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Abstract

In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical
concepts of ‘‘dark energy,’’ ‘‘dark matter,’’ and ‘‘dark flow.’’ Instead of assuming the existence of these theoretical concepts,
we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an
inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for
the requirement that special and general relativity be local approximations within our revised definition of inertial systems.
Implicit in our ideas is the assumption that at ‘‘large enough’’ scales one can treat objects within these inertial systems as
point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that
time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent
symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within
these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of
inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be
the result of ‘‘dark energy,’’ ‘‘dark matter,’’ and ‘‘dark flow.’’ In addition, we examine the potential observable implications of
our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently
interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into
quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter
and antimatter within the framework of these redefined inertial systems.
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Introduction

The purpose of this paper is to present the foundational

groundwork for a new metric theory of flat space-time which takes

into account the observed effects currently expected to be the

result of ‘dark energy’ [1], ‘dark matter’ [2], and ‘dark flow’ [3]

without resorting to these theoretical concepts that we have yet to

observe in the laboratory. We emphasize above the fact that we

are working in flat space-time as this paper is not concerned with

reformulating gravity. Meaning, we assume gravity is the

consequence of local curvature in space-time resulting from the

energy-momentum content associated with an object as formulat-

ed by Einstein in his theory of general relativity. However, for our

discussion, we operate under the assumption that at ‘‘large

enough’’ scales we may treat massive objects in our proposed

inertial reference frames as point-particles having an insignificant

effect on the curvature of space-time for the purpose of examining

the motion of said objects within the context of these larger scales.

Consequently, we assume that space-time is essentially flat at these

scales, and therefore, the energy density throughout our inertial

systems is taken to be approximately zero. Thus, we assume that

the deviation away from flat space-time inertial paths due to

curvature in space-time is insignificant in our analysis. Further-

more, it is assumed that the observed motion of these large-scale

objects about central points (e.g. stars orbiting the center of a

galaxy, galaxies orbiting the center of a group/cluster, groups/

clusters orbiting the center of a supercluster, etc.) is not due to the

presence of gravitational sources at these centers but is instead a

manifestation of the way in which objects move when no net

external forces are acting upon them. In other words, the following

work is concerned with reformulating our understanding of inertial

motion. Furthermore, we focus on reformulating the global

properties of an inertial reference frame while disregarding the

potential local effects that objects moving within this global inertial

system may have on the curvature of space-time. To begin with

our reformulation, we explicitly state for the reader the

assumptions of flat space-time as given by Einstein’s special

relativity [4]:

1. An object will travel in a straight line at a constant speed when

no net external forces are acting upon this object (inertial

motion adopted from Newton; see section titled ‘‘Definitions’’

in [5]).

2. An observer undergoing inertial motion has the freedom to

describe events by ‘‘carrying rulers’’ in any three arbitrarily

chosen spatial directions (perpendicular to one another) and

calibrating clocks according to Einstein’s prescription for

synchronization (an inertial frame of reference). As well,

inertial reference frames moving with uniform (constant

velocity) rectilinear motion relative to one another are treated

equally (i.e. there are no preferred inertial frames of reference

in flat space-time).

3. The speed of light remains constant in all of these observer

dependent inertial frames.
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While operating under these assumptions in addition to those of

general relativity [6], our cosmological models (e.g. LCDM [7])

then require a ‘Big-Bang’ event [8][9][10], ‘inflation’ [11], ‘dark

energy’, ‘dark matter’, and ‘dark flow’ as explanations for observed

phenomena on cosmological scales given our assumed under-

standing of inertial motion and inertial reference frames as stated

above. In contrast, our claims in this paper are that in order to

reproduce the observed behavior attributed to the theoretical

concepts of ‘dark energy’, ‘dark matter’ and ‘dark flow’, it is not

necessary to assume that these supplements must exist. Instead, it

is possible to reproduce this behavior by simply incorporating it

into a revised understanding of inertial motion and inertial

reference frames in empty flat space-time, thereby no longer

assuming the three pillars of theoretical physics as listed above and

no longer requiring the occurrence of a ‘Big-Bang’, ‘inflation’, and

expansion of space. While seemingly rash at first glance, we claim

that in what we term as our ‘‘Theory of Inertial Centers’’, as laid

out in the following work, one can reproduce with inertial motion

in our redefined inertial reference frames the following observed

features:

1. Accelerated redshifts [12] and the Hubble relation [13].

2. Plateauing orbital velocity curves at large distances from a

central point about which objects orbit [14].

3. Consistent velocity ‘‘flow’’ of objects toward a central point [3]

[15].

4. An orientation associated with a particular frame of reference

[16] (i.e. we do not take the cosmological principle to be a valid

assumption as can be seen from experimental evidence such as

[17]).

In our theory of flat space-time, inertial motion remains defined

to be the motion of an object when it is subjected to no net

external forces. In addition, an inertial reference frame is defined

to be a system within which objects move along inertial trajectories

when no net external forces are acting upon them. We then make

the following assumptions and requirements in our theory:

1. Inertial motion is not characterized by an object moving in a

straight line at a constant speed. Instead, inertial motion is

characterized by geodesics about ‘‘inertial center points’’ in the

radial Rindler chart as examined in the following discussion

(the radial Rindler chart has been mentioned in other contexts

such as [18] and [19]). Note that implicit in this assumption is

the idea that time and space are fundamentally intertwined

such that time-translational invariance and spatial-translational

invariance are not inherent symmetries of flat space-time.

Mathematically, this notion reduces to incorporating both time

and spatial distance into the invariant interval associated with

our metric. Meaning, the physically observable elapsed time as

measured by a clock carried along a given curve, denoted as

‘‘proper time’’ t, is not our affine parameter and thus is not

invariant. Therefore, observable clock rates depend upon both

spatial position in a particular inertial frame as well as in which

inertial frame the observer is observing. Our affine parameter x
in the theory of inertial centers is then taken as a function of

proper time in a particular inertial frame to be

x~
ffiffiffiffi
L
p

:
ð

r(t)dt

where r~r(t) represents the physical distance to the inertial

center about which the observer moves at a particular

observable clock time t in the inertial system and
ffiffiffiffi
L
p

is taken

to be the Hubble constant [13][20]. In addition, these inertial

center points define the centers of our inertial reference frames.

2. An observer does not have the freedom to describe an inertial

reference frame in whichever way he/she chooses as in special

relativity. We, as observers, are forced to adopt the orientation of

the inertial reference frame that nature provides for us at the

particular scale in which we are describing phenomena. As

well, the inertial motion of an object must be thought of relative

to the inertial center point about which said object orbits

(throughout this paper, we will use the term ‘‘orbit’’ to refer to

the inertial motion of an object about an inertial center point).

3. The speed of light is not constant throughout these inertial

reference frames.

4. Locally within a confined region of each of these newly defined

inertial reference frames, our theory reduces to and abides by

the axioms of special relativity and general relativity.

Our analysis is organized in the following manner. First, we

explore the limiting behavior of our equations of motion with the

radial Rindler chart in flat space-time. Out of this, we come upon

the ability to model the observed features as listed above. Second,

we determine the limit in which our theory reduces to special

relativity, while also proposing the form of our invariant interval in

terms of both time and distance to an inertial center. We have

stated the form of our affine parameter earlier in this introduction

as a preface to the logic used in this proposition. Third, we

examine the potential observable effects of this theory within our

solar system and interpret the Pioneer anomaly [21] as support for

our ideas. Fourth, we extend our analysis by quantizing our theory

for a real massive scalar field. Within the context of this extension,

we find a potential explanation for the asymmetry between matter

and antimatter in our observable universe through the possibility

of a parallel region to each inertial system embodied mathemat-

ically by the ‘‘other’’ radial Rindler wedge. We conclude by

proposing future work including addressing the source of the

cosmic microwave background [22] in this theory, attempting to

explain other astrometric anomalies within our solar system

besides Pioneer [23], and extending our quantum mechanical

analysis to complex fields with spin.

Discussion

Geodesic paths
Adopting the signature ({,z,z,z) and employing abstract

index notation throughout our analysis (see Chapter 2.4 of [24]),

we work in the following metric:

{dx2~{Lr2dt2zdr2zr2 cosh2 (
ffiffiffiffi
L
p

t)dV2 ð1Þ

where dV2~dh2zdw2 sin2 h; 0ƒhƒp, 0ƒwv2p, {?vtv?,

0vr2
v?, and L is a positive constant. In a subsequent section,

we’ll deduce that L must be the square of the Hubble constant.

dx2 denotes the invariant interval associated with this metric

where dx2
=c2dt2 assuming t denotes proper time, defined as the

physically observable elapsed time between two events as

measured by a clock passing through both events carried along

a particular curve, and c denotes the constant associated with the

speed of light in special relativity. Therefore, in contrast with

special relativity, our proper time interval is not assumed to be

invariant, and the speed of light in flat space-time is not assumed to

be constant. However, in subsequent sections, we shall show how

special relativity can be treated as a local approximation to our

theory of inertial centers. As in special and general relativity,

Re-Examination of Globally Flat Space-Time
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massless particles travel along null geodesics. Thus, with this radial

Rindler chart as the description of our inertial frame of reference

and our redefinition of the invariant interval associated with the

metric, we implicitly assume that time and space are fundamen-

tally intertwined such that time-translational invariance and

spatial-translational invariance are not inherent symmetries of flat

space-time. In other words, one cannot progress coordinate time t

forward (i.e. replace t?tzt0 where t0 is a constant) without

considering the effect of this action on space and vice versa. As

well, this concept requires that we incorporate into the invariant

interval associated with our metric both distance to inertial centers

as well as proper time. Later in our analysis, we will express dx2

for this theory of inertial centers in terms of the proper time

interval in a particular inertial frame.

For the affine connection terms, Ricci tensor elements,

curvature scalar and square Riemann tensor, we refer to Appendix

A in Appendix S1. From these calculations it is clear that this

space-time geometry is indeed flat. Taking the Rindler transfor-

mation equations, cT~r sinh(
ffiffiffiffi
L
p

t), R~r cosh(
ffiffiffiffi
L
p

t), we find

our metric equation becomes

{dx2~{c2dT2zdR2zR2dV2,VR,c2T2
vR2

where c~ speed of light in the local Minkowski reference frame

[25]. If one operates under the assumptions of special relativity,

dx2 would in fact equal c2dt2, and then the metric in (1) can be

used to model uniformly radially accelerated motion with respect

to Minkowski space-time confined to either of the Rindler wedges:

left wedge for DT Dv{R=c and right wedge for DT DvR=c [26]. For

the rest of our analysis, however, we no longer assume that special

relativity is valid throughout globally flat space-time (again,

dx2
=c2dt2) and instead examine the geodesic motion of point-

particles in this radial Rindler coordinate system with time and

radial distance from our inertial center point corresponding to the

coordinate labels t and r, respectively. Additionally, as

dx2
=c2dt2, we do not assume that the reference frame itself is

radially accelerating. Instead, we are re-examining inertial motion

under the guidelines presented in our introduction keeping in

mind that the form of our invariant interval is different from that

of special and general relativity. And since our affine parameter is

different from that of special and general relativity, the geodesics of

our theory will also be different. Consequently, our employment of

the radial Rindler chart in the following analysis is our way of

establishing that this coordinate system is the ‘‘natural’’ one for

describing an inertial system in the theory of inertial centers (i.e.

coordinate time in the radial Rindler chart progresses at the same

rate as the physical clock of a stationary observer in the inertial

system). Thus, in the following work, we abandon the idea that

Minkowski coordinates can cover all of an inertial system in flat space-time.

Furthermore, we propose that the radial Rindler chart should be our

‘‘natural’’ coordinate system for describing an inertial frame of reference in the

theory of inertial centers.

Referring to Appendix B in Appendix S1, we find for the

equations of motion of a particle within a particular inertial system

(Ua+aUb~0, where our ‘proper velocity’ in component form is

Um~dxm=ds):

0~
d2t

ds2
z

2

r

dt

ds

dr

ds

z
1ffiffiffiffi
L
p cosh(

ffiffiffiffi
L
p

t)sinh(
ffiffiffiffi
L
p

t)½( dh

ds
)2z sin2 h(

dq

ds
)2�

ð2Þ

0~
d2r

ds2
zLr(

dt

ds
)2{r cosh2 (

ffiffiffiffi
L
p

t)½( dh

ds
)2z sin2 h(

dw

ds
)2� ð3Þ

0~
d2h

ds2
z2

dh

ds
½
ffiffiffiffi
L
p

tanh(
ffiffiffiffi
L
p

t)
dt

ds
z

1

r

dr

ds
�{sin h cos h(

dw

ds
)2 ð4Þ

0~
d2w

ds2
z2

dw

ds
½
ffiffiffiffi
L
p

tanh(
ffiffiffiffi
L
p

t)
dt

ds
z

1

r

dr

ds
zcot h

dh

ds
� ð5Þ

And our norm for the ‘four-velocity’ is given by

{k~gabUaUb~{Lr2(
dt

ds
)2z(

dr

ds
)2

zr2 cosh2 (
ffiffiffiffi
L
p

t)½( dh

ds
)2z sin2 h(

dq

ds
)2�

ð6Þ

where

k~
0

1

massless particle

massive particle

�

and s~x for massive particles. Notice that our ‘four-velocity’ Ua

in this theory is dimensionless for spatial components and has units

of [time]/[distance] for our time component since x (and therefore

s) has units of [distance]. Multiplying each term in our radial

equation of motion by r and plugging in (6),

0~r
d2r

ds2
z(

dr

ds
)2zk ð7Þ

But to remain at a constant radial distance away from our inertial

center: d2r=ds2, dr=ds~0. Therefore, only massless particles can

have circular orbits.

Possible geodesic paths obey the relation UaUaƒ0 from (6),

and solving for dh=dt and dw=dt, we find that

1

r2 cosh2 (
ffiffiffiffi
L
p

t)
½Lr2{(

dr

dt
)2�§(

dh

dt
)2z sin2 h(

dw

dt
)2

Examining our h equation of motion (4), we see that a particle

remains at a constant value of h for non-zero angular velocity in w
if and only if dh=ds~0 and h~0, p=2, p. Consequently, the

angular velocity of a particle traveling in the equatorial plane

(h~p=2) of this inertial reference frame is bound by the range:

{

ffiffiffiffi
L
p

cosh(
ffiffiffiffi
L
p

t)
ƒ

dw

dt
Dh~p=2ƒz

ffiffiffiffi
L
p

cosh(
ffiffiffiffi
L
p

t)
ð8Þ

Then, for a photon traveling in a circular orbit in the equatorial

plane, we find

dw

dt
Dk~0,h~p=2,circular~+

ffiffiffiffi
L
p

cosh(
ffiffiffiffi
L
p

t)
ð9Þ

Later, we’ll see that a massless particle can have circular orbits

only for h~p=2 (orbits with w~w0 cannot be circular).

For massive particles nearly at rest with respect to the center of

this inertial system (i.e. spatial ‘velocity’ terms are much smaller

Re-Examination of Globally Flat Space-Time
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than our ‘velocity’ term in time so that these spatial terms can be

taken as nearly zero), these four equations of motion (2), (3), (4),

and (5) reduce to two:

0~
d2t

dx2
and 0~

d2r

dx2
zLr(

dt

dx
)2

And solving for the radial acceleration, we find that

d2r

dt2
~{Lr ð10Þ

In this limit, the inertial motion of our point-particle is described

by a spatial acceleration in r pulling inward toward the center of

this particular reference frame scaled by the square of the time-

scale constant. Thus, slowly moving objects at large radial

distances experience a large radial acceleration pulling inward

toward the center of the inertial system about which the objects

orbit.

Then, let us examine the case where the motion of particles far

from an inertial center (large r) is dominated by angular velocities

with approximately circular radial motion (r&constant). Our

equations of motion reduce to

0~
d2t

ds2
z

1ffiffiffiffi
L
p cosh(

ffiffiffiffi
L
p

t)sinh(
ffiffiffiffi
L
p

t)½( dh

ds
)2z sin2 h(

dw

ds
)2�

0~Lr(
dt

ds
)2{r cosh2 (

ffiffiffiffi
L
p

t)½( dh

ds
)2z sin2 h(

dw

ds
)2�

0~
d2h

ds2
z2

ffiffiffiffi
L
p

tanh(
ffiffiffiffi
L
p

t)
dh

ds

dt

ds
{sin h cos h(

dw

ds
)2

0~
d2w

ds2
z2

dw

ds
½
ffiffiffiffi
L
p

tanh(
ffiffiffiffi
L
p

t)
dt

ds
zcot h

dh

ds
�

Plugging d2t=ds2 and dt=ds into our expressions for d2w=ds2 and

d2h=ds2:

0~
d2w

dt2
z

ffiffiffiffi
L
p

tanh(
ffiffiffiffi
L
p

t)
dw

dt
z2 cot h

dh

dt

dw

dt

0~
d2h

dt2
z

ffiffiffiffi
L
p

tanh(
ffiffiffiffi
L
p

t)
dh

dt
{sin h cos h(

dw

dt
)2

Now, if we assume dw=dt&dh=dt and integrate:

dw

dt
~

w0

cosh(
ffiffiffiffi
L
p

t)

where w0?+
ffiffiffiffi
L
p

for light taking a circular orbit in the equatorial

plane and thus Dw0Dƒ
ffiffiffiffi
L
p

for h~p=2. Plugging in for dw=dt, we

have

d2h

dt2
~sin h cos h(

w0

cosh(
ffiffiffiffi
L
p

t)
)2 ð11Þ

where w0 is a constant. In the large dw=ds limit:

d2h

dt2
w0 for 0vhv

p

2
ð12Þ

d2h

dt2
~0 for h~

p

2
ð13Þ

d2h

dt2
v0 for

p

2
vhvp ð14Þ

As long as the particle is not located at either of the poles (h=0, p),

we see a sinusoidal spatial angular acceleration that decreases with

t and moves the object toward h~p=2. One can then picture

spiral galaxy formation resulting from objects orbiting an inertial

center with large angular velocity in w.

If we refer back to our expression for dw=dt, we find for the

orbital velocity (v~r:dw=dt) of a particle in this limit:

v~
w0

cosh(
ffiffiffiffi
L
p

t)
r ð15Þ

And for
ffiffiffiffi
L
p

t&0, our particle’s speed is linearly proportional to its

radial distance away from the inertial center about which it orbits.

In this limit at large r, the relationship between orbital velocity and

radial distance mimics the relationship between orbital velocity

and radial distance found in our observed galaxy rotation curves

[14] for comparably small values of
ffiffiffiffi
L
p

and therefore w0.

However, the analysis above will apply to the classical (in the sense

that we are not taking into account quantum mechanics) inertial

motion of an object in any particular inertial system (e.g. galaxies,

groups, clusters, etc.). Later in our analysis, we’ll provide an

experimental scale for the time-scale constant
ffiffiffiffi
L
p

by analyzing the

inherent redshift that occurs in these inertial frames (i.e. we’ll takeffiffiffiffi
L
p

to be the Hubble constant). Since Dw0Dƒ
ffiffiffiffi
L
p

, this value will

also give us an upper limit for the slope of our orbital velocity

curves at large r. Thus, we claim that the linear relationship found

in (15) models the experimental relationship found from our

observed orbital velocity curves for objects far from the center of

the galaxy within which they orbit. We base this claim off of the

idea that the plateauing nature of our experimental curves would

be interpreted in our model to be the result of the small scale offfiffiffiffi
L
p

relative to galactic distance and orbital velocity scales.

Conservation laws
Since this metric is just a coordinate transformation away from

Minkowski, we expect to find ten linearly independent Killing

vector fields as vector fields are geometric objects independent of

our coordinate parametrization. One could obtain these using the

radial Rindler transformation equations, but we find it helpful to

explicitly derive them. We refer to Appendix C in Appendix S1 for

more detail as well as a full list of all Killing vector fields given in

the radial Rindler chart. Rewriting here for reference the three we

will be using:

rm?S
1ffiffiffiffi
L
p

r
cosh(

ffiffiffiffi
L
p

t),{sinh(
ffiffiffiffi
L
p

t),0,0T ð16Þ

Re-Examination of Globally Flat Space-Time
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Hm?S
1ffiffiffiffi
L
p cos h,0,{sin h tanh(

ffiffiffiffi
L
p

t),0T ð17Þ

ym?S0,0,0,1T ð18Þ

Applying Noether’s theorem (Uaja~constant),

E~
ffiffiffiffi
L
p

r cosh(
ffiffiffiffi
L
p

t)
dt

ds
zsinh(

ffiffiffiffi
L
p

t)
dr

ds
ð19Þ

V~
ffiffiffiffi
L
p

r2 cos h
dt

ds
zr2 sin h sinh(

ffiffiffiffi
L
p

t) cosh(
ffiffiffiffi
L
p

t)
dh

ds
ð20Þ

L~r2 cosh2 (
ffiffiffiffi
L
p

t) sin2 h
dw

ds
ð21Þ

Plugging into (6) and solving for dt=ds, we find that

dt

ds
~

1ffiffiffiffi
L
p E

r
sin2 h cosh(

ffiffiffiffi
L
p

t)z
V

r2
cos h+ ffip jdt=ds

� �
ð22Þ

where

ffip�jdt=ds~f(
E

r
sin2 h cosh(

ffiffiffiffi
L
p

t)z
V

r2
cos h)2

{½sin2 h((
E

r
)2zk(

sinh(
ffiffiffiffi
L
p

t)

r
)2)

z(
V

r2
)2z(

L tanh(
ffiffiffiffi
L
p

t)

r2
)2�g1=2 ð23Þ

requiring

(
E

r
sin2 h cosh(

ffiffiffiffi
L
p

t)z
V

r2
cos h)2

§ sin2 h½( E

r
)2

zk(
sinh(

ffiffiffiffi
L
p

t)

r
)2�z(

V

r2
)2z(

L tanh(
ffiffiffiffi
L
p

t)

r2
)2

Notice, for massive particles moving radially in the equatorial

plane (k~1, h~p=2, V~0, and L~0), this constraint reduces to:

E2
§1

which is just our analogue of the statement in special relativity that

the energy of an object must be greater than or equal to its rest

mass [27] since in special relativity one would assume this constant

E would equal the energy of the particle divided by its rest mass

(i.e. in special relativity, E would be equal to ~EE=mc2 where ~EE is the

energy of the particle). Using (19), (20), (21), and (22), we find

dr

dt
~

ffiffiffiffi
L
p

r

sinh(
ffiffiffiffi
L
p

t)
½ 1

sin2 h cosh(
ffiffiffiffi
L
p

t)z
V

Er
cos h+Hjdr=dt

{cosh(
ffiffiffiffi
L
p

t)�

ð24Þ

dh

dt
~

ffiffiffiffi
L
p

sin h cosh(
ffiffiffiffi
L
p

t)sinh(
ffiffiffiffi
L
p

t)

½ 1
Er
V sin2 h cosh(

ffiffiffiffi
L
p

t)zcos h+Hjdh=dt

{cos h�
ð25Þ

dq

dt
~

ffiffiffiffi
L
p

L

sin2 h cosh2 (
ffiffiffiffi
L
p

t)

½ 1

Er sin2 h cosh(
ffiffiffiffi
L
p

t)zV cos h+Hjdq=dt

�
ð26Þ

where

H�jdr=dt~f( sin2 h cosh(
ffiffiffiffi
L
p

t)z
V

Er
cos h)2

{½sin2 h(1zk(
sinh(

ffiffiffiffi
L
p

t)

E
)2)z(

V

Er
)2

z(
L tanh(

ffiffiffiffi
L
p

t)

Er
)2�g1=2 ð27Þ

H�jdh=dt~f(
Er

V
sin2 h cosh(

ffiffiffiffi
L
p

t)zcos h)2

{½sin2 h((
Er

V
)2zk(

r sinh(
ffiffiffiffi
L
p

t)

V
)2)

z1z(
L tanh(

ffiffiffiffi
L
p

t)

V
)2�g1=2 ð28Þ

H�jdq=dt~f(Er sin2 h cosh(
ffiffiffiffi
L
p

t)zV cos h)2

{½sin2 h((Er)2zk(r sinh(
ffiffiffiffi
L
p

t))2)

zV2z(L tanh(
ffiffiffiffi
L
p

t))2�g1=2 ð29Þ

For light traveling radially in the equatorial plane, V, L~0 and

(24) reduces to

dr

dt
Dk~0,V~0,L~0~+

ffiffiffiffi
L
p

r ð30Þ

giving us

r(t)Dk~0,V~0,L~0~r0exp(+
ffiffiffiffi
L
p

t) ð31Þ

where r0 is a constant signifying the radial position of the photon

at t~0. One could have arrived at this expression for the general

case of light traveling radially even outside of the equatorial plane

simply from (6) for null geodesics. Let us now pose the question of

whether or not it is possible for light to travel from the rw0 region

of our inertial system to r~0 which we regard as our inertial

center point. Integrating dr=dt from 0 to Dt,
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Dr~+
ffiffiffiffi
L
p

r0

ðDt

0

exp(+
ffiffiffiffi
L
p

t)dt~r0½exp(+
ffiffiffiffi
L
p

Dt){1�

Solving for Dt,

Dt~ln(
Drzr0

r0
)+1=

ffiffiffi
L
p

ð32Þ

For a photon traveling radially inward, the sign of the root is

negative, and it reaches r~0 in

lim
rfinal?0

Dt~ln(
(0{r0)zr0

r0
){1=

ffiffiffi
L
p

~ln(
r0

{r0zr0
)1=

ffiffiffi
L
p

??

Consequently, not even light can reach r~0 in a finite amount of

time. But what about the inertial behavior of massive particles in

these systems? At first glance, (24) and (25) appear to be divergent

for t~0. However, to evaluate all of these velocity expressions for

t~0, we return to symmetry equations (19) and (20):

E~
ffiffiffiffi
L
p

r
dt

ds
jt~0 and V~

ffiffiffiffi
L
p

r2 cos h
dt

ds
jt~0

Therefore,

E

r
cos h~

V

r2
Dt~0 ð33Þ

Plugging into (23),

H�jdt=dsjt~0~f(
E

r
sin2 hz

E

r
cos2 h)2

{½sin2 h(
E

r
)2z(

E

r
cos2 h)2�g1=2

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
E

r
)2{(

E

r
)2

r
~0

which one can plug back into (22) to find consistency with our

expressions for dt=dsDt~0 above. Yet we see from (27), (28), and (29) that

HDdr=dt~
r

E
: ffip Ddt=ds ð34Þ

HDdh=dt~
r2

V
: ffip Ddt=ds ð35Þ

HDdw=dt~r2: ffip Ddt=ds ð36Þ

which implies for t~0 that all of these terms vanish. Then our spatial

velocity terms for t~0 become

dr

dt
Dt~0~

ffiffiffiffi
L
p

r

sinh(
ffiffiffiffi
L
p

t)
½ 1

sin2 hz cos2 h
{1�~ 0

0

dh

dt
Dt~0~

ffiffiffiffi
L
p

sin h sinh(
ffiffiffiffi
L
p

t)
½ cos h

sin2 hz cos2 h
{cos h�~ 0

0

dw

dt
Dt~0~

ffiffiffiffi
L
p

L

sin2 h
½ 1

Er sin2 hzEr cos2 h
�~

ffiffiffiffi
L
p

L

Er sin2 h

where we have used (33) in these limit expressions. So we see that our

velocity terms are not necessarily divergent for t~0. However, we’ll

address the issue of motion for small
ffiffiffiffi
L
p

t later when we relate Einstein’s

special relativity to our theory of inertial centers. One must also keep in

mind that expressions (24), (25), and (26) represent a set of complex

differential equations that we unfortunately will not be able to solve in

this paper. The purpose of the following portion of this section is in fact

to evaluate the large t behavior of all spatial velocities where it is not

explicitly apparent how to evaluate this limit if one were to work in

Minkowski coordinates while keeping in mind the notion that he/she

must relate back to the radial Rindler chart for inertial time as

dx2
=c2dt2 (we’ll elaborate further on the term ‘‘inertial time’’ in our

next section). It does appear easier to proceed in this manner of working

in Minkowski and relating back to radial Rindler for solely radial motion

as we shall do later in this section.

Yet, we return to our velocity expressions from Noether’s

theorem in order to examine the general expression for dr=dt as

t??. First, we determine the limiting value of HDdr=dt:

lim
t??

HDdr=dt~ sin2 h cosh(
ffiffiffiffi
L
p

t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

k

E2 sin2 h

s

Then for massive particles (k~1) assuming h=0 or p,

lim
t??

dr

dt
~{

ffiffiffiffi
L
p

r ð37Þ

which is just the equation for a massless particle traveling radially

inward. When h~0 or p, we must return to conservation

equations (20) and (21). We find L~0 and

dt

ds
Dh~0,p~

Vffiffiffiffi
L
p

r2 cos h

Plugging in (19) and solving when t??, we again find (37). We

now understand that eventually all massive particles move toward

r~0. Yet as the object approaches the center, its speed decreases

as well and will only stop moving inward when it reaches this

inertial center point in an infinite amount of time. Thus, with this

large t behavior, we apparently inherit the ability to model the

observed anomalous effects of ‘dark flow’ [3]. In our next section,

we will provide an interpretation for the physical significance of

our coordinate time in our theory of inertial centers, relating t

back to the rate at which physical clocks are observed to tick.

However, we progress onward and look at the large t limits for

both dh=dt and dw=dt. Beginning with the former, we find

lim
t??

HDdh=dt~
Er

V
sin2 h cosh(

ffiffiffiffi
L
p

t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

k

E2 sin2 h

s

Plugging into dh=dt and examining for massive particles,
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lim
t??

dh

dt
~

{
ffiffiffiffi
L
p

cosh(
ffiffiffiffi
L
p

t)sinh(
ffiffiffiffi
L
p

t)
cot h ð38Þ

And for h=0 or p,

lim
t??

dh

dt
Dh=0,p~0 ð39Þ

Solving for dh=dt when h~0 or p using (25) and L~0,

dh

dt
Dh~0,p~

ffiffiffiffi
L
p

cosh(
ffiffiffiffi
L
p

t) sinh (
ffiffiffiffi
L
p

t)
tan h~0

At the poles, particles have no angular velocity in h nor angular

momentum in w (dh=ds,L~0). Lastly for our large t limits, we

have dw=dt:

lim
t??

HDdw=dt~Er sin2 h cosh(
ffiffiffiffi
L
p

t)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

k

E2 sin2 h

s

Plugging into dw=dt,

lim
t??

dq

dt
~

ffiffiffiffi
L
p

L

sin2 h cosh2 (
ffiffiffiffi
L
p

t)

½ 1

Er sin2 h cosh(
ffiffiffiffi
L
p

t)(1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ k

E2 sin2 h

q
)
�

For massive particles and assuming h=0 or p,

lim
t??

dw

dt
~0 ð40Þ

We have a clearer picture of the inertial trajectories of massive

particles over time in the context of our redefined inertial

reference frames. As time progresses, massive objects will

eventually move radially inward losing angular velocity in h and

angular momentum in w, slowing down in radial velocity as they

approach the center point about which they orbit.

Looking back at our expression for dr=dt, we ask ourselves the

question: for what values of h is dr=dt most positive? For positive

dr=dt, we have particles moving radially outward, and maximizing

this expression with respect to h provides us with the easiest

possible path to be ejected away from our inertial center.

Examining particles with large radial ‘proper velocities’ relative

to their own angular ‘proper velocities’ which from (19), (20), (21)

implies Er&V,L since dr=ds&r cosh(
ffiffiffiffi
L
p

t):dh=ds and

dr=ds&r cosh(
ffiffiffiffi
L
p

t):dw=ds in this limit:

dr

dt
jEr&V,L~

ffiffiffiffi
L
p

r

sinh(
ffiffiffiffi
L
p

t)cosh(
ffiffiffiffi
L
p

t)

½ 1

sin2 h+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin4 h{ sin2 h

cosh2 (
ffiffiffi
L
p

t)
(1zk sinh2 (

ffiffiffi
L
p

t)

E2 )

r

{ cosh2 (
ffiffiffiffi
L
p

t)�

But the largest positive value of dr=dtDEr&V,L occurs if we minimize

the denominator of the first term in brackets with respect to h.

Clearly, this term needs to be re-evaluated when h~0 or p.

Returning to conservation equations (19) and (20), we solve for the

radial motion of a particle through the poles by plugging into (6)

(h~0 or p and dh=ds~0):

dr

dt
jh~0,p~

ffiffiffiffi
L
p

r

1z k

E2 sinh2 (
ffiffiffiffi
L
p

t)

:f{ k

E2
cosh(

ffiffiffiffi
L
p

t) sinh (
ffiffiffiffi
L
p

t)

+½( k

E2
)2 cosh2 (

ffiffiffiffi
L
p

t) sinh2 (
ffiffiffiffi
L
p

t)

z(1z
k

E2
sinh2 (

ffiffiffiffi
L
p

t))(1{
k

E2
cosh2 (

ffiffiffiffi
L
p

t))�1=2g

For large proper radial motion, we assume E2&k cosh2 (
ffiffiffiffi
L
p

t) (as

E2
§1 is our analogue of the rest mass condition from Einstein’s

special relativity). Then, our expression for radial motion through

the poles reduces to

dr

dt
Dh~0,p&+

ffiffiffiffi
L
p

r ð41Þ

We see that massive particles can travel at speeds near that of

photons through the poles, and therefore it appears that the easiest

way for particles to be ejected radially outward away from an

inertial center would be through the poles of the inertial system. If

we imagine a supernova occurring near the center point of an

inertial system, we find that a simple potential scenario for the

occurrence of relativistic jets [28] in this reference frame would be

the expulsion of stellar remnants through the poles. Consequently,

if we use this logic to provide an alternative for relativistic jet

production, we must then require that each of our inertial frames

have a particular orientation governed by the location of these

poles and embodied mathematically by the spatial positions for

which particular metric components vanish. In other words, when

describing a particular inertial frame, these are the h values for

which sin h~0 previously referred to as ‘‘coordinate singularities’’

(e.g. see Chapter 5.1 of [29]) but taken here as a physical attribute

of the inertial system reflecting the idea that the radial Rindler

chart is the ‘‘natural’’ coordinate system for an inertial reference

frame in flat space-time. Thus we must ask ourselves the following

question. How is this orientation established in the theory of

inertial centers? As we shall mention later in our paper, this is an

open question which we will have to address in future work.

Back to our circular orbit analysis, we solve for the radius at

which light can have circular paths in a particular inertial system

for possibly both dh=dt~0, dw=dt~+
ffiffiffiffi
L
p

=cosh(
ffiffiffiffi
L
p

t) and

dh=dt~+
ffiffiffiffi
L
p

=cosh(
ffiffiffiffi
L
p

t), dw=dt~0. For the two, we obtain

from (19)

dt

ds
Dk~0,circular~

Effiffiffiffi
L
p

rcosh(
ffiffiffiffi
L
p

t)
ð42Þ

In the former situation (h~p=2, V~0), we substitute (42) and (21)

into (6) and arrive at
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rh~p=2,circular~
L

E
ð43Þ

Whereas for the latter case (w~w0, L~0), we plug (42) and (20)

into (6) to find

r~
V cosh(

ffiffiffiffi
L
p

t)

E½cos2 h+sin h sinh(
ffiffiffiffi
L
p

t)�

which is not constant. Consequently, in our inertial systems, light

can travel in circular orbits only in the equatorial plane with

angular velocity given by (9) at a radius given by (43). The type of

lensing expected from a black hole or ‘dark matter’ [30] is

evidently reproduced in a similar manner by light traveling with

angular velocity about an inertial center point. Although in the

analysis above, we studied circular orbits where light remains at a

constant r, the logic applies similarly for the case where the photon

has both radial and angular velocity components.

We come to the redshift factor for light traveling radially. Before

we begin with this analysis, we must refer back to our procedure

for determining the observed wavelength of a photon when

operating under the assumptions of special and general relativity.

In general relativity, the observed frequency f of a photon with

momentum pa (pa~Bka) emitted/received by an observer

traveling with proper velocity in component form given by

um~dxm=dt is (see Chapter 6.3 of [24])

{2pf ~kauaDP

where P is the location in space-time at which the event in

question occurs (i.e. emission/absorption). Dividing through by

the Minkowski constant for the speed of light c, we have

{
2p

l
~
X

m

km
: 1

c

dxm

dt

where c~lf and l is the wavelength of the photon emitted/

received by our observer. Since we require that our theory in flat

space-time reduce to special relativity within a localized region of

our respective inertial system (i.e. dx2?c2dt2 in this localized

region), it appears necessary to assume that, in our theory of

inertial centers, the wavelength of a photon with wave-vector ka

emitted/received by an observer with ‘proper velocity’ Ua is given

by

{
2p

l
~kaUaDP

where we emphasize to the reader that in our theory the

component form of the ‘four-velocity’ for our observer is affinely

parametrized by x (i.e. Um~dxm=dx), in direct contrast to special

and general relativity for which the four-velocity of an observer

would be affinely parametrized by proper time t. Proceeding with

our radial treatment, the wave-vector for this photon is of the

form,

km?Skt,kr,0,0T

And the wavelength observed by a radially traveling individual is

given by

{
2p

l
~kaUa~{Lr2kt dt

dx
zkr dr

dx

Using the Killing vector field in (16), we obtain the conservation

law ({r0~kara):

r0~
ffiffiffiffi
L
p

r cosh(
ffiffiffiffi
L
p

t)ktzsinh(
ffiffiffiffi
L
p

t)kr

But for a photon, 0~kaka[kr~+
ffiffiffiffi
L
p

rkt. So,

kt~
r0ffiffiffiffi

L
p

r½cosh(
ffiffiffiffi
L
p

t)+sinh(
ffiffiffiffi
L
p

t)�

where the positive root corresponds to light traveling away from

r~0 and negative to light traveling inward. Solving for the motion

of the observer in this particular inertial reference frame,

{1~{Lr2(
dt

dx
)2z(

dr

dx
)2

And for an observer nearly at rest with respect to the inertial

center about which he/she orbits,

dt

dx
~+

1ffiffiffiffi
L
p

r

Taking time to move forward, we find that

2p

l
~

r0

cosh(
ffiffiffiffi
L
p

t)+sinh(
ffiffiffiffi
L
p

t)

But from our earlier analysis, we found that a radially traveling

photon abides by the equation, r(t)~r0exp(+
ffiffiffiffi
L
p

t)~

r0½cosh(
ffiffiffiffi
L
p

t)+sinh(
ffiffiffiffi
L
p

t)�. Thus,

l!r ð44Þ

Then for a light signal sent between two observers at rest in this

inertial frame, the redshift factor z is given by the expression:

z~
labsorber{lemitter

lemitter

~
r(tabsorber)

r(temitter)
{1 ð45Þ

Consequently, we see large shifts from emitters much closer to the

center of the system (assuming the absorber position remains the

same).

Suppose, within the framework of this theory, we examine light

propagating at the scale of the inertial reference frame associated

with our observable universe. Then analogous to the manner in

which the expression for the Hubble parameter [13] is derived in

the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric

[31][32][33], we set the Hubble constant H0 equal to

H0~D
_rr

r
D~

ffiffiffiffi
L
p

ð46Þ

where _rr~dr=dt. We notice that

€rr

r
~Lw0 ð47Þ
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producing a positive value for the acceleration of cosmological

redshift and therefore replicating the observed effects assumed to

be the result of ‘dark energy’ [12]. Thus, for any particular inertial

reference frame, we should see a shift in wavelength similar to the

Hubble constant for the radial motion of photons. We’ll use this

conclusion later when we take the Pioneer anomaly as support for

our theory in the context of the inertial system associated with the

Milky Way. However, we should be concerned with our

expression for _rr=r,

_rr

r
~+

ffiffiffiffi
L
p

as this theory then requires that we also have blueshifted objects if

the absorber is in fact closer than the emitter to the center of the

inertial frame within which the light signal in question propagates

(i.e. negative values for _rr=r and z). Nevertheless, if we apply our

analysis to objects at the scale of the Local Group [34][35] as in

Table 1, we would require an alternative interpretation for the

observed significant blueshifts. Whereas in current models, this

blueshift would be interpreted as the Doppler effect and thus for

example as Andromeda (Messier 31) moving with velocity toward

the Milky Way [36], in our theory of inertial centers one could

interpret a portion of this blueshift (we say portion as the motion of

our observers within an inertial system also affects wavelength) as

the possibility that Andromeda is farther away from the inertial

center associated with the Local Group than we are. In support of

these observations, we refer to Table 2 where there appears to be

Table 1. Redshift from objects within the Local Group.

Object RA (J2000.0) Dec (J2000.0) Redshift Distance Mod (mag)

Andromeda V 01h10m17.10s +47d37m41.0s 20.001344 24.52

Andromeda I 00h45m39.80s +38d02m28.0s 20.001228 24.46

Andromeda VI 23h51m46.30s +24d34m57.0s 20.001181 24.58

Andromeda III 00h35m33.78s +36d29m51.9s 20.001171 24.38

IC 0010 00h20m17.34s +59d18m13.6s 20.001161 24.57

Andromeda VII 23h26m31.74s +50d40m32.6s 20.001024 24.7

MESSIER 031 00h42m44.35s +41d16m08.6s 20.001001 24.46

Draco Dwarf 17h20m12.39s +57d54m55.3s 20.000974 19.61

Pisces I 01h03m55.00s +21d53m06.0s 20.000956 24.5

UMi Dwarf 15h09m08.49s +67d13m21.4s 20.000824 19.3

MESSIER 110 00h40m22.08s +41d41m07.1s 20.000804 24.5

IC 1613 01h04m47.79s +02d07m04.0s 20.000781 24.33

NGC 0185 00h38m57.97s +48d20m14.6s 20.000674 24.13

MESSIER 032 00h42m41.83s +40d51m55.0s 20.000667 24.42

NGC 0147 00h33m12.12s +48d30m31.5s 20.000644 24.3

Andromeda II 01h16m29.78s +33d25m08.8s 20.000627 24.03

Pegasus Dwarf 23h28m36.25s +14d44m34.5s 20.000612 26.34

MESSIER 033 01h33m50.89s +30d39m36.8s 20.000597 24.69

Aquarius dIrr 20h46m51.81s 212d50m52.5s 20.00047 26

WLM 00h01m58.16s 215d27m39.3s 20.000407 25.09

Cetus Dwarf Spheroidal 00h26m11.03s 211d02m39.6s 20.00029 24.51

SagDIG 19h29m59.58s 217d40m51.3s 20.000264 25.03

NGC 6822 19h44m57.74s 214d48m12.4s 20.00019 23.41

Leo A 09h59m26.46s +30d44m47.0s 0.000067

Fornax Dwarf Spheroidal 02h39m59.33s 234d26m57.1s 0.000178 20.7

Phoenix Dwarf 01h51m06.34s 244d26m40.9s 0.000187 23.08

Leo B 11h13m28.80s +22d09m06.0s 0.000264 21.67

Sculptor Dwarf Elliptical 01h00m09.36s 233d42m32.5s 0.000367 19.67

Sagittarius Dwarf Spheroidal 18h55m19.50s 230d32m43.0s 0.000467 17.17

Small Magellanic Cloud 00h52m44.78s 272d49m43.0s 0.000527 18.95

Tucana Dwarf 22h41m49.60s 264d25m10.0s 0.000647 24.74

Sextans Dwarf Spheroidal 10h13m02.96s 201d36m52.6s 0.000747 19.73

Carina Dwarf 06h41m36.69s 250d57m58.3s 0.000764 20.02

Large Magellanic Cloud 05h23m34.53s 269d45m22.1s 0.000927 18.46

Leo I 10h08m28.10s +12d18m23.0s 0.000951 21.91

Data retrieved from NASA/IPAC Extragalactic Database (NED): http://ned.ipac.caltech.edu
doi:10.1371/journal.pone.0078114.t001
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an orientation associated with our redshift values. For similar

values of right ascension (+2 h), we see a steady change in

wavelength shift from blue ({) to red (z) as one proceeds from

large positive values of declination to large negative values of

declination. In our theory, we would still need to consider

differences in radial distance associated with these objects and not

just spatial orientation. However, given that our distance modulus

values are very much similar for most of these entries (&24 mag),

it seems that this interpretation for an orientation to the Local

Group should be taken into consideration. On the other hand,

even if there does appear to be an orientation associated with the

Local Group, we must question why we have not seen significant

blueshifts at much larger scales. We will come back to these ideas

later in our work.

Until now, we have assumed that our coordinate time can take

values between {?vtv? without explicitly examining the

motion of particles in the tv0 region. Reducing our analysis to

solely radial motion away from the poles, we analyze geodesic

paths in Minkowski coordinates (T ,R) first for simplicity.

However, we must be very clear that under our assumptions T

does not represent inertial time as previously stated and in our

theory of inertial centers corresponds to an ‘‘unnatural’’ time

coordinate for flat space-time combining both physically observ-

able clock time and spatial distance as cT~r sinh(
ffiffiffiffi
L
p

t). Then our

equations of motion reduce to

0~
d2T

ds2
and 0~

d2R

ds2

leading to the straight lines that we expect in Minkowski

coordinates:

R~v:(cT)zR0 ð48Þ

where v is a constant bounded by DvDƒ1. We leave the physical

interpretation of the Minkowski constant c in this theory of inertial

centers for the next section. However, using our transformation

Table 2. Redshift from galaxies within &+2 h of 0 h in RA within Local Group.

Object RA (J2000.0) Dec (J2000.0) Redshift Distance Mod (mag)

Andromeda V 01h10m17.10s +47d37m41.0s 20.001344 24.52

Andromeda I 00h45m39.80s +38d02m28.0s 20.001228 24.46

Andromeda VI 23h51m46.30s +24d34m57.0s 20.001181 24.58

Andromeda III 00h35m33.78s +36d29m51.9s 20.001171 24.38

IC 0010 00h20m17.34s +59d18m13.6s 20.001161 24.57

Andromeda VII 23h26m31.74s +50d40m32.6s 20.001024 24.7

MESSIER 031 00h42m44.35s +41d16m08.6s 20.001001 24.46

Pisces I 01h03m55.00s +21d53m06.0s 20.000956 24.5

MESSIER 110 00h40m22.08s +41d41m07.1s 20.000804 24.5

IC 1613 01h04m47.79s +02d07m04.0s 20.000781 24.33

NGC 0185 00h38m57.97s +48d20m14.6s 20.000674 24.13

MESSIER 032 00h42m41.83s +40d51m55.0s 20.000667 24.42

NGC 0147 00h33m12.12s +48d30m31.5s 20.000644 24.3

Andromeda II 01h16m29.78s +33d25m08.8s 20.000627 24.03

Pegasus Dwarf 23h28m36.25s +14d44m34.5s 20.000612 26.34

MESSIER 033 01h33m50.89s +30d39m36.8s 20.000597 24.69

WLM 00h01m58.16s 215d27m39.3s 20.000407 25.09

Cetus Dwarf Spheroidal 00h26m11.03s 211d02m39.6s 20.00029 24.51

Fornax Dwarf Spheroidal 02h39m59.33s 234d26m57.1s 0.000178 20.7

Phoenix Dwarf 01h51m06.34s 244d26m40.9s 0.000187 23.08

Sculptor Dwarf Elliptical 01h00m09.36s 233d42m32.5s 0.000367 19.67

Small Magellanic Cloud 00h52m44.78s 272d49m43.0s 0.000527 18.95

Data retrieved from NASA/IPAC Extragalactic Database (NED): http://ned.ipac.caltech.edu
doi:10.1371/journal.pone.0078114.t002

Figure 1. Geodesic paths in Minkowski coordinates.
doi:10.1371/journal.pone.0078114.g001

Re-Examination of Globally Flat Space-Time

PLOS ONE | www.plosone.org 10 November 2013 | Volume 8 | Issue 11 | e78114



equations, we find in radial Rindler coordinates

r(t)~
R0

cosh(
ffiffiffiffi
L
p

t){v sinh(
ffiffiffiffi
L
p

t)
ð49Þ

One immediately notices that for massive particles (DvDv1), both

limiting cases of t?+? result in the particle heading inward

toward the r~0 center point of the inertial system. This produces

a scenario for inertial motion of massive objects beginning at a

center point in the far past, coming to a maximum radial distance

away at a later time, and then heading back inward to eventually

return to the same center point. In other words, classically, all

particles must also originate from the r~0 center point of the

particular inertial frame in question (see Figure 1).

Reduction to special relativity
Taking the differential of both Rindler transformation equa-

tions:

cdT~dr sinh(
ffiffiffiffi
L
p

t)z
ffiffiffiffi
L
p

r cosh(
ffiffiffiffi
L
p

t)dt

dR~dr cosh(
ffiffiffiffi
L
p

t)z
ffiffiffiffi
L
p

r sinh(
ffiffiffiffi
L
p

t)dt

where

sinh(
ffiffiffiffi
L
p

t)~
ffiffiffiffi
L
p

tz
(
ffiffiffiffi
L
p

t)3

3!
z

(
ffiffiffiffi
L
p

t)5

5!
z . . .

cosh(
ffiffiffiffi
L
p

t)~1z
(
ffiffiffiffi
L
p

t)2

2!
z

(
ffiffiffiffi
L
p

t)4

4!
z . . .

Plugging in these expressions above, we find that

cdT~dr(
ffiffiffiffi
L
p

tz
(
ffiffiffiffi
L
p

t)3

3!
z . . . )z

ffiffiffiffi
L
p

rdt(1z
(
ffiffiffiffi
L
p

t)2

2!
z . . . )

dR~dr(1z
(
ffiffiffiffi
L
p

t)2

2!
z . . . )z

ffiffiffiffi
L
p

rdt(
ffiffiffiffi
L
p

tz
(
ffiffiffiffi
L
p

t)3

3!
z . . . )

If we localize our view of space-time such that all differential terms

O(L)~0 ð50Þ

we will then have

cdT&
ffiffiffiffi
L
p

(tdrzrdt)

dR&dr

Further, we require for this local patch of space-time that

tdr%rdt ð51Þ

and our transformation equations reduce to

cT&
ffiffiffiffi
L
p

rt ð52Þ

R&r ð53Þ

with differential expressions

cdT&
ffiffiffiffi
L
p

rdt ð54Þ

dR&dr ð55Þ

For the observer remaining a radial distance r~r0 away from

the center of his/her reference frame, the radial Rindler chart will

be accurately approximated by Minkowski coordinates under

conditions (50) and (51) as R~r and T!t in this small
ffiffiffiffi
L
p

t limit.

If one takes
ffiffiffiffi
L
p

to be a fundamental property of each inertial

system in question, it must be that the measured Minkowski value

for the speed of light constant c is a byproduct of the reference

frame we wish to locally approximate. In other words, in the

Minkowski approximation for the radial Rindler chart, an

observer, located a radial distance r~r0 away from the inertial

center point about which he/she orbits at t~0, will find:

c~
ffiffiffiffi
L
p

r0 ð56Þ

If we treat t~0 as the point at which we determine the initial

conditions for the particle that we are observing (i.e. boundary

conditions for position and velocity), then our object will appear to

move along straight line geodesics for small values of
ffiffiffiffi
L
p

t, but as

we continue to observe for longer periods of time, the properties of

the radial Rindler chart which we are approximating become

more and more relevant.

In order for us to relate our theory of inertial centers to special

relativity, we must require that coordinate time in the radial

Rindler chart progress at the same rate as the proper time of an

observer stationary relative to the center of the inertial system

within which we are analyzing events (i.e. inertial time). In other

words, dt=dt~1 for stationary observers located at any particular

radial distance r~r0 away from an inertial center. However, keep

in mind that stationary observers do not follow along geodesic

paths from equation (7). Then, for observers which we can

consider as nearly stationary relative to the center of a particular

inertial system (i.e. r~constant), we have dx2?c2dt2 where c is

given by (56), effectively ensuring that our coordinate time t
progresses at the same rate as the proper time t of a stationary

observer. Consequently, we find under (50) and (51) in addition to

our stationary observer assumption that our line element can be

treated approximately as

{c2dt2~{c2dT2zdR2zR2dV2

And therefore in this ‘‘stationary’’ limit (relative to the inertial

center), when not operating about the poles, we come upon time-

and spatial-translational invariance within our local region where

the origin of our coordinate system is located at the inertial center

of this reference frame. Because it appears that we have now

recovered time- and spatial-translational invariance in this limit,

we can naively assume that we have the ability to translate our
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coordinate system in any way we prefer (e.g. moving the center of

our reference frame away from the inertial center). In other words,

we can approximate when our motion is not near the poles of our

global inertial system with the metric:

{c2dt2~{c2dT2zdX 2zdY 2zdZ2

where X~R sin h cos wzX0, Y~R sin h sin wzY0, and Z~

R cos hzZ0 for Rw0 and X0, Y0, and Z0 are constants (see

Figure 2). Thus, this local stationary approximation reduces our

theory to special relativity (see Chapter 4.2 of [24]). Additionally,

we see from these transformation equations that the Minkowski

chart is not able to cover all of space-time in our theory of inertial

centers (i.e. rv0 values are neglected by the Minkowski chart). We

will come back to this idea later in our work. Physically, our

localization conditions require that the time-scale constant
ffiffiffiffi
L
p

for

our inertial systems be small enough such that we as observers here

on Earth would observe only the stationary limit in our ‘‘everyday

lives’’. Of course, this statement also assumes that we are nearly

stationary relative to the inertial center about which we orbit taken

in our next section to be the center of the Milky Way. Yet, given

our redshift analysis, it appears that the Hubble constant provides

the necessary scale [20] for this requirement from (46).

Furthermore, it is clear that in order to express dx2 in terms of

the proper time of the observer whose motion we wish to analyze

in the relevant inertial frame (i.e. the particular system in which

the observer can be treated as a point-particle orbiting an inertial

center point) and still have our invariant interval reduce to c2dt2

in our stationary limit where the observer’s distance to the inertial

center point about which he/she orbits is very nearly constant, we

must have

dx2~Lr2dt2 ð57Þ

where r represents the physical distance to the center point of the

inertial system in question. In addition, according to our theory of

inertial centers, the value that we use in special and general

relativity for the constant c in our massive geodesic equations relies

on the particular inertial reference frame in which we can regard

the object whose local behavior we wish to examine as a point-

particle orbiting an inertial center point (in special and general

relativity, gabuaub~{c2 where un~dxn=dt). Therefore, the local

Minkowski constant that we measure for the speed of light is

dependent upon our position in our most local inertial reference

frame (i.e. the frame in which we can be treated as a point-particle

orbiting an inertial center). As well, for two different stationary

observers orbiting about the same inertial center point, the clock of

the observer located closer to their shared inertial center will appear

to run faster when examined from the perspective of the more

distant observer. Meaning, not only do observable clock rates

differ due to the relative velocity of individuals as in special

relativity, but they also differ due to the difference in distance of

each individual from the inertial center about which each orbits.

Thus, initially synchronized clocks that are stationary relative to

the shared inertial center about which both orbit do not remain

synchronized if they are located at different distances from this

inertial center.

Application to a local gravitational system
Before we present the approximations of this section, it seems

necessary to provide remarks as to how gravitation fits into the

theory of inertial centers. The formulation of our theory of inertial

centers detailed in previous sections deals with the structure of flat

space-time ignoring possible issues with curvature. So what we are

really asking is the following. How does an object move in flat

space-time when absolutely no external forces, fields, etc. are

present to affect said object? Nevertheless, we still assume within

our model that all objects cause curvature in space-time due to

their intrinsic energy-momentum content, but this curvature we

take to be a local effect within the far larger inertial system that we

are attempting to redefine in this work. However, as presented in

the previous section ‘‘Reduction to special relativity’’, we claim

that locally the structure of flat space-time within our redefined

inertial reference frames reduces to the flat space-time of Einstein’s

theory of special relativity as long as the observer remains at very

nearly the same distance away from the inertial center about

which he/she orbits. As discussed above, we term this the ‘‘local

stationary approximation’’, and in this approximation the observer

sees space-time locally within a region located at the same radial

distance as the observer away from the inertial center about which

he/she orbits as approximately special relativistic, where the speed

of light in this confined region of space-time is given by (56) and

our affine parameter reduces to x~c:t. If one then considers the

influence of an object on the structure of space-time in this local

region where special relativity approximately holds, we assume in

the theory of inertial centers that this object will bend space-time

locally according to Einstein’s general relativity. Meaning, gravity

r

Minkowski

Figure 2. Local approximation of the inertial frame of reference.
doi:10.1371/journal.pone.0078114.g002
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remains a consequence of local curvature in space-time in the

theory of inertial centers. However, when we take a perspective far

away from our massive object so that the curvature this object

induces in space-time looks approximately insignificant for the

purpose of examining motion at these larger scales, we claim that

we can treat the object very nearly as a particle in a flat space-time

inertial reference frame as formulated above, where the inertial

motion of the object is dictated by the geodesics of our model. But

again, if we focus our attention on the local region around the

massive object while disregarding the existence of the larger

inertial system, we will still observe the effects resulting from the

curvature the object induces in space-time and thus the

gravitational effects it has on other objects around it (i.e. general

relativity holds locally).

In the following, we give an approximate method under our

stationary localization conditions as described in the previous

section for determining a potential implication of our theory of

inertial centers with regard to the observables of a local

gravitational system. We take the view that the Schwarzschild

metric [37] applies in the small
ffiffiffiffi
L
p

t limit within confined regions

of our inertial reference frame for observers nearly stationary with

respect to the inertial center about which they orbit as one would

expect from the well-established accuracy of general relativity [38].

Below, our ‘‘mixing’’ of the Schwarzschild metric with the radial

Rindler chart is an approximate way of expressing the fact that

locally in the inertial reference frame of our theory the observer

can treat the speed of light as nearly constant if one were to

remove the massive object and work in flat space-time (i.e. set

M~0 in the Schwarschild metric) as well as the idea that general

relativity holds locally. But the observer must always keep in mind

that the inertial frame of Einstein’s special relativity is actually not

an inertial frame of the theory of inertial centers, and thus this

local system is located in the more globally relevant inertial system

where the speed of light is not constant. Then if we no longer take

M~0 (i.e. return the massive object to the local system), we should

still expect gravitation as formulated by Einstein when we examine

locally and disregard the larger inertial system from our model. In

other words, the Schwarzschild metric still applies locally in the

theory of inertial centers when examining motion about an

uncharged non-rotating spherically symmetric massive object.

However, if we move our observer farther and farther away from

the gravitational source, the local limit will no longer apply since

we have to take into consideration the structure and properties of

the larger inertial system as well as the fact that in our theory

objects move inertially along geodesics different from those of

Einstein’s theories of special and general relativity, even though

locally these different geodesics appear to be very similar (i.e.

dx2?c2dt2 in the local stationary limit).

Additionally, we need some approximate way to take into

account the fact that the speed of light is not constant throughout

the inertial system while still keeping in mind that locally the

observer may experience gravitational effects from a massive

object nearby. We admit that the methods in this section are rough

at best, but it is our hope that in future work we will be able to

model far more accurately this transition from the local

approximation of general relativity to the more global application

of the theory of inertial centers.

Our metric equation takes the form of the Schwarzschild

solution:

{dx2~{Bc2dT2z
1

B
dR2zR2dV2

l

where

B(R)~1{
2MG

c2R
and dV2

l ~dh2
l zdq2

l sin2 hl

(T ,R,hl ,wl ) describe our local gravitational system and (t,r,h,w)

refer to the global inertial reference frame within which the local

system is located. In other words, we assume that the observer

takes the coordinate transformations away from the inertial center

to cover local space-time in the same manner as outlined in our

previous section. Meaning, ignoring the existence of the massive

object

cT~r sinh(
ffiffiffiffi
L
p

t)

X~r cosh(
ffiffiffiffi
L
p

t) sin h cos wzX0

Y~r cosh(
ffiffiffiffi
L
p

t) sin h sin wzY0

Z~r cosh(
ffiffiffiffi
L
p

t) cos hzZ0

where X0, Y0, and Z0 are constants,
ffiffiffiffi
L
p

t is taken to be small, and

we only examine the rw0 region of the inertial system. Thus,

T&t where we employ equation (56) for the local stationary limit.

Then taking into account the existence of this massive object in the

local region with M~0 flat space-time Minkowski coordinates

given by (T ,X ,Y ,Z) in the local stationary limit, we employ the

Schwarzschild metric noting that our affine parameter is

approximately given by x~c:t. As well, c refers to the speed of

light in the local system at the point in the global inertial frame

where the observer and photon meet, and M is the mass of the

object. Then we will proceed through a standard treatment of the

gravitational redshift for the Schwarzschild metric (see Chapter 6.3

of [24]). However, we keep the Minkowski constant c in all of our

expressions as we intend to investigate the implications of the

variable nature of the speed of light in flat space-time from our

theory of inertial centers. For an observer and photon both

traveling radially in this local system (Um~dxm=dx?SUT ,UR,

0,0T, km?SkT ,kR,0,0T), we have

{
2p

l
~{Bc2UT kTz

1

B
URkR

where l is the wavelength measured by our observer. Applying

conservation laws for Ua and ka using the time-translationally

invariant Killing vector field for the Schwarzschild metric,

ja~(L=LT)a:

UT~
E

Bc2
and kT~

r0

Bc2

And taking into account the motion of the observer and photon

(0~kaka and {1~UaUa)

UR~+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
E

c
)2{B

r
and kR~+

r0

c

Plugging into our expression for the observed wavelength of the

photon,
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2p

l
~

Er0

B
½ 1
c2

{(+)Dphoton
:(+

1

Ec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(
E

c
)2{B

r
)Dobserver� ð58Þ

where (+)Dphoton and (+)Dobserver refer to the photon/observer

traveling radially outward/inward (z={) in the local system (in

R). If we assume the observer to be nearly at rest in the local frame

(UT&UR), then B~(E=c)2 and expression (58) reduces to

l!c
ffiffiffiffi
B
p

where in the following we approximate in the small
ffiffiffiffi
L
p

t limit with

our equation for the local speed of light in the inertial reference

frame (56). We employ this ‘‘trick’’ as the Schwarzschild metric is

just an approximation in our model valid under confined regions

of the particular inertial system within which the gravitational

source is located. However, one should be able to experimentally

detect with an apparatus of the necessary sensitivity that these

photons progress along the geodesics of our theory of inertial

centers (and not straight lines) bent locally due to the curvature in

space-time caused by our massive object M. Therefore, we find a

slight modification to the Schwarzschild redshift factor:

z~
labsorber{lemitter

lemitter

~
rabsorber

remitter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ 2MG

Rabsorber

: 1

Lr2
absorber

1{ 2MG
Remitter

: 1

Lr2
emitter

vuuut {1 ð59Þ

where rabsorber=emitter refers to the radial position of the absorber/

emitter in the inertial reference frame (i.e. relative to the inertial

center) and Rabsorber=emitter to the radial position relative to the

center of our massive object M in the local gravitational system.

Consequently, we should see a modified redshift factor consisting

of the Schwarzschild expression (Chapter 6.3 of [24]) scaled by the

solution found in our flat space-time vacuum analysis.

Let us then apply this analysis to the case of a space probe

traveling out of our solar system where the rabsorber=remitter factor

should have a larger impact on our observations. In our crude

example, we treat both the probe and the absorber as essentially

stationary. Referring to expression (59) for observers at rest, the

absorber wavelength in terms of the emitter is

labsorberDModified~lemitter
: rabsorber

remitter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ 2MG

Rabsorber

: 1

Lr2
absorber

1{ 2MG
Remitter

: 1

Lr2
emitter

vuuut
where our R values in this example refer to local radial distances

away from the center of the Sun and r to distances away from the

center of the Milky Way. For the ratio between the Schwarzschild

wavelength and the modified value above assuming the term

under the square root remains approximately the same for small

changes in r relative to changes in R, we have

labsorberDSchw

labsorberDModified

&
remitter

rabsorber

where

labsorberDSchw~lemitter
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ 2MG

Rabsorber

: 1

C2
absorber

1{ 2MG
Remitter

: 1

C2
emitter

vuuut

Since Pioneer 10 was on course to travel away from the center of the

Milky Way in the general direction of Aldebaran [4], we can

approximate the path of our photon as nearly a radial one in our

galactic inertial reference frame. Therefore, if we naively ignore the

two-way nature of the Doppler residuals, rabsorber&remitter
:e{

ffiffiffi
L
p

Dt

where Dt is the time it takes the massless particle to travel from the

emitter to the absorber, assuming time measured by the emitter

progresses at nearly the same rate as that measured by the absorber

in this short distance calculation (i.e. ta&te~t). Notice, these

photons travelled inward for Pioneer 10, so the root is negative.

Plugging into our expression above, the fractional difference in

wavelength predicted here on Earth is approximately

labsorberDSchw

labsorberDModified

~
1

e{
ffiffiffi
L
p

t
&1z

ffiffiffiffi
L
p

t

to first order where we assume that our modified expression

coincides with our experimental values. Then the observed ‘‘time

acceleration’’ reported in [39] and [40] provides an estimate for the

time-scale of our galaxy of
ffiffiffiffi
L
p

DMW~2:92|10{18 s{1. The

consistency of this value with that of the Hubble constant [20]

lends support to the argument that the time-scale
ffiffiffiffi
L
p

is universal

for all inertial reference frames as we had implicitly assumed from

our proposed form of the affine parameter presented in our

introduction. However, further experiment is necessary in order to

verify this claim.

Clearly, the two-way nature of the Doppler residuals of the

Pioneer experiments as well as the difference in clock rates for

varying positions within an inertial system in our theory will

complicate our analysis further. However, the purpose of this

section is to illuminate to the reader the idea that we may have

evidence from experiments within our own solar system that

support the relevance of this theory of inertial centers and suggest

that possibly all inertial reference frames as defined within this

theory abide by the same fundamental time-scale constant
ffiffiffiffi
L
p

.

Nevertheless, others have argued as in [41] that the Pioneer

anomaly is a consequence of the mechanics of the spacecrafts

themselves instead of evidence of ‘‘new physics’’. Therefore, to

gain more support for the theory of inertial centers, we must

address in future work not only the two-way nature of the Doppler

residuals as both Pioneer 10 and Pioneer 11 appear to report

blueshifted wavelengths even when they traveled in opposite

directions with respect to the galactic inertial frame of reference

but also the possibility that our theory can succinctly explain the

other astrometric Solar System anomalies outlined in [23] and

[40].

Quantization of a real scalar field
We begin our extension into quantum field theory from the

covariant form of the Klein-Gordon equation [42]:

+a+aw{m2w~0

where +a is the derivative operator compatible with the metric gab

(i.e. +agbc~0), m~mc=B, m is the mass associated with our field,

and B is the reduced Planck constant. First, we explore how one

can intuitively arrive at this equation of motion given our classical

assumptions. In special relativity, we have

{m2c2~papa~
X
n,b

gnbpnpb
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where pn~m:dxn=dt and gnb refers to the Minkowski metric

components. Making the substitution pa?{iB+a, we come upon

the Klein-Gordon equation above for a scalar field.

However, in our theory of inertial centers, the equation of

motion in terms of ‘momentum’ is given by

{m2~papa

where now pn~m:dxn=dx and so we have a major difference in

our ‘momentum’ terms. In contrast with our experience in

relativity, the ‘four-velocity’ for massive particles in our theory is

parametrized by x and not by proper time t. Unfortunately, there

does not appear to be a natural operator substitution for dxn=dx.

Yet, if we use expression (57), we have a potential extension of the

Klein-Gordon equation when analyzing motion at a particular scale.

It appears that one should substitute c?
ffiffiffiffi
L
p

r to find

Ww{~mm2r2w~0 ð60Þ

where ~mm~m
ffiffiffiffi
L
p

=B and W~+a+a is the Laplace-Beltrami

operator. Notice that in our equation of motion we have explicit

reference to the particular inertial reference frame in which we are

analyzing the behavior of the field as opposed to the Klein-Gordon

equation which has no explicit reference to any inertial system.

This seems to be consistent with the idea that the proper time is not

the invariant quantity associated with our theory of inertial

centers, and therefore our choice of proper time reflects the choice

of scale in which we must work to analyze the progression of our

field within this inertial system. One can also apply this

substitution in an analogous manner to other equations of

motion/Lagrangians, yet in the following we will only address

the simple case of a free real massive scalar field.

Then, as outlined in Chapter 4.2 of [43] and briefly reviewed in

Appendix D in Appendix S1, we must ‘‘slice’’ our manifold M into

space-like hypersurfaces each indexed by t (St). For our radial

Rindler chart, the future-directed unit normal to each St is given

by

na~
1ffiffiffiffi
L
p

DrD
(
L
Lt

)a ð61Þ

where the absolute value is necessary to keep na future-directed for

all values of r : 0vr2
v?, allowing for positive and negative

values. We will interpret the physical significance of this relaxation

on the domain restrictions for our radial coordinate later in our

analysis. We see that our hypersurface can be decomposed into the

union of two surfaces for each of the Rindler wedges (rv0 and

rw0), and thus the inner product of our Klein-Gordon extension

is given by

(w1,w2)~{iV(½�ww1,�pp1�,½w2,p2�)

~{i

ð
SI|SII

d3x
ffiffiffiffiffi
DhD

p
½w2na+a

�ww1{
�ww1na+aw2� ð62Þ

where the bar symbol indicates complex conjugation (i.e. �wwi is the

complex conjugate of wi), S0~SI|SII is the union of these two

radial Rindler wedge space-like hypersurfaces, na is the unit

normal to our space-like hypersurface S0, hab is the induced

Riemannian metric on S0 (h~det(hnb); (hnb) denotes the matrix

associated with these Riemannian metric components), and V
refers to the symplectic structure for our extension of the Klein-

Gordon equation.

We should be rather concerned considering the discontinuous

nature of the time-orientation of na (the absolute value is not a

smooth function) as well as the undefined behavior of our unit

normal for r~0, the location of our inertial center. However,

given the solutions we find below, it seems to be an important

question whether or not we are forced to treat each Rindler wedge

separately as its own globally hyperbolic space-time or the

combination of these wedges as the entire space-time over which

we must analyze solutions to our extension of the Klein-Gordon

equation. The difference between these two formulations will be

that in the former we must define separate creation and

annihilation operators for each wedge as in the analysis of [44].

Whereas in the latter, we have one set of creation and annihilation

operators for all values of r over the range: 0vr2
v?, where r can

take both positive and negative values. It also seems likely that a

greater understanding of our inertial centers and their physical

significance (i.e. how are these inertial centers established?) will

provide far more insight into the proper way to treat this situation.

In this paper, however, we assume the latter approach requiring

that we use all values of r (positive and negative) to cover our

inertial reference frame and naively ignore the issues with r~0
mentioned above. This approach seems to be far more consistent

with the idea implicit in our theory of inertial centers that the

radial Rindler chart covers the entire flat space-time manifold for

the inertial system in question, except of course for the location of

each of our inertial centers (i.e. r~0). We find that our inner

product is given by

(q1,q2)~{i

ð?
{?

dr

ðp

0

dh

ð2p

0

dq

½r2 cosh2 (
ffiffiffiffi
L
p

t) sin h(
q2ffiffiffiffi
L
p
jrj

Lt
�qq1{

�qq1ffiffiffiffi
L
p
jrj

Ltq2)�jt~0

~{
iffiffiffiffi
L
p cosh2 (

ffiffiffiffi
L
p

t)

½
ð?

0

rdr

ðp

0

sinhdh

ð2p

0

dw(w2Lt
�ww1{

�ww1Ltw2)

{

ð0

{?
rdr

ðp

0

sin hdh

ð2p

0

dw(w2Lt
�ww1{

�ww1Ltw2)�Dt~0 ð63Þ

Our remaining task reduces to solving for solutions (wi) to our

extension of the Klein-Gordon equation (60). From Appendix F in

Appendix S1 which utilizes [45], [46], [47], [48], and [49], we find

wa,l,m~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~mma

2p cosh(pa)

s
:
ffiffiffiffiffiffiffiffiffiffiffiffi
1{g2

p
:P{2ia

l (g):
Kia( r2

2
)

r
:Y m

l (h,w) ð64Þ

where g~tanh(
ffiffiffiffi
L
p

t) and r~
ffiffiffi
~mm
p

r. Y m
l is the spherical harmonic

of degree l and order m. We maintain convention and use m to

denote the order of Y m
l . However, this m is a quantum number

very different from the mass of our scalar field. The mass term is

contained solely in our expression for ~mm. Kia is the Macdonald

function (modified Bessel function) of imaginary order a. P{2ia
l is

the Legendre function of degree l and imaginary order {2a.
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Notice, we allow Kia( r2

2
)=r to have domain: 0vr2

v? where

r can take both positive and negative values. Physically, this

interpretation requires the existence of the field in both the negative

and positive r regions of the inertial system which brings us back to

the discussion earlier in this section of our concern with na. From

[50], the limiting behavior of Kia expressed as

lim
y?0z

Kia(y)~{(
p

a sinh(ap)
)1=2½sin(a ln(y=2){wa,0)zO(y2)�

where wa,0~argfC(1zia)g and C(z) is the gamma function along

with

lim
y??

Kia(y)~(
p

2y
)1=2e{y½1zO(

1

y
)�

shows that Kia( r2

2
)=r oscillates for small DrD when a=0 and

exponentially decays for large DrD. In addition, from Figure 3, we

see that our radial ‘wave function’ spreads out away from r~0 for

larger ‘momentum’ values of a, allowing for oscillatory behavior at

larger values of DrD and thus an increased likelihood of observing

quanta farther away from the inertial center of the reference frame

in question.

Our Heisenberg field operator can be expanded in the following

manner (see Chapters 3.1 and 3.2 of [43]):

ŴW(t,r,h,w)~

ð?
0

da
X?
l~0

Xl

m~{l

½wa,l,mâa(�wwa,l,m)z�wwa,l,mâa{(wa,l,m)�

~

ð?
0

da
X?
l~0

Xl

m~{l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~mma

2p cosh(pa)

s
:Kia( r2

2
)

r

:
ffiffiffiffiffiffiffiffiffiffiffiffi
1{g2

p
:½âa(�qqa,l,m)P{2ia

l (g)Y m
l (h,q)

zâa{(wa,l,m)P2ia
l (g) �YY m

l (h,w)� ð65Þ

where the annihilation and creation operators in terms of our

inner product are

âa(�wwa,l,m)~(wa,l,m,ŴW)

âa{(wa,l,m)~{(�wwa,l,m,ŴW)

and fwa,l,mg comprise an orthonormal basis of the ‘‘positive

frequency’’ solutions to the extended version of the Klein-Gordon

equation for the theory of inertial centers. For a real scalar field,

these annihilation and creation operators satisfy the commutation

Figure 3. Plots of ha(r) for a~0,1,5, and 20.
doi:10.1371/journal.pone.0078114.g003
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relations (bosonic statistics):

½âa(�wwa,l,m),âa{(wa’,l’,m’)�~(wa,l,m,wa’,l’,m’)~d(a{a’)dll’dmm’

A very important point for the reader to take away from our

analysis in this section is that our field operator as defined in (65)

exists in both the rw0 and rv0 portions of space-time. In other

words, we take space-time to be comprised of both the rw0 and

rv0 regions of the inertial system, and thus the Minkowski chart is

not able to cover all of space-time in our theory. It then appears

that a potential explanation for the matter/antimatter asymmetry

in our observable universe within the framework of our theory of

inertial centers would be that there exists a parallel region of each

inertial system embodied mathematically above by the existence of

our field operator in the hypothetical rv0 region of space-time.

Logically, if we exist in our region of space-time with an imbalance

toward matter, one would then assume that in this parallel region

there exists an imbalance in favor of antimatter as the total charge

of the field throughout all of space-time should be conserved. We

are, of course, operating under the assumption that the solutions to

our equation of motion extend in a similar manner as in special

relativity when one allows for complex fields of non-zero spin (e.g.

solutions to a Dirac equation [51] extension are also solutions to

our Klein-Gordon extension) since we should not worry about

antiparticles with a real scalar field. Therefore, we must extend our

work on the theory of inertial centers to incorporate spin in order

to see the full significance of this possible explanation for the

matter/antimatter asymmetry in our observable universe.

To conclude our discussion, we assume throughout the rest of

this section that
ffiffiffiffi
L
p

is a universal constant for all inertial systems,

taken to be the Hubble constant as proposed in our introduction,

and imagine that there exists an observer very near to an inertial

center point such that his/her motion in this particular reference

frame is approximately stationary (i.e. spatial ‘four-velocities’ are

very much outweighed by ‘velocity’ in time, dt=dx). Then from

our classical analysis of geodesic paths, our observer experiences a

radial acceleration according to (10) of

d2r

dt2
~{Lr

where t coincides with the proper time t for our nearly stationary

observer in this system. However, say we wish to understand our

observer’s motion not in terms of his/her proper time in this

particular inertial frame but instead in terms of his/her proper

time in an external inertial frame of reference where these two

different systems do not share a common inertial center point. We

know that our invariant interval is given by

{dx2~{Lr2
l dt2

l ~{Lr2
edt2

e

where the e (l) subscript refers to quantities in the external (local)

inertial reference frame. Assuming our observer is nearly

stationary in both inertial systems (i.e. coordinate times for each

system coincide with proper times within each reference frame

respectively), his/her clock in the local frame progresses by

dtl

dte

~
ce

cl

ð66Þ

Thus,

d

dtl

~
cl

ce

: d

dte

where the c’s refer to the Minkowski constants for each particular

reference frame (56). Plugging in above,

d2rl

dt2
e

~{Leff
:rl ð67Þ

where
ffiffiffiffiffiffiffiffi
Leff

p
~

ffiffiffiffi
L
p

:ce=cl .

According to Newtonian mechanics which is a good approx-

imation here since we assume our observer is nearly stationary in

the local inertial system, one would attribute this radial

acceleration to a ‘force’ (even though we know that there really

is no force here), and associated with this ‘force’ is a potential

(~FF~{~++V ; see Chapters 1 and 2 of [52]). So for the acceleration

above, one would assume while working in Newtonian mechanics

that there exists a potential causing this movement of the form:

V~
1

2
mLeff

:r2
l ð68Þ

Then our Hamiltonian (H~TzV ; see Chapter 8 of [52]) for this

system is given by

H~
p2

2m
z

1

2
mLeff

:r2
l ð69Þ

where m is the mass of our observer and T~p2=2m is the kinetic

energy associated with his/her motion as observed in the external

frame. If our observer is on the order of 10{15 m [53] away from

his/her local inertial center and ce is found in the external frame to

be &3:0|108 m/s [54], we find
ffiffiffiffiffiffiffiffi
Leff

p
*1023 s{1. We remark

for the reader less acquainted with nuclear theory that the

Hamiltonian above is referred to as the isotropic harmonic

oscillator and was used as a starting point for nuclear shell models

due to its ability to reproduce the ‘‘magic numbers’’ associated

with stable configurations of nucleons within the nucleus (see

Chapter 4 of [55] and Chapter 3.7 of [56]). In addition, the energy

scale associated with the Hamiltonian above (i.e. B:
ffiffiffiffiffiffiffiffi
Leff

p
*108

eV) is of a similar order as the scale inputted into these isotropic

harmonic oscillator models for the magnitude of the nuclear ‘force’

[57]. Thus, our ability to replicate the same features as those of the

simplest nuclear shell model compels us to ask the following

question with regard to the theory of inertial centers: Is there an

inertial center point at the center of the nucleus of every atom?

Limitations of the study, open questions, and
future work

There is a plethora of data for us to critically investigate the

validity of this theory of inertial centers. Nevertheless, we have

chosen to leave these detailed investigations for future work as the

purpose of this paper is to lay out the theoretical foundations to

illicit these types of rigorous comparisons with experiment for all

aspects of our model. As we have mentioned briefly at certain

points within our discussion, there are many open questions that

must be addressed. The most pressing of these appears to be how

to explain the cosmic microwave background (CMB) within our

theory of inertial centers. One may be tempted to immediately

point to the Fulling-Davies-Unruh effect [58] as the source of this

cosmic radiation since the Unruh effect predicts that an
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‘‘accelerating’’ observer in Minkowski vacuum, who can be

described by orbits of constant spatial coordinate in the classic

Rindler chart, detects black-body radiation that appears to be

nearly homogeneous and isotropic with predicted anisotropies due

to the orientation of this observer throughout his/her ‘‘accelerat-

ed’’ path [59]. However, we must keep in mind that the scale

associated with the temperature of Unruh radiation [58][44]

T~
Ba

2pkBc

requires a*1020 m/s2 to produce a temperature on the order of

the CMB, T&2:7 K [60], where kB&1:38|10{23 J K{1 is

Boltzmann’s constant, B&1:05|10{34 J s [54], and a is the

proper acceleration of the observer. If we approximate the original

analysis of [58] by working in 1+1 space-time (i.e. 1 time and 1

spatial dimension), the acceleration would be proportional to the

inverse of r~r0 for observers moving along orbits of constant r

[44]. This then requires r0~c2=a*10{3 m for the CMB

temperature scale, which clearly makes no sense since we would

be millimeters away from the center of our observable universe.

Nevertheless, the analysis used to derive the Unruh effect implicitly

operates under the assumption of the validity of special relativity in

flat space-time and therefore takes dx2~c2dt2. Yet, as we have

emphasized repeatedly above, in our theory of inertial centers, the

invariant interval associated with the metric is given in terms of

proper time by dx2~Lr2dt2. Therefore, we must extend these

ideas to apply to our model where we are observers existing within

multiple inertial systems (universe ? . . .? Local Group ? Milky

Way). In addition, for our situation, this radiation would not be

interpreted physically as due to the ‘‘acceleration’’ of the observer

as in the case of [58], but instead one would have to think of this

effect as simply the result of the restriction of the Minkowski

vacuum to each of the radial Rindler wedges (see Chapters 4.5 and

5.1 of [43]). We are still encouraged that this course of action may

result in a plausible interpretation as experimental evidence of

large-scale temperature anomalies appears to suggest a significant

orientation to the CMB [61].

At this point in our discussion, we offer a brief review of the

literature concerning both the Pioneer anomaly as well as the

other known astrometric anomalies within our own solar system.

First, however, we mention other theories which contrast with our

own study but are relevant for the discussion below. The authors

of [62] and [63] investigate the potential effects of an expanding

universe which could be induced on objects within our solar

system. Furthermore, [64] attempts to model the consequences of

an extra radial acceleration on the orbital motion of a planet

within our solar system. As well, [65] provides an alternative

model for gravitation resulting in an additional ‘‘Rindler-like’’

term at large distances which the author claims can potentially

model the plateauing nature of observed orbital velocity curves.

We must stress that the model proposed in [65] is in fact very

different from the model that we have proposed above as our

theory of inertial centers does not attempt to reformulate gravity.

As we emphasized earlier, our model is an attempt to reformulate

the motion of objects when no net external forces are acting upon

said objects in empty flat space-time. Nevertheless, [66], [67], [68],

[69], and [70] use these ideas of an additional ‘‘Rindler-like’’ term

in gravitation to examine the possible observable effects of the

aforementioned extension to general relativity. For a background

reference concerning phenomenology in the context of general

relativity, we refer the reader to [71] as preparation for our

presentation of the known anomalies exhibited within our own

solar system.

Besides the Pioneer anomaly, there are experimental claims of

possible anomalies alluding to inconsistencies with our current

model for the Solar System. These include:

1. An anomalous secular increase in the eccentricity of the orbit of

the Moon

2. The ‘‘flyby’’ anomaly

3. An anomalous correction to the precession of the orbit of

Saturn

4. A secular variation of the gravitational parameter GM8 where

M8 is the mass of the Sun

5. A secular variation of the astronomical unit (AU)

The anomalous secular increase in the eccentricity of the orbit

of the Moon was originally found in the experimental analysis of

the Lunar Laser Ranging (LLR) data in [72] and expanded upon

in [73], [74], [75], and [76]. The ‘‘flyby’’ anomaly refers to an

anomalous shift in the Doppler residuals received from spacecrafts

when comparing signals before and after these spacecrafts undergo

gravitational assists about planets within the Solar System

[40][77][78]. The anomalous perihelion precession of Saturn

appears to be a more controversial claim as the work of [79] and

[80] seems to suggest the validity of this observation with further

investigation in [81] and [82]. However, work such as [83], [84],

and [85] seems to show that this reported anomaly is an

experimental artifact. Finally, the last two anomalies of a secular

variation in the product of the mass of our Sun and the

gravitational constant G as well as the astronomical unit are more

difficult claims to understand in the context of our model as there

are many complex mechanisms which could affect our measure-

ments of these quantities (e.g. rate of mass accretion of the Sun

from infalling objects versus depletion through expelled radiation

resulting from nuclear fusion) in addition to the fact that our

measurement of the AU is implicitly linked to our measurement of

GM8 [86]. Nevertheless, [86] and [87] are useful references for

these anomalies. Additionally, [23] provides a detailed summary of

the majority of the anomalies listed above.

Returning to the Pioneer anomaly, the reader may have

concerns with our earlier analysis as recent simulations such as

[41] suggest that this anomaly should be taken as a thermal effect

from the spacecraft itself instead of evidence linked to ‘‘new

physics’’. For a selection of work concerning the possible thermal

explanation of the Pioneer anomaly, see [41], [88], [89], [90],

[91], [92], and [93]. Nevertheless, this analysis still does not

address the asymmetric nature of the ‘‘flyby’’ anomaly [40][77] as

well as the other significant astrometric Solar System anomalies

summarized in [23]. By ‘‘asymmetric nature’’, we are referring to

the fact that the magnitude of the ‘‘flyby’’ anomaly appears to

depend upon the direction of approach of the space probe toward

Earth as well as the angle of deflection away after ‘‘flyby’’.

Furthermore, as mentioned in [94], the ‘‘onset’’ of the Pioneer

anomaly after Pioneer 11’s encounter with Saturn is still of

concern when explaining these observables as the result of

systemic thermal effects. While [41] briefly addresses this ‘‘onset’’

in their conclusion, future analysis of the early data points for

Pioneer 11 near its gravitational assist about Saturn appears to be

of the utmost importance, especially considering before its

encounter with Saturn this spacecraft moved nearly tangentially

to the direction of Sagittarius A*, whereas after it traveled nearly

toward the Milky Way center. Thus, in the context of our own

model, this ‘‘onset’’ has the potential to be interpreted as the

consequence of the spacecraft’s change in direction relative to the inertial
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center associated with the center of the Milky Way, similar to ideas we will

have to explore for the asymmetric nature of the Earth ‘‘flyby’’

anomalies (for potential connections between the Pioneer and

‘‘flyby’’ anomalies, see [40]). Therefore, we choose not to rule out

the possibility that the Pioneer anomaly may be support for our

theory of inertial centers as this effect as modeled in our earlier

analysis in fact must be observed in order for our theory to have

physical relevance. As mentioned earlier, we will have to address

in far more rigorous detail in future work the dual nature of the

Pioneer residuals in order to possibly explain the blueshifts from

both Pioneer 10 and Pioneer 11 data.

In addition, others such as [65], [66], and [67] have used a

‘‘Rindler-like force’’ emanating from the center of a gravitational

source to supplement general relativistic gravity as a model that

can potentially explain orbital velocity curves as well as the

Pioneer anomaly [68][69]. For a review of how this and other

gravitational supplements would impact current expectations for

the orbits of other major bodies in the Solar System, see [95], [79],

[96], [97], [98], [99], [100], [101], [102], [103], [67], [104], [105],

[106], [107], [108], and [109]. However, these supplements all

require spherical symmetry about the center of the gravitational

source in question and are very different from our reformulation of

flat space-time where in our theory we do not assume that there

exists a gravitational source at the center of galaxies, groups,

clusters, etc. Recall that we are concerned with reformulating

inertial motion and inertial reference frames in flat space-time (i.e.

our description of the way in which objects move in flat space-time

when subjected to no net external forces). Additionally, we

maintain that locally within confined regions of the inertial system

of our theory of inertial centers Einstein’s version of gravitation

seen as the consequence of space-time curvature induced by the

energy-momentum of a massive object in his theory of general

relativity still applies in the same manner. In other words, in our

theory of inertial centers, this observed deviation from assumed

special relativistic flat space-time geodesics arises from our

redefinition of the inertial system itself instead of some modifica-

tion to gravitation. Consequently, when attempting to explain

these astrometric Solar System anomalies in the context of our

theory, we focus on the difference in geodesics in the galactic

inertial reference frame when compared to assumed special

relativistic geodesics for flat space-time and assume that all of

the objects in our Solar System including the Sun orbit about the

inertial center point associated with the center of the Milky Way

(again, we assume that there is no gravitational source at the center

of our galaxy). Meaning, the Pioneer anomaly is not taken to be a

phenomenon due to gravity in the theory of inertial centers.

Instead the Pioneer anomaly and possibly the other astrometric

Solar System anomalies which we have listed above are taken to be

the result of our redefinition of inertial systems as well as the

change in our expectations for what constitutes inertial motion.

Consequently, the relative acceleration between massive objects in

our solar system is nearly unchanged from what one would expect

from general relativity as all objects within our solar system orbit

about the center of the Milky Way along relatively similar paths.

Therefore, we are not modifying our expectations for the

interactions between objects within the Solar System. We are

modifying our expectations for the paths of all objects in the Solar

System through the Milky Way. While internally within our solar

system the planets remain nearly unchanged in their paths as they

move slowly in the ‘‘Newtonian limit’’ (i.e. their speeds are much

less than that of light), light propagating between these massive

objects in our theory won’t behave as one would expect from

general relativity as at these speeds one must take into account the

properties of the larger inertial system associated with our galaxy.

One must bear in mind that these anomalies are linked to the

propagation of electromagnetic radiation throughout our solar

system as our experimental apparatuses use light for precision

measurements. While the work of [62] attributes the Pioneer

anomaly to the local effects of light signal propagation in an

expanding universe as expressed by a ‘‘post-Friedmannian’’ metric

decomposition, these claims would not be able to explain the

asymmetric nature of the wavelength shift residuals in the ‘‘flyby’’

anomaly as the FLRW metric requires homogeneous and isotropic

expansion of space in all directions [31]. However, there is no

expansion in our theory of inertial centers and our inertial

reference frames do have an orientation. Therefore, we must take

into consideration, when comparing with our own model in future

work, two important ideas: in this theory of inertial centers, the

speed of light is not constant in flat space-time and objects follow

inertial paths described by geodesics about inertial centers in the

radial Rindler chart, where we assume that the inertial center

associated with the Milky Way is in the direction of Sagittarius A*.

Thus, in our model, the observables associated with the

astrometric Solar System anomalies listed above do not necessarily

reflect the existence of an additional acceleration in the Solar

System since our theory’s radial acceleration would be imposed on

all objects within the Solar System including the Sun and in the same

direction toward the center of the Milky Way (10) with seemingly

negligible difference in magnitude depending upon the position of

the massive object in question (i.e. changes in position within our

solar system are negligible relative to the distance of our solar

system from the center of the Milky Way when considering the

motion of massive satellites, planets, etc.). In other words, in sharp

contrast with the analysis in papers such as [65], [109], [97] and

[95], we assume that there is no additional acceleration associated

with the Sun’s gravitational pull on other objects within the Solar

System, and thus the relative acceleration of a satellite, planet, etc.

with respect to the center of the Sun remains nearly unaffected in

our model when we compare with general relativity. Instead, it

appears that in the theory of inertial centers these anomalies

should more likely be interpreted as a consequence of the non-

constant nature of the speed of light within our galactic inertial

system as well as of the expected shifts in wavelength when light

propagates between differing distances from an inertial center

point. Future experiments within the vicinity of our solar system to

test the validity of the theory of inertial centers could include

sending a spacecraft to the outer edges of our solar system along a

closed orbit about the Sun or using identical spacecrafts along

open orbits in different directions with respect to the galactic

center (e.g. one travels tangentially to the direction of the center of

the Milky Way while another moves directly toward/away from

the center; for a hyperbolic orbit proposal, see [110]). To test the

positional dependence aspects for electromagnetic radiation in this

theory, these hypothetical missions should measure the potential

variations in wavelength shift and time delay for light signals sent

and received at different positions along these orbits with respect

to the center of the Milky Way. As well, future theoretical work

will require us to explicitly detail observational effects on our

astrometric measurements of the planetary ephemerides that are

unique to the theory of inertial centers. One could then potentially

find these predicted deviations from current models when

comparing with the experimental work of [83] and [85].

Using the measured value for the speed of light on Earth

(cEarth&3:0|108 m/s) and the value for the time-scale given from

the ‘‘time acceleration’’ in [40], we find that our distance to the

center of the Milky Way is approximately r0DMW&1:03|1023 km.

We see that the value obtained for our galactic radial distance is

far larger than the predicted value from models requiring a
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supermassive black hole at the center of the Milky Way

(intimidatingly, nearly six orders of magnitude [111]). It is

imperative then that we reconcile this calculated value with

observational data. Not only will this maintain consistency with

experiment but it will also provide accurate distance scales within

our galaxy. This will allow us to further understand the large

observed wavelength shifts near Sagittarius A* within the

framework of our theory of inertial centers and potentially explain

the paradox of youth [112] through concrete analysis of star

formation near the Milky Way center.

Addressing our classical inertial motion analysis, one can

immediately tell from the theoretical approach in our discussion

that this paper is limited by the lack of necessary quantitative

comparison with orbital velocity curves, redshift surveys, and

lensing observations. Future work will require modeling using

computer simulations of our equations of motion not only to

produce orbital velocity curves that will facilitate comparison with

data but to also give us a far more thorough understanding of

classical inertial motion outside of the limiting behavior examined

in this paper. To implement, it appears that we should use a finite

difference method with the component form of our geodesic

equation parametrized in terms of the proper time of the object in

question within a particular inertial system as expanded upon at

the end of Appendix B in Appendix S1. Furthermore, we will have

to apply this same finite difference method to our normalization

condition for the ‘four-velocity’ but parametrized in terms of the

proper time in this inertial frame. We also have to attend to a

pressing issue with regard to the ‘‘Hubble behavior’’ associated

with wavelength shifts within our inertial system. As outlined

earlier, this theory requires that we observe both significant

redshifts and blueshifts, yet on scales larger than the Local Group,

blueshifted emitters are reportedly scarce. Thus, if our theory is to

be considered seriously, we must provide an explanation for why

there is such an imbalance towards reported redshifted emitters at

the largest observable scales. Nevertheless, one apparent resolution

lies in the possible alternative ‘‘blueshift interpretation’’ of

spectroscopic profiles as mentioned and subsequently applied in

[113], [114], and [115] with possible support for the re-

examination of spectroscopic profiles in the blueshifted emission

lines found in other work such as [116].

Proceeding to our quantum concerns, our seemingly shocking

proposal that at the center of the nucleus of every atom there could

potentially exist an inertial center point raises many more

questions for our theory of inertial centers. Of course, this type

of claim requires thorough and rigorous justification in both future

theoretical work and even more importantly in comparison with

experiment. For example, a simple comparison with experiment

would be to determine how accurate of a fit our ‘‘n-particle

amplitudes’’ (reviewed in Appendix D in Appendix S1) with

individual solutions for quantum numbers (a,l,m) given by (64) are

with current experimental knowledge of the nucleus. Nevertheless,

we have chosen to mention these ideas in this paper in order to

highlight to the reader how much of a potential impact this

redefinition of inertial motion and inertial reference frames could

possibly have on our understanding of structure formation for all

scales from the largest to the smallest. As for questions: for one,

can we reconcile these claims with our current knowledge of the

electronic and nuclear structure of the atom when we factor in

charge, spin, and electromagnetism? Additionally, how much of

our current model for the nucleus is affected by these ideas? It also

becomes ever more important to answer the following: What

establishes one of these inertial centers as well as the orientation of

one of our inertial systems?

Conclusions

All of our assumptions within this work in one way or another

are built upon the idea that objects do not move in a straight line at

a constant speed when no external forces are acting upon them in

empty flat space-time. In other words, we assume that Newton’s

first law does not give the correct characterization of inertial

motion. Therefore, we essentially ‘‘start from scratch’’ and

concentrate on how to incorporate all of the following observed

features into a revised understanding of inertial motion: acceler-

ated redshifts and the Hubble relation, plateauing orbital velocity

curves at large distances from a central point about which objects

move, consistent velocity ‘‘flow’’ on the largest of scales directed

toward a central point, and an orientation associated with each of

these central points. We take an inertial frame of reference to be

the system within which objects follow these revised inertial

trajectories and begin our reformulation with the knowledge that

our theory of globally flat space-time must reduce to special

relativity within confined regions of our newly defined inertial

systems. Consequently, it appears natural to approach this

reformulation from the notion that we should have a metric

theory of flat space-time, and within this metric theory objects still

follow along geodesic trajectories when no external forces are

acting upon them as in special and general relativity. However, in

order to distinguish our metric theory of flat space-time from

special relativity, we must require that our affine parameter not be

proper time globally throughout these reference frames. In

addition, we find that we are able to reproduce the previously

listed features with the radial Rindler chart as the coordinate

parametrization of our flat space-time manifold, thereby assuming

the physical significance of special central points which we deem

‘‘inertial center points’’ situated throughout all of space-time. As

one would expect from their given name, these inertial center

points describe the centers of each of our inertial systems, and our

inertial trajectories are then assumed to be the orbits of objects

about these inertial centers. Meaning, inertial motion must be

thought of relative to both the center point and the orientation (i.e.

location of the poles) of each of these inertial reference frames.

Consequently, it is assumed that the observed motion of objects

about central points on the largest of scales (e.g. stars orbiting the

center of a galaxy, galaxies orbiting the center of a group/cluster,

etc.) is not due to gravitational effects but is instead a manifestation

of inertial motion within our theory of flat space-time, which we

term our ‘‘Theory of Inertial Centers’’.

This redefinition of inertial motion then allows us to no longer

assume the existence of ‘dark energy’, ‘dark matter’, and ‘dark

flow’. Furthermore, as we have the ability to model the Hubble

relation within our theory, we do not require the occurrence of a

‘Big-Bang’ event, and therefore we also do not require ‘inflation’

nor an expanding universe (i.e. we do not operate under the

assumptions of LCDM). The cornerstone of our theory is

embodied in the statement that within our inertial systems, time

and space are fundamentally intertwined such that time- and

spatial-translational invariance are not inherent symmetries of flat

space-time. Meaning, our invariant interval associated with the

metric incorporates both time and spatial distance. Therefore,

observable clock rates depend upon not only the relative velocity

of observers within these inertial systems but also on the difference

in distance of each observer from an inertial center, expressed

mathematically by relation (57). Given this relation, we find that

our theory of globally flat space-time in fact reduces to special

relativity for observers which we can consider as nearly stationary

with respect to the inertial center point about which they orbit (i.e.

the local stationary limit). As well, our ideas then require that the
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local speed of light which we measure within a confined region of

these newly defined inertial systems is linearly dependent upon our

distance away from the inertial center about which we orbit (56).

Thus, the speed of light throughout each of these redefined inertial

systems in flat space-time is not constant.

With these theoretical foundations presented, we proceeded by

examining the local consequences of our theory for a gravitational

system located within one of these inertial systems as an observer

should be able to measure with a detector of the necessary

sensitivity the deviation of an object’s (specifically light’s) inertial

path in flat space-time away from special relativistic geodesics and

into the geodesics of our theory as outlined in the local stationary

limit. Thus, within the framework of the theory of inertial centers,

we interpret the Pioneer anomaly as an observable consequence of

our revised ideas on inertial motion. However, as mentioned later

in our paper, there are many open questions that must be

answered with regard to the propagation of light signals within our

solar system in the context of our theory. Specifically, can our

revision of inertial motion and inertial reference frames explain the

other known astrometric Solar System anomalies (i.e. ‘‘flyby’’

anomaly, the anomalous increase in the eccentricity of the Moon,

and the variation in the AU)? And, can we explain the blueshifted

nature of both Pioneer 10 and Pioneer 11 Doppler data once we

factor in the two-way nature of these residuals as well as the

change in clock rates for observers located at different distances

from the center of the Milky Way in our model?

Furthermore, after quantizing for a real massive scalar field, we

came upon a potential explanation for the asymmetry between

matter and antimatter in our observable universe within the

context of our theory of inertial centers. If we allow for the

possibility that our field exists in both radial Rindler wedges (i.e.

rw0 and rv0), it appears that a logical explanation for the

observable imbalance toward matter would be that our antimatter

counterparts are located in the ‘‘other’’ radial Rindler wedge for

each of our inertial systems, as the charge of each field in these

systems should be conserved (e.g. abundance of electrons in one

wedge should imply an abundance of positrons in the ‘‘other’’

wedge). Nevertheless, this logic relies on the consistency of our

extension for a real scalar field to complex fields with spin. Thus,

in future work, we will have to address the validity of this

interpretation when we extend our analysis (e.g. Dirac spinors). In

addition, we concluded our discussion by examining the nearly

stationary limit for particles close to an inertial center point. Using

expression (10), we chose to work naively under Newton’s

assumptions and take this acceleration on our observer to be the

result of a Newtonian force derived from a conservative potential.

Then, the stationary Hamiltonian associated with this Newtonian

approximation would take the form of the isotropic harmonic

oscillator. Taking the perspective of an observer exterior to the

inertial system in question (i.e. the external observer orbits a

different inertial center), we found the observed oscillator energy

scale using relation (57) while operating under the assumption that

the time-scale for each inertial system is a universal constant and

therefore the same for each. A simple potential explanation for the

ability of the isotropic harmonic oscillator to explain the ‘‘magic

numbers’’ associated with stable arrangements of nucleons within

the nucleus of an atom then arose in the context of our model.

Since both the form of our stationary Hamiltonian as well as the

determined energy scale match that of the starting point for our

nuclear shell models, it appears that we must seriously consider the

possibility that there exists an inertial center point at the center of

the nucleus of every atom when working under the assumptions of

our theory of inertial centers as, in our stationary limit, the

acceleration of each particle within the inertial system mimics

what one would find if he/she naively assumed a Newtonian

Hamiltonian of the form of the isotropic harmonic oscillator. In

other words, within the context of our theory, the ability of the

isotropic harmonic oscillator to model the simplest nuclear

configurations would be interpreted as a consequence of the

physical existence of an inertial center located at the center of the

nucleus of every atom, where these simple configurations of

nucleons arise from the stationary limit for objects very near to an

inertial center. Although these claims are radical in nature, we are

still compelled to question whether or not the nuclear ‘force’ is

even really a force within the framework of our model. Future

theoretical and experimental work will be required in order to fully

understand the nature of these ideas.
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32. Friedmann A (1924) Über die Möglichkeit einer Welt mit konstanter negativer
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