response to hypoxia, the mRNA levels of those cytokines
were monitored following a 4 h exposure to OGD
followed by 6, 8, and 24 h reoxygenation. Figure 4c
shows that, as expected, TNF-α and IL-6 mRNA levels

were upregulated at 6 h reoxygenation. To delve into the
connection between Poldip2 and astrocyte activation,
and to determine whether Poldip2 can affect the astro-
cyte secretory phenotype, cells were transfected with
siPoldip2 (small interfering RNA against Poldip2) or
siNegative and subjected to 4 h OGD followed by 6 h re-
oxygenation before assessing IL-6 and TNF-α mRNA
levels. Gene silencing was confirmed using immunoblot-
ting (Fig. 4d). As is evident in Fig. 4e, downregulation of
Poldip2 abrogated hypoxia-induced IL-6 and TNF-α
upregulation in astrocytes.

Poldip2 mediates IκB signaling pathway in vivo and in
vitro
One of the most intriguing questions that arise from
these observations involves the mechanism by which
Poldip2 might exert its effects. Because NFκB is known
to regulate transcription of both IL-6 and TNF-α [34],
we hypothesized the loss of Poldip2 might inhibit the
NFκB pathway. Consistent with this idea, we found in-
creased mRNA levels of the NFκB inhibitor IκB in the
brain tissue of Poldip2+/− animals when compared to
Poldip2+/+ mice (Fig. 5a). To determine whether Pol-
dip2 regulates IκB degradation, we transfected cultured
astrocytes cells with siNegative or siPoldip2 and evalu-
ated IκBα protein degradation stimulated by TNF-α
treatment. In astrocytes transfected with control siNe-
gative, TNF-α treatment alone caused a significant de-
crease in IκBα when compared to control astrocytes. Of
interest, siRNA against Poldip2 inhibited TNF-α-
induced IκBα downregulation (Fig. 5b).

Heterozygous deletion of Poldip2 abrogates cytokine
induction in vivo
Glial cells, including astrocytes, have been shown to re-
lease inflammatory cytokines in response to cerebral is-
chemia [35]. To confirm our observations in cultured
astrocytes (Fig. 4e), we measured Poldip2-mediated
cytokine release in vivo. Ischemic brain tissue was har-
vested 24 h after sham surgery or tMCAO and IL-6,
TNF-α, and TGF-β mRNA levels were measured. As
shown in Fig. 6, IL-6 and TNF-α mRNA levels were
dramatically increased 24 h after reperfusion in the
brains of Poldip2+/+ mice, but not in Poldip2+/− animals
(Fig. 6a). Similar results were found for MCP-1 and
VEGF mRNA (Additional file 5: Figure S4). In contrast,
ischemia-induced TGF-β mRNA expression was not af-
fected by heterozygous deletion of Poldip2 (Fig. 6a).
Corroborating the mRNA expression data, IL-6 and
TNF-α protein levels were increased in the ischemic
brain of Poldip2+/+ mice after tMCAO, but not in Pol-
dip2+/− mice (Fig. 6b).

Fig. 3 Loss of Poldip2 suppresses activation of astrocytes in the in
the peri-infarct penumbra cortex. Sections were stained for
immunofluorescence with primary antibodies specific for the astrocyte
marker GFAP (red). Nuclei were stained with DAPI (blue). Images are
representative of four independent experiments
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Poldip2 regulates MMP and TIMP mRNA expression in the
ischemic brain following tMCAO
Cytokines upregulate MMPs, which then digest extracel-
lular matrix proteins and essential components of tight
junction proteins, thus compromising the BBB [11, 36].

To determine whether Poldip2 regulates MMP-2 and
MMP-9 and their corresponding regulator tissue inhibi-
tor of metalloproteinase TIMP2 and TIMP1, we exam-
ined their mRNA levels in Poldip2+/+ and Poldip2+/−

brain tissue after sham surgery or tMCAO. Both MMP-

a

b

c

d

e

Fig. 4 Poldip2 mediates cytokine upregulation by hypoxia in astrocytes. Astrocytes were cultured in control conditions or exposed to hypoxia
and glucose deprivation for 4 h. Cells were returned to control conditions for the indicated times before extraction of protein or RNA. a Poldip2
protein expression was quantified by western blotting and densitometry. The bar graph represents means ± SEM of six independent experiments
normalized to β-actin. Two-way ANOVA *p < 0.05 vs. normoxia. b Poldip2 mRNA was measured by quantitative RT-PCR. Bar graphs represent
means ± SEM of ten independent experiments normalized to RPL. c TNFα and IL-6 mRNAs were measured by quantitative RT-PCR. Bar graphs
represent means ± SEM of four independent experiments normalized to B2M. One-way ANOVA *p < 0.05 vs. normoxia. d Downregulation of
Poldip2 protein after siRNA transfection was verified by western blotting. e Astrocytes were transfected with siNegative (siNeg, non-silencing
control) or siPoldip2 before exposure to normoxic or hypoxic conditions (4 h), followed by recovery for 6 h. TNFα and IL-6 mRNAs were measured
by quantitative RT-PCR. Bars represent means ± SEM of four independent experiments normalized to B2M. Two-way ANOVA *p < 0.05; **p < 0.01;
***p < 0.001 vs. normoxia
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2 and MMP-9 mRNA were significantly elevated by
tMCAO at 24 h in Poldip2+/+ vs. sham-operated mice,
but not in Poldip2+/− mice. Induction of TIMP1 mRNA
by ischemia was also inhibited in Poldip2+/− mice, but
TIMP2 mRNA levels were largely unchanged (Fig. 7a).
We further analyzed MMP activity using gelatin zymo-
graphy. As shown in Fig. 7b, MMP-9 activity was in-
creased in the brain tissue of Poldip2+/+ but not in
Poldip2+/− mice after tMCAO; MMP-2 activity levels
were undetectable (data not shown).

TNF-α partially reverses the effect of Poldip2 depletion
The observed inhibition of MMP expression and in-
crease in BBB permeability in Poldip2+/− mice could be
a result of impaired induction of TNF-α or other

cytokines. To begin to test this hypothesis, we adminis-
tered TNF-α immediately after tMCAO to abrogate the
loss of TNF-α in Poldip2+/− mice, and permeability of
the BBB was evaluated 24 h following tMCAO. As ex-
pected, Poldip2+/+ mice treated with TNF-α presented
significantly increased permeability of the BBB when
compared to Poldip2+/+ mice without TNF-α treatment
(Fig. 8). TNF-α only partially reversed the effect of Pol-
dip2 depletion on BBB permeability, suggesting that loss
of Poldip2 affects downstream signaling pathways in
addition to inhibiting TNF-α expression.

Discussion
In this study, we report that Poldip2 has a profound and
previously undiscovered role in cytokine release from
the ischemic brain and regulation of BBB permeability.
Poldip2 protein expression is upregulated in ischemic
brain tissue following tMCAO, and astrocytes account
for at least some of this increase, although Poldip2 is
expressed in most other cell types in the brain as well.
Poldip2 depletion nearly abolishes ischemia-induced late
BBB permeability, possibly by regulating cytokine release
and MMP activation. Our in vitro studies suggest that
Poldip2 may exert these effects in astrocytes, a cell type
that forms an integral part of the BBB. Importantly, this
reduction in permeability is accompanied by an increase
in survival and motor function (Fig. 2c, d). While infarct
size is unchanged, this improvement in function suggests
that either TTC staining is not sensitive enough to de-
tect small changes in infarct volume or prevention of
edema per se improves outcomes. These findings are
consistent with the known roles of Poldip2 in vascular
structure [7], hind limb ischemia [8], renal fibrosis [37],
and protection against aortic aneurysms [7]. Our data
thus suggest that Poldip2 represents a novel mediator of
BBB function and dynamics at a late phase following
cerebral ischemia, at least in part via cytokine release in
astrocytes (Fig. 9).
We have previously demonstrated that Poldip2 is ne-

cessary for integrity and function of conduit arteries.
Heterozygous deletion of Poldip2 was found to increase
aortic extracellular matrix deposition and vascular
stiffness and to impair phenylephrine and potassium
chloride-induced contractility in isolated aortas [7]. In
order to determine whether the improved response to
cerebral ischemia was related to baseline structural and
functional differences in Poldip2+/− mice, micro-CT and
electron microscopy studies were used to visualize the
brain vasculature. A real-time investigation of cerebral
blood flow dynamics was also performed. At the ultra-
structural level, our analysis revealed no significant
differences between the Poldip2+/− and Poldip2+/+ mice.
The quantitative analysis from both micro-CT and LDPI
studies also revealed no differences between Poldip2+/−

a

b

Fig. 5 Poldip2 mediates IκB upregulation in vivo and in vitro. a Baseline
IκB mRNA was evaluated by quantitative RT-PCR in uninjured brains
from Poldip2+/+ and Poldip2+/- mice. Bar graph represents means ± SEM
from five mice per group normalized to GAPDH. **p < 0.01. b As-
trocytes were transfected with siNegative (siNeg, non-silencing con-
trol) or siPoldip2 before exposure to TNF-α for 15 min. IκBα protein
level was measured by western blotting and densitometry. Downregu-
lation of Poldip2 after siRNA transfection was verified by western blot-
ting. Bars represent means ± SEM of four to six independent
experiments normalized to β-tubulin. Two-way ANOVA **p < 0.01 vs.
siNeg no TNF-α
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mice and Poldip2+/+ littermates at the baseline level, ex-
cept for a discrete increase in connectivity, which
provides a foundation for future investigations.
Increased intracranial pressure with midline structure

deviation is one of the predominant clinical implications
of vasogenic edema, and it has been associated with
higher mortality, longer hospitalization, and greater
disability among stroke survivors [31]. Therefore, modu-
lation of BBB dynamics following stroke is of interest as
a druggable target to improve outcome. The BBB nor-
mally limits and regulates molecular exchange between
the blood and the CNS [9]. Perivascular astrocytes
respond to OGD by producing and releasing many ac-
tive factors such as vascular endothelial growth factor
(VEGF), MMPs, and pro-inflammatory cytokines to
increase the vascular permeability [38–40]. TNF-α and
IL-6 released by astrocytes are among the main pro-
inflammatory cytokines implicated in the BBB dysfunc-
tion induced by stroke. A remarkable upregulation of
TNF-α has been described to occur in the brain tissue
following a stroke in both animal models and in patients
[41, 42] which has been shown to induce cytoskeletal

reorganization and decrease tight junction protein ex-
pression in endothelial cells [43, 44]. Increased plasma
and cerebrospinal fluid levels of IL-6 seem to be corre-
lated with stroke severity and poor clinical outcome in
stroke patients [45, 46]. Importantly, both TNF-α and
IL-6 are strongly implicated in the vascular permeability
in rodents subjected to stroke [12, 47].
Our data demonstrate that Poldip2 protein expression

is increased in reactive astrocytes in the ischemic brain
as well as in astrocytes exposed to OGD and that loss of
Poldip2 attenuates the upregulation of IL-6 and TNF-α
both in vitro and in vivo. This likely occurs due to im-
paired degradation of IκB, the inhibitor of the major
pro-inflammatory transcription factor NFκB (Fig. 5). To
our knowledge, this is the first report linking Poldip2 to
pro-inflammatory cytokines. Because the protection
against BBB permeability in Poldip2+/− mice is partially
reversed by the restitution of TNF-α (Fig. 8), our data
strongly suggest that one possible mechanism by which
loss of Poldip2 prevents BBB permeability is via regula-
tion of TNF-α secretion, although IL-6, MCP-1, and
VEGF might also play a role. The fact that Poldip2

b

a

Fig. 6 Poldip2 mediates cytokine upregulation induced by tMCAO. Cytokine mRNAs and proteins were measured in the brain hemispheres, 24 h
after sham surgery or tMCAO in Poldip2+/+ and +/− mice. a TNF-α, IL-6, and TGF-β mRNAs were measured by quantitative RT-PCR. Bar graphs represent
means ± SEM from six mice per group normalized to GAPDH. Two-way ANOVA **p < 0.01 vs. Poldip2+/+ sham mice, §p < 0.05 vs. Poldip2+/+ ischemic
mice, and §§p < 0.01 vs. Poldip2+/− sham mice. b TNF-α and IL-6 proteins were measured by multiplex high-sensitivity ELISA. Bar graphs represent
means ± SEM from six mice per group. Two-way ANOVA **p < 0.01 vs. Poldip2+/+ sham mice and §p < 0.05 vs. Poldip2+/+ ischemic mice
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downregulation failed to abrogate induction of trans-
forming growth factor-β suggests that Poldip2
specifically affects secretion of only certain cytokines
following cerebral ischemia. Since the loss of Poldip2
remained partially protective even after repletion of
TNF-α, it is likely that there are additional mechanisms
involved in Poldip2-mediated BBB dynamics, such as
direct effects on the integrity of tight junctions.
One important function of cytokine elevation is activa-

tion of MMPs. In acute stroke, MMPs degrade tight junc-
tion proteins and digest collagen type IV, facilitating blood
cell extravasation and vasogenic edema [48]. Constitu-
tively expressed MMPs, including MMP-2, seem to initi-
ate the damage cascade early in the acute ischemic phase,
and inducible MMPs, such as MMP-9, perpetuate the
white matter and BBB damage over hours and days [49].

In the present study, we found an increase in both MMP-
2 and MMP-9 mRNA and a clear increase in MMP-9
activity in Poldip-2+/+ mice but not in Poldip2+/− mice,
implying that reduction in MMP activity may contribute
to the reduced BBB permeability in Poldip2+/− mice after
cerebral ischemia [50]. We made a similar observation in
a hind limb ischemia model, where MMP-2 and MMP-9
activity were decreased in Poldip2+/− mice when com-
pared to Poldip2+/+ mice 21 days after ischemia [8].
Whether this reduction in MMP expression is a conse-
quence of reduced cytokine release or is a direct effect of
Poldip2 on MMP transcription remains to be determined.
After activation, MMPs are regulated mainly by TIMPs

that can bind to the active site and block substrate avail-
ability. TIMP1 appears to be involved in inhibition of
MMP-9, while TIMP2 seems to inhibit MMP-2 [49].

a

b

Fig. 7 Poldip2 mediates MMP and TIMP1 upregulation in ischemic brain. a MMP-2, MMP-9, TIMP1, and TIMP2 mRNAs were measured by quantitative
RT-PCR after sham surgery or tMCAO and 24 h reperfusion in ischemic and sham brain hemispheres of Poldip2+/+ and +/− mice. Bar graphs represent
means ± SEM from six mice per group normalized to GAPDH. Two-way ANOVA *p < 0.05, **p < 0.01, and ***p < 0.001 vs. Poldip2+/+ sham mice and §p
< 0.05 vs. Poldip2+/+ ischemic mice. b Representative gelatin zymography images and quantification of MMP-9 activity from ischemic and sham brain
hemispheres in Poldip2+/+ and Poldip2+/− mice. Bar graphs represent means ± SEM (n = 5 mice per group). Two-way ANOVA ***p < 0.001 vs. sham
Poldip2+/+ mice §§§p < 0.001 vs. Poldip2+/+ ischemic mice
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Wang et al. [51] reported an increase in TIMP1 mRNA
in the ischemic cortex of rats after permanent MCAO, a
finding in concordance with our observation of an eleva-
tion of TIMP1 24 h after tMCAO in Poldip2+/+ mice.
This increase in TIMP1 may serve to inhibit or attenuate
MMP-9 action in wild-type mice but is unnecessary in

Poldip2+/− mice where MMP-9 levels are not increased
(Fig. 7). In contrast, we found no detectable differences
in TIMP2 mRNA expression in either genotype 24 h
following ischemia. Previous work suggests that TIMP2
activity was maximally increased only at 5 days after
tMCAO [13], indicating that TIMP2 might have a role
at a later time after the stroke onset. Importantly, the
imbalance between TIMP2 and MMP-2 may determine
the extent of extracellular matrix degradation and
increased vascular permeability in Poldip2+/+ mice, a
response that is absent in Poldip2+/− mice.
The exact molecular mechanism underlying Poldip2-

mediated effects on cytokines and MMPs remains to be
fully elucidated. We previously showed that Poldip2, by
virtue of its ability to bind p22phox, activates Nox4 to
produce H2O2. Others have shown that deletion of Nox4
prevents BBB leakage [52], while pericyte-specific
overexpression of Nox4 increases BBB permeability and
infarct volume via activation of NFκB [53]. However,
deletion of Nox4 was also neuroprotective while hetero-
zygous deletion of Poldip2 selectively affected the
BBB without affecting lesion volume. Thus, while
Poldip2-mediated, Nox4-derived H2O2 may in part ex-
plain the role of Poldip2 in BBB integrity, other func-
tions of Poldip2 likely have a role as well. The ability of
Poldip2 depletion to upregulate IκB represents another
candidate mechanism (Fig. 5). In addition, Poldip2 has a
number of binding partners [54], verified and unverified,
that may explain why loss of Poldip2 affects BBB perme-
ability without affording neuroprotection. Nonetheless,
protection against BBB permeability is likely to be
physiologically important, given the decreased mortality
and improved motor function in Poldip2+/− mice com-
pared to Poldip2+/+ mice 24 h after cerebral ischemia.
This study has some limitations. First, in our cell cul-

ture experiments, we only evaluated the role of Poldip2
in astrocytes and it is likely that Poldip2 in other cell
types also contributes to the phenotype since it seems to
be ubiquitously expressed in multiple cell types in the
central nervous system. This possibility can be addressed
when floxed Poldip2 mice are available. Second, we mea-
sured permeability changes only at 24 h, since measure-
ment of Evans blue dye extravasation at earlier times can
be variable. Given the multiple roles of Poldip2 in the
vasculature, and the fact that it does not regulate lesion
volume, we posit that Poldip2 also mediates early
changes in permeability, but this will need to be proven
experimentally. Third, replenishing TNF-α provides only
suggestive evidence that this cytokine is involved in the
mechanism by which Poldip2 affects the BBB, and other
cytokines should be tested as well. Further studies will
be necessary to identify the exact target of Poldip2 in
the brain. Fourth, in vitro experiments were performed
on an astrocyte cell line, rather than primary cells,

Fig. 8 TNFα partially reverses the effect of Poldip2 depletion. Poldip2
+/+ and Poldip2+/− mice subjected to tMCAO received an intraperitoneal
injection with or without 5 μg TNFα, immediately after tMCAO, followed
by a 24 h reperfusion. Evans blue extravasation was measured as in
Fig. 2. Bars represent means ± SEM from five to seven mice per group.
Two-way ANOVA *p< 0.05 vs. Poldip2+/+ no TNFα; §p<0.05 vs. Poldip2+/+

no TNFα; #p<0.05 vs. Poldip2+/+ with TNFα and & p< 0.05 vs. Poldip2+/−

no TNFα

Fig. 9 Poldip2 mediates hypoxia and reoxygenation-induced astrocyte
activation following tMCAO. tMCAO induces hypoxia, thereby
upregulating Poldip2 in astrocytes, leading to increased production
of cytokines and a late phase breakdown of the blood-brain barrier
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although the concordance between in vitro and in vivo
data makes this unlikely to be an issue. Finally, the
therapeutic potential of Poldip2 as a target for modulat-
ing BBB permeability is complicated by the fact that
homozygous Poldip2 deletion is embryonically lethal and
significantly reduces the cell growth in isolated mouse
embryonic fibroblasts [6]. However, because Poldip2 has
many binding partners, it should be possible to design
peptides or small molecules that specifically disrupt par-
ticular functions of Poldip2 while leaving others intact,
thus modulating, but not eliminating Poldip2 function.

Conclusions
In conclusion, we demonstrate that Poldip2 has a crucial
role in increasing late BBB permeability following cere-
bral ischemia. Poldip2 depletion leads to decreased
TNF-α and IL-6 secretion in the brain tissue and down-
regulation of MMPs and replenishing TNF-α partially
reverses the impaired BBB permeability caused by Pol-
dip2 depletion. We propose that Poldip2 is an important
regulator of the disruption of the BBB in cerebral ische-
mia and represents a potentially druggable target to im-
prove edema and mortality induced by stroke. Further
studies of this novel protein may uncover new avenues
for therapy of this debilitating condition.

Additional files

Additional file 1: Figure S1. Characterization of the cerebral
vasculature and blood flow. a Immediately after euthanasia, Poldip2+/+

and Poldip2+/− mice were sequentially perfused with papaverine, formalin,
and microfil compound containing lead chromate. The whole brain micro-
CT scans were performed at 16-μm resolution. The bar graph represents vas-
cular connectivity as means ± SEM of nine to ten mice per group. *p < 0.05.
b Representative whole brain micro-CT angiographs from Poldip2+/+ and
Poldip2+/− mice. Imaging software was used to render 3D models, pre-
sented here as 2D maximal intensity projections. c Baseline cerebral blood
flow (CBF) flux measured using LDPI. The bar graph represents means ±
SEM of three to four mice per group. d Anesthetized Poldip2+/+ and Pol-
dip2+/− mice were endotracheally intubated, and hypercapnia was induced
three successive times using 5% CO2 inhalation for 5 min, separated with
5 min normocapnia intervals. Cerebrovascular reactivity (CVR) was calculated
as the increase of CBF (%) divided by the maximum increase in end-tidal
CO2 pressure (ΔmmHg) during hypercapnia. The bar graph represents
means ± SEM of three to four mice per group. e Representative LDPI trac-
ings from Poldip2+/+ and Poldip2+/− mice. f Representative electron micro-
graphs from cortical capillaries of Poldip2+/+ and Poldip2+/− mice. Lumen
(L); endothelial cells (EC); basement membrane (BM); astrocyte (As), and peri-
cyte (P). Scale bar 1 μm. (PDF 1588 kb)

Additional file 2: Figure S2. Poldip2 co-localizes with cortical perivascular
astrocytes. Poldip2 staining in cortical perivascular astrocytes. Tissue sections
including blood vessels were prepared from uninjured Poldip2+/+ mice.
Sections were stained for immunofluorescence with primary antibodies
specific for Poldip2 (purple), endothelial cells (Isolectin IB4, green), or the astro-
cyte marker GFAP (red). Nuclei were stained with DAPI (blue). Images are rep-
resentative of four independent experiments. Scale bar 7 μm. (PDF 5668 kb)

Additional file 3: Video S1. Co-localization of Poldip2 with cortical
perivascular astrocytes. A tissue section was prepared from an uninjured
Poldip2+/+ mouse and stained for immunofluorescence with primary
antibodies specific for Poldip2 (purple), endothelial cells (Isolectin IB4,
green), or the astrocyte marker GFAP (red). Nuclei were stained with DAPI

(blue). Z-stack images were collected and animated in 3D using Imaris
software to produce a video file. (MP4 3146 kb)

Additional file 4: Figure S3. Poldip2 deletion reduces blood-brain
barrier disruption 24 h after non-reperfusion cerebral ischemia induced
by temporary unilateral carotid ligation and hypoxia. Evans blue extravasation
was measured as in Fig. 2. The bar graph represents means ± SEM of three to
five mice per group. One-way ANOVA *p < 0.05. (PDF 96 kb)

Additional file 5: Figure S4. Poldip2 mediates MCP-1 and VEGF
upregulation induced by tMCAO. Cytokine mRNAs were measured in
ischemic and sham brain hemispheres, 24 h after sham surgery or
tMCAO and 24 h reperfusion in Poldip2+/+ and Poldip2+/− mice. MCP-1
(a) and VEGF (b) mRNAs were measured by quantitative RT-PCR. Bar graphs
represent means ± SEM from five to six mice per group normalized to
GAPDH. Two-way ANOVA *p < 0.05 vs. sham mice. (PDF 125 kb)
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