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Turning up a new pattern:
Identification of cancer-
associated fibroblast-related
clusters in TNBC

Jindong Xie1†, Shaoquan Zheng2†, Yutian Zou1†, Yuhui Tang1,
Wenwen Tian1, Chau-Wei Wong1, Song Wu1, Xueqi Ou1,
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Growing evidence indicates a connection between cancer-associated

fibroblasts (CAFs) and tumor microenvironment (TME) remodeling and tumor

progression. Nevertheless, how patterns of CAFs impact TME and

immunotherapy responsiveness in triple-negative breast cancer (TNBC)

remains unclear. Here, we systematically investigate the relationship between

TNBC progression and patterns of CAFs. By using unsupervised clustering

methods in the Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) dataset, we identified two distinct CAF-associated

clusters that were related to clinical features, characteristics of TME, and

prognosis of patients. Then, we established a CAF-related prognosis index

(CPI) by the least absolute shrinkage and selection operator (LASSO)-Cox

regression method. CPI showed prognostic accuracy in both training and

validation cohorts (METABRIC, GSE96058, and GSE21653). Consequently, we

constructed a nomogram with great predictive performance. Moreover, the

CPI was verified to be correlated with the responsiveness of immunotherapy in

three independent cohorts (GSE91061, GSE165252, and GSE173839). Taken

together, the CPI might help us improve our recognition of the TME of TNBC,

predict the prognosis of TNBC patients, and offer more immunotherapy

strategies in the future.
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Introduction

Breast cancer remains the primary disease burden in

women worldwide, according to GLOBOCAN 2020 estimates

(1). Triple-negative breast cancer (TNBC) is the most invasive

molecular subtype of breast cancer that lacks the expression of

hormone receptors and human epidermal growth factor

receptor 2 (HER2). Due to chemo-resistance and poor

prognosis, the therapy of TNBC is challenging and

considered as a “black hole” in contrast to other subtypes of

breast cancers (2). Therefore, it is necessary to explore the

mechanism of the development and progression of TNBC,

and effective models are crucial to fill up the gap of

TNBC treatment.

It has been proven that the tumor microenvironment (TME)

is closely linked to tumor development and progression (3, 4).

Stromal cells and immune cells make up the majority of cells in

TME. Growing evidence indicates that stromal cells contribute

to tumor progression (5, 6). Among these stromal cells, cancer-

associated fibroblasts (CAFs) are the major component and play

a vital role in tumor proliferation and invasion (7). Previous

studies have demonstrated that CAFs can interact with tumor

cells and regulate the metastasis of TNBC (8, 9). Clinical trials

aimed at targeting CAFs have been conducted in recent decades;

however, most of them are still in progress (7). Moreover,

various CAF markers have been identified, but few of them

make into clinical application because of the inherent

heterogeneity (10). Most CAFs originate from adjacent normal

tissues with the induction of oxidative stress, chemokines, and

cytokines derived from tumor cells (11). Previous studies have

found that CAFs could be divided into myofibroblastics

(myCAF) and inflammatory (iCAF) subgroups (12).

Furthermore, single-cell analysis reveals that, in breast cancer,

myCAF can be divided into five different clusters (ecm-myCAF,

TGFb-myCAF, wound-myCAF, IFNab-myCAF, and acto-

myCAF), and ecm/TGFb-myCAF clusters are related to the

resistance to immunotherapy (13). Immunotherapy has

recently emerged as a hopeful strategy in breast cancer

treatment (14). Hence, focusing on the role of CAFs in the

TME might make a contribution to breast cancer treatment,

especially immunotherapy.

How patterns of CAFs impact the characteristics of TME

and the efficacy of immunotherapy in TNBC remains unclear.

Here, we systematically conducted a study on CAFs, and

established a novel indicator, CAF-related prognosis index

(CPI), to predict the prognosis and responsiveness of

immunotherapy. This study might help improve our

recognition of TME of TNBC, predict prediction of prognosis

of TNBC patients, and offer more reliable immunotherapy

strategies in the future.
Frontiers in Immunology 02
Materials and methods

Data sources

Patients who fulfilled the following selection criteria were

considered: (a) diagnosed with histologically confirmed breast

cancer; (b) molecular subtype with ER negative, PR negative, and

HER2 negative; (c) available survival data; and (d) remove

technical replications if necessary. The DNA microarray data

of 298 TNBC patients were collected from the METABRIC

dataset (Dataset ID: EGAS00001001753). Corresponding

clinical features, copy number variation (CNV) information,

and masked somatic mutation information were also

downloaded. We acquired independent validation cohorts (ID:

GSE96058 and GSE21653) and immunotherapy cohorts (ID:

GSE91061, GSE165252, and GSE173839) from the Gene

Expression Omnibus (GEO) database. The probes were

mapped using the R package “AnnoProbe”. Expression data of

the model genes in TNBC and normal tissues were downloaded

from The Cancer Genome Atlas (TCGA). CAF-related genes

were collected from previous studies and manual collation

(15, 16).
Multi-omics landscape of the
CAF-related genes

The locations, expression levels, and relationships of the

CAF-related genes were visualized by applying the “RCircos” R

package (17). Protein–protein interaction (PPI) network analysis

was performed and embellished with the help of STRING and

Cytoscape (18, 19). Multi-omics information was synthetically

shown using the “ComplexHeatmap” R package (20).
Unsupervised clustering of the
CAF-related genes

The expression of CAF-related genes was enrolled to

accomplish consensus clustering (CC) to identify the CAF-

related clusters in TNBC by using the “ConsensusClusterPlus”

package (21). Principal component analysis (PCA) was

performed by the R package “scatterplot3d”.
Relationships between the clusters with
prognosis and clinical features

We compared the relationships between the clusters,

prognosis, and clinical features of TNBC patients. The
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differences in overall survival (OS) time were assessed via

Kaplan–Meier (K-M) analysis using the “survival” and

“survminer” R packages. Furthermore, age, tumor size, PAM50

subtype, tumor location, pathologic N, clinical stage, and

pathologic grade were incorporated into clinical features.
Correlations of the clusters with
TME characteristics

The differences between the clusters in biological processes

were found by applying gene set variation analysis (GSVA), with

the gene set derived from the MSigDB database (c2.cp.kegg.v7.2)

(22). The compositions of 22 immune cells of each TNBC

patient were assessed by the CIBERSORT algorithm (23). The

expression of immune checkpoints between the clusters was also

analyzed. In addition, we applied the ESTIMATE algorithm to

obtain the immune and stromal scores of each patient (24).
Identification of differentially expressed
genes and functional enrichment

Subsequently, we screened out DEGs with the criterion of

adjust. p < 0.05 and |log2 Fold Change| > 0.5 (R package

“limma”) (25). The R package “clusterProfiler” was used to

perform functional enrichment analysis (26).
Construction of the CPI

We utilized univariate Cox regression to find DEGs linked to

TNBC OS. The cutoff criterion was 0.05. We randomly split all

TNBC patients in the METABRIC cohort into a training cohort

and a validation cohort with the proportion of 6:4. We applied

the least absolute shrinkage and selection operator (LASSO)-Cox

regression method to construct the optimal signature in the

training cohort (R package “glmnet”) (27). Finally, the signature

exported the CPI of each patient as follows:

CPI =o
7

i=1
Coefi*Expi

Coefi denotes the risk coefficient and Expi refers to the

expression of each gene. To make plots more intuitionistic, we

used a linear transformation to adjust the CPI (28).

Normalized CPI =
CPI   −min CPIð Þ

max CPIð Þ −min CPIð Þ
The alluvial diagram was shown by the “ggalluvial” R

package. The “stats”, “survival”, and “survminer” package were

used to investigate the correlation between OS time and CPI. We
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applied the “timeROC” R package to finish receiver operating

characteristic (ROC) curve analysis (29).
The establishment and assessment of
the nomogram

Clinical features (age, tumor size, pathologic N, and grade)

and CPI were set together, and the prognostic nomogram was

established by the multivariable Cox and stepwise regression

analyses (R package “regplot”). We used “caret” and “rmda”

packages to make calibration plots and DCA to evaluate

nomogram efficacy.
Statistical analysis

All statistical analyses were presented via R 4.1.2. Wilcoxon

test was used for comparison of different clusters and CPI

groups. The Spearman method was applied for correlation

analysis. Chi-square test and Fisher’s exact test were applied

for comparison of clinical features.
Results

The workflow in our study is presented in Figure 1.
General recognition of the
CAF-related genes

The locations, expression levels, and links of the CAF-related

genes on their respective chromosomes are shown in Figure 2A.

Figure 2B shows the PPI network among the CAF-related genes.

Correlations of each CAF-related gene are exhibited in

Figure 2C. We can see that most of the CAF-related genes

were positively correlated.
Unsupervised clustering of the
CAF-related genes

To explore unidentified clusters of TNBC, CAF-related genes

were employed to perform a CC analysis in the METABRIC

cohort. We found that when k = 2, the differences among

subgroups were the most obvious, which indicated that k = 2

might be optimum. Based on the selected k value, the cohort was

divided into cluster 1 (n = 188) and cluster 2 (n = 110) (Figure 2D,

Supplementary Figure S1). PCA indicated that the two clusters

can be distinguished clearly (Figure 2E).
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Relationships between the clusters with
prognosis and clinical features

We further explored whether the two clusters were different

in prognosis and clinical features. K-M analysis confirmed that

the two clusters were different in OS time (p = 0.049, Figure 2F).

Patients in cluster 1 had worse prognosis than those in cluster 2.

No significant difference was observed in the distribution of age

between the two clusters, but tumor sizes were found to be

different, with the tumor sizes in cluster 1 being larger than those

in cluster 2 (p < 0.05, Figure 2G). Moreover, other clinical

features (PAM50 subtype, tumor location, pathologic N, clinical

stage, and pathologic grade) were also compared. Doughnut

diagrams showed that PAM50 subtype, clinical stage, and

pathologic grade were significantly different. As shown in

Figure 2H, cluster 1 was preferentially associated with higher

mortality risk (p = 0.095), more threatening PAM50 subtype

(p < 0.0001), higher pathologic grade (p = 0.00098), and higher
Frontiers in Immunology 04
clinical stage (p = 0.039), compared to those in cluster 2. Multi-

omics landscape of samples in the two clusters is shown in

Figure 2I. In contrast to cluster 2, cluster 1 was distinctly related

to higher mutation rates and higher CNV rates. Moreover, we

noticed that the mutation frequency of TP53 was significantly

higher in cluster 1 (p = 0.0002, Supplementary Figure S2), and

the MUC16 was negatively correlated with most of the CAF-

related genes (Supplementary Figure S3). The results mentioned

above verified that two clusters were different in prognosis and

clinical features.
Correlations of the clusters with
TME characteristics

GSVA implied that cluster 2 was obviously enriched in

immune-activated pathways such as chemokine signaling

pathway activation, cytokine receptor interaction, antigen
FIGURE 1

Flowchart for comprehensive analysis of the new CAF-related pattern in TNBC.
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FIGURE 2

General recognition and unsupervised clustering of the CAF-related genes, and relationships between clusters with prognosis and clinical
features. (A) Locations, expression levels, and links of the CAF-related genes on 23 chromosomes. (B) PPI network of the CAF-related genes.
Different colors represent different clusters. (C) Correlations of each CAF-related gene (red: positive correlation; sky blue: negative correlation).
(D) Unsupervised clustering based on the CAF-related genes in the METABRIC cohort (k = 2). (E) PCA analysis of two clusters (firebrick: cluster
1; steel blue: cluster 2). (F) K-M survival analysis of two clusters (firebrick: cluster 1; steel blue: cluster 2). (G) Boxplots of two clusters with age
and tumor sizes (firebrick: cluster 1; steel blue: cluster 2; ns means no significance, and * means p < 0.05). (H) Doughnut diagrams of two
clusters in survival status, PAM50 subtype, pathologic location, pathologic N, clinical stage, and pathologic grade. (I) Muti-omics landscape of
samples in two clusters.
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processing and presentation, T- and B-cell receptor signaling

pathway, and natural killer cell-mediated cytotoxicity

(Figure 3A). By applying the CIBERSORT algorithm, the

correlations between the two clusters and immune cells of

each TNBC patient were assessed. Figure 3B confirmed that

significant differences were observed in the composition of most

immune cells between the two clusters. The composition levels

of naive B cells and T cells (CD8+, CD4+, and gamma delta)

were visibly higher in cluster 2 than those in cluster 1, while the

number of T cells (follicular helper and Tregs), macrophage 0

(M0) cells, and M2 cells was lower in cluster 2 compared to those

in cluster 1. Similarly, the expression levels of several important

immune checkpoints (PD-1, PD-L1, CTLA4, and CCD28) were

significantly higher in cluster 2 (Figure 3C). The TME scores

(stromal score, immune score, and ESTIMATE score) of the two

clusters were also evaluated. Figure 3D demonstrates that higher

TME scores were observed in cluster 2.
Frontiers in Immunology 06
Identification of gene clusters based
on DEGs

We identified 877 DEGs between the two clusters. Among

them, 252 genes were upregulated while 625 genes were

downregulated in cluster 1. All DEGs are shown in

Supplementary Table S1. Figure 4A shows these DEGs with a

volcano plot. Based on the DEGs, we performed enrichment

analysis and the results are shown in Figure 4B. Biological

processes including cell chemotaxis, extracellular matrix

organization, cellular calcium ion homeostasis, cell–cell

junction organization, cornification, endothelial cell

development, cell growth, cell maturation, and STAT signal

pathway were involved. Cox regression analysis was employed

to select prognostic DEGs (p < 0.05). A CC algorithm was

applied for further validation and two genomic clusters based on

prognostic DEGs were found, namely, gene cluster A (n = 161)
B

C D

A

FIGURE 3

Correlations of clusters with TME characteristics (firebrick: cluster 1; steel blue: cluster 2; ****, ***, **, and * mean p < 0.0001, < 0.001, < 0.01,
and < 0.05, respectively). (A) Heatmap of GSVA indicates difference in biological processes between two clusters (yellow: upregulated; green:
downregulated). (B) Abundance of 22 immune cells in two clusters. (C) Violin plots of the expression levels of classical immune checkpoints in
two clusters. (D) Violin plots of the TME scores in two clusters.
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and gene cluster B (n = 137) (Supplementary Figure S4). K-M

survival analysis showed that patients in gene cluster A owned

worse OS time than those in gene cluster B (p = 0.0011,

Figure 4C). A heatmap with clinical features is shown in

Figure 4D. In addition, we found that the two gene clusters

showed significant differences in the expression of most CAF-

related genes (Figure 4E).
Frontiers in Immunology 07
Construction of the CPI

By the LASSO-Cox regression method, a seven-gene

(IL18R1, STAMBPL1, EPB41L3, TK1, TMEM176A,

TMEM241, and FZD9) signature was constructed in the

training cohort (n = 178, Figures 5A, B). Correlations of each

model gene were investigated (Supplementary Figure S5). Their
B

C D

E

A

FIGURE 4

Identification of gene clusters based on the DEGs. (A) Volcano plot of DEGs between two clusters (firebrick: upregulated; gray: not change;
steel blue: downregulated). (B) GO enrichment analysis based on the DEGs. (C) K-M survival analysis of two gene clusters (firebrick: gene cluster
A; steel blue: gene cluster B). (D) Heatmap of two gene clusters with clinical features. (E) Violin plots of the expression levels of CAF-related
genes in two gene clusters (****, ***, and * mean p < 0.0001, < 0.001, and < 0.05, respectively).
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FIGURE 5

Construction and validation of the CPI in the METABRIC cohort. (A) LASSO-Cox regression of the model genes. (B) Cross-validation for the
LASSO-Cox regression. (C) Boxplots of the values of CPI between clusters and gene clusters (**** means p < 0.0001). (D) Alluvial diagram of the
cluster, gene cluster, CPI group, and survival status. (E) Distribution of adjusted CPI and PCA plot based on the CPI groups in the METABRIC
training cohort. (F) PCA plot in the METABRIC training cohort. (G) K-M survival analysis of the patients in the METABRIC training cohort
(firebrick: high CPI; steel blue: low CPI). (H) ROC curve analysis according to the 2-, 3-, 5-, and 10-year survival of the AUC value in the
METABRIC training cohort. (I) Distribution of adjusted CPI and PCA plot based on the CPI groups in the METABRIC validation cohort. (J) PCA
plot in the METABRIC validation cohort. (K) K-M survival analysis of the patients in the METABRIC validation cohort (firebrick: high CPI; steel
blue: low CPI). (L) ROC curve analysis according to the 2-, 3-, 5-, and 10-year survival of the AUC value in the METABRIC validation cohort.
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respective influence on the OS time was explored by K-M

survival analysis (Supplementary Figure S6A). Wilcoxon test

was applied to explore their expression levels between normal

and TNBC tissues in the TCGA cohort (Supplementary Figure

S6B). All the model genes were significantly related to the

prognosis, and the expression of each gene was obviously

different except for IL18R1 and TMEM176A (p < 0.05). CPI =

(−0.070866632 * IL18R1 exp.) + (−0.033907919 * STAMBPL1

exp.) + (−0.007310944 * EPB41L3 exp.) + (0.058986821 * TK1

exp.) + (−0.310459504 * TMEM176A exp.) + (0.054104874 *

TMEM241 exp.) + (−0.057525638 * FZD9 exp.). Figure 5C

shows that higher CPI corresponded with poorer prognosis.

The alluvial diagram also indicated that most of the patients in

cluster 1 and gene cluster A belonged to the high-CPI group and

eventually passed away (Figure 5D).
Training and validation of the CPI

After constructing the CPI, we equally divided 178 TNBC

patients in the METABRIC training cohort into low- and high-

CPI groups according to the median CPI. Figure 5E showed that

the survival time of patients became shorter with the increasing

CPI, and the PCA showed that the classification was optimal

(Figure 5F). There was a difference in OS time between these two

groups; that is, patients in the high-CPI group were more likely

to die (p < 0.0001, Figure 5G). Moreover, ROC curve analysis

implied that the CPI had a favorable predictive efficacy. The area

under the ROC curve (AUC) was 0.652 for 2-year, 0.636 for 3-

year, 0.672 for 5-year, and 0.678 for 10-year survival (Figure 5H).

Subsequently, we utilized the METABRIC validation cohort to

assess the efficacy of the CPI. The METABRIC validation cohort

that contained 120 TNBC patients were also distributed to two

groups based on the median CPI. Results showed that high CPI

resulted in poor survival time, and these two groups were

distinguished satisfactorily (Figures 5I, J). K-M survival

analysis showed that patients with low CPI were more likely to

survive (p = 0.014, Figure 5K). The AUC was 0.646 for 2-year,

0.667 for 3-year, 0.650 for 5-year, and 0.620 for 10-year survival

in the validation cohort (Figure 5L).

The CPI was also certified in the independent validation

cohorts, GSE96058 and GSE21653. Similar distributions with

clearly separated PCA plots were found in GSE96058 and

GSE21653 (Figures 6A–D), and K-M survival analysis

indicated that the CPI was a risk factor in TNBC patients

(p = 0.042 in GSE96058 and p = 0.045 in GSE21653,

Figures 6E, G). The AUC was 0.616 for 2-year, 0.628 for 3-

year, 0.624 for 4-year, and 0.565 for 5-year survival in the

GSE96058 validation cohort (Figure 6F), and the AUC was

0.677 for 2-year, 0.706 for 3-year, 0.655 for 4-year, and 0.621

for 5-year survival in the GSE21653 validation cohort

(Figure 6H). The CPI was found to be strongly associated with

tumor sizes. Higher CPI corresponded with larger tumor sizes.
Frontiers in Immunology 09
There was no significant difference found between these two

groups with other clinical features such as N (N0–N3), stage (I–

III), and grade (I–III) (Figure 6I). The relationships in the model

genes, CPI, and the characteristics of the TME were also

identified (Figure 6J). In conclusion, CPI showed robust

prognostic accuracy in both training and validation cohorts.
Establishment and assessment of the
nomogram model

Multivariable Cox analyses with stepwise regression were

used to establish a nomogram model in the training cohort. Age,

CPI, and N were brought into the nomogrammodel (Figure 7A).

Calibration curves showed that the accuracy of the nomogram in

predicting the 2-, 3-, 5-, and 10-year survival rate was favorable

(Figure 7B). Moreover, we performed decision curve analysis

(DCA), and the result showed that the nomogram was

significantly superior to any other variates applied in this

study (Figure 7C).
CPI predicts the responsiveness
of immunotherapy

We further conducted analysis to explore whether CPI could

predict the responsiveness of immunotherapy. We collected

three relevant independent cohorts (GSE91061, GSE165252,

and GSE173839). Box plots showed that CPI was lower in the

pathologic complete response (pCR) group compared to the

non-complete response (nCR) group (all p < 0.05, Figure 7D).

Chi-square test also confirmed that the pCR ratio in the low-CPI

group was much higher than that of nCR (p = 0.011 in

GSE91061, p = 0.035 in GSE165252, and p = 0.11 in

GSE173839) (Figure 7E). In addition, ROC curve analysis

indicated that CPI had excellent efficacy in predicting

immunotherapy responsiveness (AUC = 0.775 in GSE91061,

0.638 in GSE165252, and 0.622 in GSE173839) (Figure 7F).
Discussion

Increasing research has suggested that CAFs are vital to the

interactions of TME and tumor cells of TNBC (8, 9). Nevertheless,

the majority of studies have centralized on a single gene; thus, the

overall effect regulated by multiple CAF-related genes has not yet

been fully illustrated. In this study, we firstly summarized the

CAF-related genes for comprehensive analysis and found a new

pattern of CAF-related clusters. A different prognosis was found

in CAF-related clusters. Furthermore, these CAF-related clusters

were significantly related to clinical and multi-omics features.

Cluster 1 was preferentially associated with higher mortality risk,

more threatening PAM50 subtype, higher clinical stage, higher
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FIGURE 6

Validation of the CPI in GSE96058 and GSE21653 cohorts. (A) Distribution of adjusted CPI based on the CPI groups in the GSE96058 validation
cohort. (B) Distribution of adjusted CPI based on the CPI groups in the GSE21653 validation cohort. (C) PCA plot in the GSE96058 validation
cohort (firebrick: high CPI; steel blue: low CPI). (D) PCA plot in the GSE21653 validation cohort (firebrick: high CPI; steel blue: low CPI). (E) K-M
survival analysis of the patients in the GSE96058 validation cohort (firebrick: high CPI; steel blue: low CPI). (F) ROC curve analysis according to
the 2-, 3-, 4-, and 5-year survival of the AUC value in the GSE96058 validation cohort. (G) K-M survival analysis of the patients in the GSE21653
validation cohort (firebrick: high CPI; steel blue: low CPI). (H) ROC curve analysis according to the 2-, 3-, 4-, and 5-year survival of the AUC
value in the GSE21653 validation cohort. (I) Relationships between CPI groups and clinical features (ns means no significance, and ** means p <
0.01). (J) Relationships between model genes, CPI, and TME characteristics (purple: positive correlation; blue: negative correlation).
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FIGURE 7

The establishment and assessment of the nomogram and prediction of immunotherapy responsiveness. (A) Nomogram based on clinical
features and CPI. (B) Calibration curves in predicting the 2-, 3-, 5-, and 10-year survival rate. (C) DCA of nomogram comparing age, tumor size,
pathologic N, grade, and CPI. (D) Boxplots of the values of CPI between pCR and nCR groups in GSE91061, GSE165252, and GSE173938
cohorts. (E) Results of chi-square test between responsiveness and CPI groups in GSE91061, GSE165252, and GSE173938 cohorts. (F) ROC
curve analysis of predicting the immunotherapy responsiveness in GSE91061, GSE165252, and GSE173938 cohorts.
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pathologic grade, higher mutation rates, and higher CNV rates

compared to those in cluster 2. TME characteristics and immune

activation also differed obviously between the two clusters, which

was consistent with former studies (30, 31). We also identified two

gene clusters based on the DEGs between the two CAF-related

clusters. Therefore, our study verifies that CAFs could be effective

in predicting clinical outcomes and immunotherapy

responsiveness in TNBC patients. Then, a seven-gene signature

was constructed in the METABRIC cohort, which was then

validated to perform well in independent validation cohorts.

Patients with high or low CPI showed a significant difference in

prognosis, clinical features, and TME characteristics. A

nomogram that included clinical features and CPI was built and

verified to be effective. Finally, we confirmed that CPI was a

predictor for immunotherapy responsiveness.

Among breast cancer patients, patients with TNBC have the

worst prognosis. In spite of improvements in immunotherapy,

the prognosis of TNBC patients continues to exhibit

heterogeneity, which emphasizes the key role of TME in

TNBC development and progression (32, 33). Immune cells

are the main components of TME, which include lymphocytes,

granulocytes, macrophages, and other cells. They are involved in

modulating multifarious immune responses, such as the pro-

inflammatory response coordinated by tumor cells that can

promote survival (34). Stromal cells around tumor cells are

also relevant to tumor progression (5, 6). In our study, the CAF-

related pattern characterized by cluster 1 (immune inhibition)

corresponded with a higher CPI, while cluster 2 (immune

activation) was associated with a lower CPI. A growing body

of evidence has proven that the differentiation of T cells has a

close relationship with TNBC prognosis. Higher infiltration

levels of CD4+, CD8+, and gamma delta T cells indicate better

prognosis in TNBC patients (35, 36). Cluster 2 and low CPI,

which is closely associated with a better prognosis, showed

higher levels of activated CD4+, CD8+, and gamma delta T

cells, which suggests holding off the development of TNBC.

Tregs is a suppressor during the anti-tumor immune response,

which is consistent with our finding that the infiltration level of

Tregs was higher in cluster 1 with higher CPI (37). It is well

known that M1 and M2 cells are opposed to inflammatory-

related responses (38). Previous studies also confirmed that the

enrichment of M1 cells contributed to a protective factor while

the higher proportion of M2 cells was a risk factor in TNBC

patients, which corresponds to our results (4, 39).

With the intensive study of molecular biology and tumor

immunology, immunotherapy using immune checkpoint

inhibitors (ICIs) has been widely accepted (40, 41). Classical

immune checkpoints included PD-1, PD-L1, CTLA4, and

CCD28. Research targeting these molecules is flourishing and

clinical studies have demonstrated their efficacy and safety in the

treatment of TNBC (42, 43). In our study, higher expression

levels of immune checkpoints were observed in cluster 2

compared to cluster 1. Moreover, independent cohorts
Frontiers in Immunology 12
confirmed that CPI was significantly associated with

immunotherapy responsiveness. Patients with low CPI might

benefit from immunotherapy.

There were some limitations in our study. First, sampling

bias might exist because of tumor heterogeneity, which causes

the different proportion of the interstitial portion in each

sample. Second, although the METABRIC cohort is the

largest public cohort of breast cancer in the world, it is a

type of microarray that might have gaps in the abundance and

depth of sequencing. Third, the detailed mechanisms of

interaction between CAFs and TNBC cells have not been

explored. Finally, multicenter clinical queues are necessary

for further analysis and verification.

In conclusion, this new pattern proposed by our study is a

practical weapon for TNBC patients, which helps us improve our

recognition of the TME of TNBC, predict prognosis of TNBC

patients, and offer more reliable immunotherapy strategies in

the future.
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