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A B S T R A C T   

In vitro, sterilization is one of the key components for proceeding with plant tissue cultures. Since 
the effectiveness of sterilization has a direct impact on the culture’s final outcomes, there is a 
crucial need for optimization of the sterilization process. However, compared with traditional 
optimizing methods, the use of computational approaches through artificial intelligence-based 
process modeling and optimization algorithms provides a precise optimal condition for in vitro 
culturing. This study aimed to optimise in vitro sterilization of grape rootstock 3309C using RSM, 
ANN, and genetic algorithm (GA) techniques. In this context, two output responses, namely, 
Clean Culture and Explant Viability, were optimised using the models developed by RSM and 
ANN, followed by a GA, to obtain a globally optimal solution. The most influential independent 
factors, such as HgCl2, NaOCl, AgNO3, and immersion time, were considered input variables. The 
significance of the developed models was investigated with statistical and non-statistical tech-
niques and was optimised to determine the significance of selected inputs. The optimal clean 
culture of 91%, and the explant viability of 89% can be obtained from 1.62% NaOCl at a 13.96 
min immersion time, according to MLP-NSGAII. Sensitivity analysis revealed that the clean cul-
ture and explant viability were less sensitive to AgNO3 and more sensitive to immersion time. 
Results showed that the differences between the GA predicted and validation data were signifi-
cant after the performance validation of predicted and optimised sterilising agents with immer-
sion time combinations were tested. In general, GA, a potent methodology, may open the door to 
the development of new computational methods in plant tissue culture.   
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1. Introduction 

Plant tissue culture is a well-acknowledged biotechnological approach for crop improvement, the synthesis of phytochemicals, and 
the in vitro conservation and propagation of numerous plant species [1]. It involves hypersensitive, accurate, multiple variables and 
processes that have been included while in view of the extended array of plant tissue culture-based techniques, viz., somatic 
embryogenesis, protoplast fusion, haploid production, hairy root culture, virus elimination, in vitro conservation, 
Agrobacterium-mediated genetic transformation, and very recently in vitro plant tissue culture has been playing a crucial role in 
genome editing technologies like CRISPR [2–6]. 

Successful culture commencement demands the removal of all contagious pathogens, including micro-arthropods like mites and 
thrips that can detrimentally affect the explant’s growth and developmental process the reason that the in vitro culture environment 
offers suitable nutrients and culture conditions for a broad range of microorganisms [7]. The microbes present in explants emancipate 
plant metabolites and other complex substances that negatively affect the plant tissues and amend the constituents and conditions of 
the culture medium [8]. The contamination colonizes the media at a quick growth rate and in combination with the nutrient’s 
availability, and the explant eventually dies in the following days. Disinfection competence be subject to the contamination types like 
epi phytic and endophytic or latent and chronic microbial contaminations, the explant features like kind, maturity, proportions, part of 
the explant, explant collection season and time, biological and physiological makeup of the donor plant, along with the culture 
conditions, coupled with the sterilization techniques [9,10]. As a result, numerous substances were utilized to create aseptic culture, 
including fungicides, antibiotics, hydrogen peroxide (H2O2), mercuric chloride (HgCl2), calcium hypochlorite Ca(OCl)2, and silver 
nanoparticles [11]. However, sodium hypochlorite (NaOCl) is the chemical disinfection alternative that is given the most thought due 
to its wide antibacterial spectrum, quick bactericidal activity, solubility in water, and general stability. Additionally, the explant’s 
future development pathway may be influenced by the disinfection process, and the explant’s health is the primary variable that has a 
significant impact on its capacity for regeneration. 

Utilising statistical models like response surface methodology (RSM) and neuro-fuzzy logic are different techniques for enhancing 
in vitro shoot growth by altering mineral nutrients. [12]; Gago et al., 2011; [13]. RSM is an approach in statistical for modelling and 
analysing reactions affected by several factors, with the primary goal of optimizing the response. A first-order RSM model (multiple 
regression) is used when the response is a linear function of the components. If the response surface has curvature, a higher-degree 
polynomial, such as a second-order polynomial, should be employed. The parameters of the polynomials are determined using the 
Least Squares method. Response Surface Methods are designs and models that enable continuous factor optimization [14]. RSM has 
been utilized in plant sciences to optimise the synthesis of intermediate metabolites, enzyme processes [15], and the growth medium 
[16]. 

Recently plant tissue culture is recognising the benefits of the application of artificial intelligence and optimization algorithms in 
spite of their complexity in genetic programming and modelling [5,17]. Radial Basis Function (RBF), Generalized Regression Neural 
Network (GRNN), Probabilistic Neural Network (PNN), Neuro-Fuzzy Logic (NFL), Support Vector Machine (SVM), and Multilayer 
Perceptron (MLP) are some of the most widely used artificial neural networks (ANNs) for modeling and protocol optimization in plant 
tissue culture. (Hesami et al., 2020 [18];). To achieve the optimum results during surface sterilization, the kind, and concentration of 
sterilant and immersion duration must be optimised for each species and explant. It is expensive and time-consuming to optimise this 
process, and some disinfectants might be harmful to human health or the environment. A hybrid AI-OA could be a trustworthy and 
practical statistical tool for forecasting and optimizing this stage to help solve the problem [19,20]. [19] indicated that MLP models 
with various neurons in the hidden layer and activations of both linear and sigmoid functions can accurately predict sterilization 
efficacy. 

The commercial fruit crop, grape (Vitis vinifera L.) originated in warm and temperate regions of the world. In line with a distinction 
in usage for fresh consumption (table grapes) or winemaking, grape varieties moved primarily westward from the cradle of domes-
tication6 due to human migration and maritime trade (wine grapes) [21,22]. Numerous non-linear biological processes that are only 
observed in plant tissue culture can be characterized by using appropriate methodologies for modeling and augmenting possible 
prediction of in vitro growth kinetics [12,23]. 

The RSM is a statistics-based optimization and design technique with two sets of variables known as independent and dependent. 
RSM analyses and presents the relationship between these two sets of variables. Among the different RSM classes, Box- Behnken Design 
(BBD) is the best model for both linear and non-linear relationships between the independent and dependent variables/responses. In 
ANN, the techniques Non-Linear Programming (NLP) method is more accurate than other ways, however, the process of solving the 
problem is time-consuming and complicated. Among the specific settings that the GA can be potentially put into operation, are 
optimization of different in vitro culture stages, optimization of the MLP neural network weights, and optimization of the relevant 
parameter in the present study to establish the clean culture and for explant viability. 

One of the most remarkable challenges confronting the advancement of in vitro culture is modelling the various processes of plant 
tissue development. This increase is a result of the physical complexity of plant tissue culture as well as the time and expense required 
for analysing various steps involved in vitro culture. Even while many biological events are easily visible at various phases of in vitro 
growth, they are all non-linear, non-deterministic, and affected by a variety of additional factors as well. Traditional statistics-based 
optimization is difficult to perform since it would require an excessive number of treatments due to the complicated interplay of 
numerous components. [24]; Hesami et al., 2020). In order to optimise protocols with fewer treatments, the deployment of the relevant 
AI models can be seen as a valuable and precise way to simulate and anticipate various growth and developmental processes under in 
vitro circumstances. Conventional optimization approaches focus on one specific Pareto-optimal solution at a time, transforming the 
multi-objective optimization problem into a single-objective problem by using multi-criterion decision-making techniques. This 
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strategy requires repeated application in order to find a variety of solutions during every test run. As the first evolutionary 
multi-objective optimization algorithm, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) seeks the domain of solutions for 
finding Pareto-optimal solutions in a multi-objective framework. 

Multi-objective functions can be used to assess the effectiveness of plant tissue culture techniques for optimization complications. 
The inputs must be optimised by numerous trials and errors. Genetic algorithms (GA) have been employed recently in studies to lower 
computing loads [24,25]. The most well-known optimization method, GA, helps to achieve the best results with the least amount of 
computation. On the other hand, plant tissue culture challenges must take into account multiple restrictions in order to meet diverse 
objective functions. The common GA, however, is a single-objective algorithm that cannot simultaneously optimise several functions. 
In accordance with this investigation, our efforts were focused on determining the optimal non-linear MLP-NSGAII modelling and 
optimization approach for sterilants and immersion time. In order to obtain the best efficiency and the ideal concentrations of sterilants 
as well as immersion times throughout the in vitro sterilization process, creating a strong association between the MLP model and 
NSGAII is our top goal. The main goal of this work was to model and optimise the ideal sterilant concentrations and immersion times 
for sterilising grape nodal explants. 

The goal of this study was to use Response Surface Methodology (RSM) and Artificial Neural Network (ANN) for estimating and 
optimizing the ideal doses of sterilising agents and impregnation time for disinfection of nodal explants of grapes root stock 3309C. 

2. Materials and methods 

2.1. Plant materials 

The nodal explants of grape rootstock “3309C” were collected from Castel Winery vineyard, Ziway, Ethiopia. The Castel winery 
vineyard is located in the town of Ziway with an elevation of around 1600 m above sea level, with a sub-humid to sub-arid climate. The 
nodal segments were used as explants from mature field-grown mother plants from the collection site. The healthy and young sprouts 
from the selected mother plants were selected for explant collection. The explants were collected during the early morning (7–9 a.m.) 
and the explants were stored in sterile water in tissue culture jars in the cooler box during transportation from the field to the lab-
oratory. The nodal explants were cleaned with running tap water for 30 min before being rinsed with a liquid soap solution. 
Furthermore, the laminar airflow chamber was sterilized using UV radiation. Besides, the explants were sterilized for 1 min in 70% 
aqueous ethanol, immersed in various concentrations and types of sterilising agents for varying periods, and washed three times in 
double distilled water. The segments were then inoculated on a 200-ml tissue culture jar with 30 ml MS basal media. 

2.2. Media and culture conditions 

[26] (MS) medium with 0.8% agar (Duchefa Biochemie, Netherlands) and 3% sucrose were employed as a basal media in this 
experiment. Before autoclaving at 121 ◦C for 20 min, the pH of the medium was adjusted to 5.8 with 1 N KOH or 1 N HCl. All cultures 
were kept at 26 ± 2 ◦C for 16 h with a light intensity of 50 μmol m− 2 s− 1 

2.3. Experimental design 

The trials were carried out using a completely randomized design (CRD, based on computational optimization techniques, the 
influence of sterilant and impregnation times on in vitro sterilization of rootstock (3309C) nodal explants was examined. 

2.4. Response surface methodology 

In order to determine the individual impact of the selected parameters on the clean culture and explant viability, a one-variable-at- 
a-time (OVAT) approach was executed [27]. In such a way, different concentrations of NaOCl (0.1, 0.5, 1, 1.5, 2.0, and 2.5%), 
impregnation times (5, 10, 15, 20, 25, and 30 min), concentrations of HgCl2 (0.1, 0.25, 0.5, 0.75, 1.0, and 1.25%), and concentrations 
of AgNO3 (0.1, 0.25, 0.5, 0.75, 1.0, and 1.25%) were examined via OVAT. During the OVAT test on one parameter, other parameters 
were kept constant. Accordingly, 15 min for impregnation time, and 1% for the concentration of HgCl2 and AgNO3, respectively, were 
fixed as constants while varying the NaOCl concentration. When applying the OVAT approach for impregnation time, the concen-
trations of HgCl2, AgNO3, and NaOCl were fixed at 1%, 1%, and 1.5%, respectively. Due to the preliminary impact of HgCl2, the 
concentrations of AgNO3 and NaOCl were fixed at 1.5 and 1%, respectively, with 15 min for impregnation time. Similarly, yet another 
independent factor, AgNO3, was examined by keeping other parameters constant, such as NaOCl and HgCl2, at 1.5 and 1%, respec-
tively, for 15 min of impregnation time. Based on the results obtained, the limit values were determined for each independent variable. 
Accordingly, the interaction limits were selected for further response surface analysis and optimization. The response surface method 
is a well-known statistical approach that can be widely applied to obtain models of correlation, interaction effects, and optimization. In 
the present study, the chosen four parameters, viz., impregnation time and concentration for NaOCl, HgCl2, and AgNO3, were sta-
tistically correlated using the RSM approach. For that, the Box-Behnken design (BBD) was executed to test the different combinations 
of the parameters (Dimitriadou et al., 2022). The experiments were conducted based on a completely randomised design (CRD) using a 
factorial arrangement with 29 combinations of treatments. The effect of sterilising agents and impregnation times on in vitro sterili-
zation of grape rootstock was evaluated by determining the percent clean culture and percent explant viability after three weeks of 
inoculation. Design-Expert® software was used for generating BBD combinations, modelling, and optimization. In general, the model 
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can be generated by the software as presented in equation (1) [28]. 

y= β0 +
∑

βixi +
∑

βiix2
i +

∑
βijxiXj (1)  

Whereas, y is known as the response (in the present study, clean culture/explant viability). βi, βij, and βii are the corresponding co-
efficients. β0 is constant. xi refers to the independent variable. ANOVA (analysis of variance) was applied to analyze the appropri-
ateness of the model. Followed by 3-D response surface plots were generated to visualize the effects of the independent variables on the 
response. 

2.5. Artificial neural network (ANN) 

The artificial neural network is a biologically inspired module of one of the important aspects of artificial intelligence called 
machine learning (Chen et al., 2021). In the world of medicine, the deep learning methodology is effective for the process of disease 
detection and categorization. The disease Covid-19 and brain tumors were identified using Deep Convolutional Neural Network 
(DCNN) [29,30]. ANN functions are synonyms for the brain of a human being. In the brain, sensory processing occurs through the 
adjustment of neurons in response to a specific synoptic signal. Similarly, ANN processes information by sending it through a network 
of interconnected nodes called neurons. As the signal travels through these nodes, adjustments are made to the weights and biases 
associated with these networks. The adjustments will proceed until a desirable outcome or output is attained. In this study, the ANN 
model was constructed using the experimental conditions and responses obtained from RSM-based optimization. The NNTOOL (Neural 
Network Toolbox) of MATLAB software (R2013a version) was used to deploy the ANN model. To construct the ANN model, the number 
of input nodes in the input layer was adjusted to the total number of experimental variables used (number of input nodes = 4), and they 
correspond to NaOCl concentration, impregnation time, HgCl2 concentration, and AgNO3 concentration. Concurrently, the number of 
nodes in the output layer was set to the sum of dependent variables (number of output nodes = 2), and they correspond to clean culture 
% and explant viability %. The network type and learning rule adapted to construct the ANN model were feed-forward back--
propagation and the Levenberg-Marquardt algorithm, respectively [31]. Additionally, transfer functions such as tansig (tangent 
sigmoidal transfer function) and purelin (linear transfer function) are used to activate the neurons of the input and output layers. To 
construct a desirable ANN model, the optimal number of neurons required in the hidden layer was determined by constructing an ANN 
architecture with different numbers of hidden layer neurons ranging from 1 to 25. The mean square error (MSE) obtained during the 
validation of the network performance was used as a criterion to select the optimal number of neurons required in the hidden layer. 
Prior to setting the sample input and target data, normalization of the data was carried out to hasten the training process using 
equation (2) [32]. 

Normalization=
2 ∗

(
xA − xA,min

)

xA,max − xA,min
− 1 (2)  

where xA, xA, min, and xA, max are the experimental data and the maximum and minimum values of the experimental data. After 
constructing the network, network training was carried out using the input and target data. Once the training was completed, the 
output predicted by the ANN was subjected to denormalization using equation (2). Then, performance metrics such as correlation 
coefficient (R) [equation (3)], coefficient of determination (R2) [equation (4)], adjusted coefficient of determination (adj. R2) 
[equation (5)], mean square error (MSE) [equation (6)], root mean square error (RMSE) [equation (7)], mean absolute error (MAE) 
[equation (8)], standard error of prediction (SEP) [equation (9)], and absolute average deviation (ADD) [equation (10)] were 
calculated for both ANN and RSM predicted outcomes using the following expressions: 

R=

∑n

i=1

(
ti − ti,avg

)
∗
(
oi − oi,avg

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
∑n

i=1

(
ti − ti,avg

)2
∗
∑n

i=1

(
oi − oi,avg

)2
]√ (3)  

R2 = 1 −

∑n

i=1
(oi − ti)

2

∑n

i=1

(
ti − oi,avg

)2
(4)  

Adj − R2 = 1 −

[(
1 − R2

)
∗ N − 1

N − k − 1

]

(5)  

MSE=
1
n
∑n

i=1
(ti − oi)

2 (6)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ti − oi)

2

√

(7) 
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MAE=
1
n

∑n

i=1
|ti − oi| (8)  

SEP=
RMSE
oi,avg

∗ 100 (9)  

AAD=
1
n

∑n

i=1

⃒
⃒
⃒
⃒
oi − ti

oi

⃒
⃒
⃒
⃒ (10)  

where oi is the observed experimental data, ti is the predicted data from RSM and ANN, oi,avg is the average value of the observed 
experimental data, and ti,avg is the average of the predicted values, N/n is the number of experimental runs, and k is the sum of the 
experimental variables used in this study [33]. In addition, a separate set of six experimental combinations that were not part of 
RSM-based experiments was carried out to validate the predictions made by both RSM and ANN. 

2.6. Multi-objective genetic algorithm 

The genetic algorithm (GA) is a metaheuristic search algorithm developed akin to the natural selection theory of Darwin and widely 
used to solve problems involved in constrained and unconstrained optimization [34]. The simultaneous optimization of both clean 
culture % and explant viability percent falls into the domain of multi-objective optimization. In GA, an optimization procedure called 
non-dominated sorting genetic algorithm II (NSGA-II) was widely employed to solve multi-objective optimization problems [35]. 
While employing NSGA-II for solving multi-objective optimization problems, a set of equally good solutions called a pareto solution 
will be obtained rather than a single solution. The regression equations obtained at the end of the RSM-based optimization were used as 

Fig. 1. Results obtained from OVAT approach for NaOCl, impregnation time, HgCl2, and AgNO3 on clean culture and explant viability.  
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a fitness function to run multi-objective GA. The ‘gamultiobj’ function of the optimization toolbox of MATLAB software (R2013a 
version) was used to implement multi-objective GA in this study. The parameters used to run multi-objective GA include population 
size = 80, crossover fraction = 0.75, mutation rate = 1.0, and the maximum time allowed for iteration = 120 min. 

3. Results 

The success of in vitro-based plant biotechnology requires contamination-free culture. Aseptic initiation is a particularly difficult 
step, especially in woody species. Meanwhile, over-sterilization may be harmful to plant tissue. With the recent rise of machine 
learning algorithms in plant tissue culture, an advanced interpretive tool for the combinational effect of influential factors for such in 
vitro-based steps is proposed. 

3.1. Response surface plots, interaction analysis, and modelling 

Prior to carrying out the response surface analysis, the selected independent parameters were undertaken for the determination of 
limits that are to be studied for the interaction effect and optimization. Accordingly, the OVAT method was executed for each 
parameter, as illustrated in Fig. 1. From the results, the mid-value of the selected parameters was found to be 1.5% for NaOCl, 20 min 
for impregnation time, and 1% for HgCl2 and AgNO3. Using these outcomes, the BBD of the experiment (as presented in Table 1) was 
developed using Design-Expert® software. According to the experimental investigation, the clean culture and explant viability were 
determined after three weeks of inoculation and analyzed through the RSM. Further, the models were developed for clean culture 
[Equation (11)] and explant viability [Equation (12)] with respect to the selected parameters were given below. 

CleanCulture(%)= − 85.04167 + 50.83333(A) + 3.54167(B) + 133(C) + 114(D) + 0.2(A)(B) − 10.5(A)(C) + 1(A)(D) − 2.13

× 10− 16(B)(C) + 1.25(B)(D) − 4(C)(D) − 15.95833(A)
2
− − 0.134583(B)2

− 79.83333(C)2
− 67.83333(D)

2

(11)  

Explantviability(%)= − 74.3+ 28.55(A)+ 4.54(B)+ 126.43333(C)+ 108.46667(D)+ 0.2(A)(B)+ 0.375(A)(C) − 8.5(A)(D)

+ 6(B)(C)− 0.35(B)(D) + 5.63 × 10− 16(C)(D) − 12.55833(A)
2
− − 0.128083(BTime)2

− 64.23333(C)2

− 52.23333
(12) 

Using the aid of the RSM-BBD, the importance of the independent process parameters, like the concentration of NaOCl, HgCl2, 
AgNO3, and impregnation time, was examined on clean culture and explant viability. Fig. 2(a–f) shows the interaction upshots (3-D 
response surface) of different combinations of two selected parameters on clean culture and explant viability, respectively. The 
outcome with respect to interaction effects for all chosen combinations on the development of clean culture followed an increasing 
trend up to an optimal level, then showed a decline in response except at the optimal point. This optimal value can be statistically 
determined by solving the model developed by RSM. Equation (11) depicts the correlation between clean culture and the chosen 
parameters. Statistical analysis using the ANOVA has been provided in Table 1 for the model correlation to clean culture. 

From the model, the mutual interaction of NaOCl and HgCl2 concentration showed an undesirable effect on the development of 
clean culture with a coefficient value of 10.5. Similarly, the mutual interaction of the concentrations of HgCl2 and AgNO3 had a 
negative impact on the clean culture, with a coefficient value of 4. Among the selected parameters, impregnation time and concen-
tration of HgCl2 showed no interaction effect since the mutual interaction had an ignorable value. As seen in Table 2, the p-value of the 

Table 1 
Statistical analysis using ANOVA for the model development on clean culture.  

Source Sum of Squares df Mean Square F-value p-value 

Model (Significant) 5251.84 14 375.13 562.7 <0.0001 
A: Conc. of NaOCl 0.0833 1 0.0833 0.125 0.7289 
B: Impregnation Time 102.08 1 102.08 153.12 <0.0001 
C: Conc. of HgCl2 126.75 1 126.75 190.12 <0.0001 
D: Conc. of AgNO3 10.08 1 10.08 15.13 0.0016 
AB 16 1 16 24 0.0002 
AC 110.25 1 110.25 165.37 <0.0001 
AD 1 1 1 1.5 0.2409 
BC 0 1 0 0 1 
BD 156.25 1 156.25 234.37 <0.0001 
CD 4 1 4 6 0.0281 
A2 1651.9 1 1651.9 2477.85 <0.0001 
B2 1174.88 1 1174.88 1762.31 <0.0001 
C2 2583.8 1 2583.8 3875.69 <0.0001 
D2 1865.42 1 1865.42 2798.12 <0.0001 
Residual 9.33 14 0.6667   
Lack of Fit (Not Significant) 7.33 10 0.7333 1.47 0.3797 
Pure Error 2 4 0.5   
Cor Total 5261.17 28     
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model has been found to be less than 0.001, which indicates that the model had a substantial effect on the experimental output. The F- 
value of the acquired model was 562.70, which implied the model was significant. Fig. 3(a–f) illustrates the output of explant viability 
for different combinations of selected parameters. The outcome with respect to interaction effects for all chosen combinations on the 

Fig. 2. The developed 3-D interactive plots for illustrating the clean culture as response with respect to different combinations of selected pa-
rameters (a) Interaction effect of impregnation time and NaOCl concentration, (b) Interaction effect of HgCl2 concentration and NaOCl concen-
tration (c) Interaction effect of AgNO3 concentration and NaOCl concentration (d) Interaction effect of HgCl2 concentration and impregnation time 
(e) Interaction effect of AgNO3 concentration and impregnation time (f) Interaction effect of AgNO3 concentration and HgCl2 concentration. 
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explant viability also flowed an upsurge trending up to an optimal level; further, it showed a decline in response except at the optimal 
point. Equation (12) gives the correlation between explant viability and the chosen parameters. A statistical analysis using the ANOVA 
has been provided in Table 2. From the model, the mutual interaction of NaOCl and AgNO3 concentration was found to have an 
undesirable effect on the development of explant viability with a coefficient value of 8.5. Similarly, the mutual interaction of the 
concentrations of HgCl2 and AgNO3 had a significant negative impact on the explant viability, with a coefficient value, 16. It was 
observed that impregnation time and concentration of AgNO3 had no interaction effect that could be ignored. 

3.2. ANN-based modelling and comparison with RSM 

ANN-based models are widely employed as a non-statistical strategy to relate independent variables (input) with dependent 
variables (target). The ANN makes use of a known set of experimental combinations and their corresponding outcomes to construct a 
model that can predict the outcomes of unknown experimental combinations. The models’ accuracy for the two examined parameters 
was demonstrated by a high coefficient of determination between observed and predicted values for both the training and testing 
processes. In plant tissue culture, ANN has demonstrated high efficacy in numerous investigations. [24,25,36]; Jamshidi et al., 2016) 
In this study, the ANN model was constructed, relating the input variables such as HgCl2 concentration, impregnation time, HgCl2 
concentration, and AgNO3 concentration with their responses like clean culture % and explant viability %. Prior to the network’s 
construction, the dataset was separated into training (70% of the data), validation (15% of the data), and testing (15% of the data) 
categories. After constructing the network, training of the model was carried out with different numbers of neurons in the hidden layer 
(1–25). Among these training phases, the minimum validation MSE of 0.015201 was obtained when training the network with 4 
neurons in the hidden layer (Figs. 4 and 5). In addition to MSE, the highest regressions obtained during the training, validation, and 
testing phases are 0.98758, 0.9832, and 0.98922, respectively. Similarly, the overall regression was found to be 0.98676, which in-
dicates a good correlation between the actual data and the predicted data. Hence, ANN was successfully implemented to predict the 
sterilization efficiency of the input variables. The regression plots associated with the training, validation, and testing of ANN are 
depicted in Fig. 6. While constructing the successful ANN-based models [equations 13–16], the weight and bias values were adjusted to 
the following values: 

iw{1, 1}= [ − 5.7046 4.0522 2.0669 3.2041; 1.3577 1.8533 8.5268 − 3.3571; − 4.4294 0.94039 − 3.9394 − 2.0477; − 2.9136
− 2.0558 − 2.5812 − 6.1561]

(13)  

iw{2, 1}= [1.0439 − 1.3256 − 1.2383 1.1145; 1.2035 − 1.1932 − 1.1585 1.1165] (14)  

b{1}= [6.4006; − 5.3315; − 2.8773; 2.7252] (15)  

b{2}= [− 2.9121; − 2.8326] (16) 

The clean culture percentage and explant viability percentage predicted by both RSM and ANN models for all 29 experimental runs 
are tabulated in Table 3. When comparing the predictions, it was found that both RSM and ANN-predicted values were close enough to 
the observed clean culture percentage and explant viability percentage. When comparing the models, the RSM-based optimization 
model predicted the outcome more accurately than the ANN-based model. Hence, the residuals of RSM-predicted values are found 
closer to the value of 0. A strong fluctuation in the residuals of the ANN-predicted values was observed, as can be seen in Figs. 7 and 8. 
In addition to this, the performance metrics of the RSM-based prediction model are relatively better than those of the ANN-based 

Table 2 
Statistical analysis using ANOVA for the model development on explant viability.  

Source Sum of Squares df Mean Square F-value p-value 

Model (Significant) 3619.6 14 258.54 728.78 <0.0001 
A: Conc. of NaOCl 48 1 48 135.3 <0.0001 
B: Impregnation Time 96.33 1 96.33 271.54 <0.0001 
C: Conc. of HgCl2 96.33 1 96.33 271.54 <0.0001 
D: Conc. of AgNO3 3 1 3 8.46 0.0115 
AB 56.25 1 56.25 158.56 <0.0001 
AC 72.25 1 72.25 203.66 <0.0001 
AD 36 1 36 101.48 <0.0001 
BC 12.25 1 12.25 34.53 <0.0001 
BD 0 1 0 0 1 
CD 64 1 64 180.4 <0.0001 
A2 1023 1 1023 2883.61 <0.0001 
B2 1064.1 1 1064.13 2999.56 <0.0001 
C2 1672.7 1 1672.67 4714.91 <0.0001 
D2 1106.1 1 1106.08 3117.8 <0.0001 
Residual 4.97 14 0.3548   
Lack of Fit (Not Significant) 4.17 10 0.4167 2.08 0.2498 
Pure Error 0.8 4 0.2   
Cor Total 3624.6 28     
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model (Table 4). Finally, the validation experiments performed with a set of separate experimental combinations yielded results that 
were close to the ANN-predicted clean culture percentage and explant viability percentage (Table 5). Therefore, ANN can be used to 
model surface sterilization for plant tissue culture. 

In recent times, an increasing number of studies utilize ANN-based methods to model a variety of processes, including the 

Fig. 3. The developed 3-D interactive plots for illustrating the explant viability as a response with respect to different combinations of selected 
parameters (a) Interaction effect of impregnation time and NaOCl concentration, (b) Interaction effect of HgCl2 concentration and NaOCl con-
centration (c) Interaction effect of AgNO3 concentration and NaOCl concentration (d) Interaction effect of HgCl2 concentration and impregnation 
time (e) Interaction effect of AgNO3 concentration and impregnation time (f) Interaction effect of AgNO3 concentration and HgCl2 concentration. 
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procedures for tissue culturing. For instance Ref. [37], have used a multi-layer perceptron to model the in vitro sterilization of Pistacia 
vera L. explants. The RMSE and R2 values obtained by them are found to be quite inferior to the performance metrics observed in this 
study. In another study by Ref. [38]; ANN was used to model the disinfection and scarification of cannabis seeds for in vitro propa-
gation. The R2 values for the training and testing datasets were found to be 0.938 and 0.918, respectively. When compared to this 
study, both RMSE and R2 values obtained by Ref. [38] were significantly lower. Therefore, the model developed in this study is more 
robust in performance than previously reported ANN models for sterilization of explants for plant tissue culture. 

3.3. Multi-objective GA – RSM hybrid model 

Despite the better prediction efficiency, the RSM-based model fails to provide global optimal solutions. Hence, RSM-based models 
are always combined with GA to yield the global optimum. In this study, multi-objective GA was implemented due to the simultaneous 
optimization of clean culture percent and explant viability percent. After running GA, a set of 21 Pareto solutions was obtained, which 
are depicted in Fig. 9 and Table 4. Among these solutions, solution number 1 shows the maximum clean culture of 91.293667%. 
Similarly, the maximum explant viability of 88.558319% was observed in solutions 2 and 19. But the best solution should have both 
response variables at reasonably high values. Solution number 4 has both clean culture and explant viability at reasonably high values 
of 91.280797% and 88.507402%, respectively. A confirmatory experiment over the experimental conditions in solution number 4 
yields a clean culture of 91% and 89%, respectively. Fig. 10 depicts the growth of the plant, which had been carried out according to 
optimised sterilising conditions acquired by GA. 

4. Discussion 

While optimizing with different sophisticated techniques, such as statistical (RSM), non-statistical (ANN), and multi-objective GA, 
solution number 4 from Table 6 was found to be a globally optimal solution. By allowing for the construction of AI models from 
experimental and observed data and by also enhancing decision-makers responses to complex systems in plant tissue culture, AI 

Fig. 4. Mean square error vs number of hidden layer neurons plot.  

Fig. 5. The performance plot of the constructed ANN model.  
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models have been noticed to be highly relevant as accurate methods to help manage such issues and challenges. It can be challenging 
for optimization using conventional methods, where single variables are often examined sequentially in isolation, due to the intricacy 
of plant tissue culture techniques and the interactive complexity of the variables. For Instance, the two critical concerns in the medical 
industry are considering analysing data and a precise diagnosis. However, analysing pulmonary abnormalities is time-consuming and 
may depend on the doctors’ diagnostic competence and clinical expertise [39]. Pre-processing is done on the pulmonary incoming 
sound patterns in order to successfully extract the key elements required for future processing. With the help of the collected features, 
data augmentation is done to improve detection performance overall by reducing overfitting challenges [40]. Although RSM can detect 
curvature in the response in addition to linear effects, it cannot combine nominal data, such as cultivars; as a result, it creates separate 
individual models for each cultivar, making the data analysis in plant tissue culture studies more time-consuming and difficult. 
(Hesami et al., 2020). 

In this line [41], have observed that the apical tips treatment of adult male pistachio by increasing NaOCl concentration from 5 to 
20% (v/v) for 20 min resulted in better decontamination, however, the proportion of survived explants was negatively affected. In 
addition, the outcome of this study supports the results documented by Ref. [42]. In this line, the lowest contamination and browning 
response with the highest percentage of callus induction and growth were obtained in Melia azedarach L. culture with benomyl (a 
systemic fungicide) pre-treatment (2 g L− 1) for 2 h, 7% H2O2 for 10 min, and 2% (w/v) NaOCl for 12 min. As a result, variable but 
convergent chemical levels are generally recommended for effective decontamination. 

In theory, regardless of the potential induced damage, a more concentrated disinfectant, escorted or not with increased exposure 
time, will ensure the eradication of more microorganisms. This is evident, for example, during in vitro sterilization of chrysanthemum 
using various concentrations of six sterilising agents and impregnation times [20]. However, this notion was refuted here because more 
emphasis on treatment does not always result in better asepsis. Disinfection treatment, combined with other variables such as explant 
orientation (vertical, inverted vertical, horizontal, and abaxial or adaxial face), can have a major impact on tissue response. Hot water 
and plant preservative mixture (PPM), a broad-spectrum biocide/fungicide for plant tissue culture, improves bud germination and 
differentiation in ginger (Zingiber officinale) explants by 4–50%. As previously stated, a variety of surface disinfectants with varying 

Fig. 6. The regression plots of the constructed ANN model (a) training, (b) validation, (c) test, and (d) overall performance.  
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degrees of effectiveness have been used in plant tissue culture, frequently in conjunction with a few drops of a wetting agent (e.g., 
Tween 20). Nonetheless, NaOCl is the most widely used compound [43]. The germicidal effect of NaOCl was attributed primarily to 
hypochlorous acid (HOCl) in diluted solution and to its high pH (12.5–13.5) and hypochlorite ion (ClO) oxidizing agent in concen-
trated form [44]. Similar to our findings [45], demonstrated that for the surface sterilization of Pinellia ternata (Thunb.) Breit, HgCl2 
was superior to NaClO and H2O2. Most people think that HgCl2 is a potent disinfectant. Living materials should not lose biological 
activity by sterilization procedures, and only contaminants should be removed; explants should be surface sterilized only by treatment 
with the disinfectant solution at appropriate concentrations for a specified period [46]. 

Our results showed that 0.7% AgNO3 showed the maximum explant viability and clean culture. In many crop plants, including the 
Brassica species, the Capsicum species, and Coffea canephora, AgNO3 is known to increase in vitro regeneration [47,48]. The sterili-
zation technique is the most significant step for establishing successful in vitro plant regeneration in different crop species. [49–51]; Gu 

Table 3 
Comparison of RSM and ANN-predicted percentage of clean culture and percentage of explant viability.  

Run. 
No 

NaOCl 
(%) 

Impregnation 
time (min) 

HgCl2 

(%) 
AgNO3 

(%) 
Observed 
clean 
culture % 

RSM- 
predicted 
clean culture 
% 

ANN- 
predicted 
clean culture 
% 

Observed 
explant 
viability % 

RSM- 
predicted 
explant 
viability % 

ANN- 
predicted 
explant 
viability % 

1 0.5 20 1.25 1 56 57 54.55 63 63 61.03 
2 2.5 20 0.75 1.5 59 59.58 60.58 64 64.08 62.86 
3 0.5 20 0.75 1.5 58 58.42 59.02 63 62.08 62.21 
4 1.5 10 1.25 1 57 57.25 55.92 61 61.08 62.42 
5 2.5 30 0.75 1 60 60.75 60.35 62 61.75 62.73 
6 2.5 10 0.75 1 62 62.58 62.39 60 59.92 59.57 
7 1.5 30 0.75 1.5 65 64.83 60.58 60 60 62.87 
8 1.5 20 0.25 0.5 55 55.42 53.85 58 57.42 58.51 
9 1.5 30 1.25 1 52 51.42 47.11 52 51.92 51.16 
10 2.5 20 0.75 0.5 57 56.75 53.81 56 57.08 54.86 
11 1.5 20 0.75 1 91 91 90.79 88 88.2 88.03 
12 1.5 10 0.75 1.5 59 58.17 63.26 66 65.67 65.17 
13 1.5 20 0.75 1 90 91 90.79 88 88.2 88.03 
14 0.5 20 0.25 1 53 53 56.39 60 60.17 61.55 
15 0.5 10 0.75 1 67 66.42 67.18 71 71.42 70.93 
16 1.5 20 0.75 1 91 91 90.79 88 88.2 88.03 
17 1.5 20 1.25 0.5 51 50.92 54.05 60 59.75 60.53 
18 2.5 20 0.25 1 65 63.67 65.66 65 64.67 62.09 
19 1.5 20 0.25 1.5 59 59.25 61.40 66 66.42 63.91 
20 1.5 10 0.25 1 63 63.75 62.22 63 63.25 63.90 
21 2.5 20 1.25 1 47 46.67 47.10 51 50.5 51.15 
22 1.5 20 1.25 1.5 51 50.75 49.01 52 52.75 53.20 
23 1.5 20 0.75 1 92 91 90.79 89 88.2 88.03 
24 1.5 10 0.75 0.5 69 68.83 68.84 65 64.67 65.06 
25 0.5 20 0.75 0.5 58 57.58 56.37 67 67.08 61.53 
26 1.5 30 0.25 1 58 57.92 57.02 61 61.08 62.14 
27 1.5 30 0.75 0.5 50 50.5 55.47 59 59 61.27 
28 1.5 20 0.75 1 91 91 90.79 88 88.2 88.03 
29 0.5 30 0.75 1 57 56.58 56.62 58 58.25 61.77  

Fig. 7. Residual plot for percentage of clean culture.  
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et al., 2022). Traditional optimization techniques focus on one specific Pareto-optimal solution at a time, transforming the 
multi-objective optimization problem into a single-objective problem by using multi-criterion decision-making techniques. This 
strategy requires repeated application in order to find a variety of solutions during every computational run. The complexity of the 
network is influenced by the number of neurons, and the network is simpler when there are fewer neurons. It is emphasised that 
underfitting occurs when a network is too basic, while overfitting occurs when a network is too complicated. This current investigation 
is a case study of the efficacy of these tools and the successful implementation of a multi-objective genetic algorithm that can be 
extended to any nonlinear multivariate process. 

5. Conclusion 

By considering various constraints, problems involving plant tissue culture must satisfy various conflicting objective functions. 
Therefore, using a multiobjective algorithm in the optimization process is absolutely necessary. As a case study, this study has 
introduced MLP-NSGAII as a new computational tool for prediction and optimization of sterilization techniques in grape root stock 
3309C as an initial step for efficient in vitro plant regeneration. Based on the results, MLPNSGAII can more quickly and accurately 
identify interaction effects for a large number of experiments than with traditional statistical analysis. Finally, MLP-NSGAII can be 

Fig. 8. Residual plot for percentage of explant viability.  

Table 4 
Performance measures of RSM and ANN-prediction models.   

Clean culture % Explant viability % 

Metrics RSM ANN RSM ANN 
R 0.9991 0.9859 0.9993 0.9877 
R2 0.9982 0.9718 0.9986 0.9746 
Adj-R2 0.9979 0.9671 0.9984 0.9704 
MSE 0.3212 5.0975 0.1710 3.0681 
RMSE 0.5667 2.2578 0.4135 1.7516 
MAE 0.4479 1.6417 0.3072 1.2364 
SEP 0.8917 3.5526 0.6507 2.7562 
AAD (%) 0.0154 0.0288 0.0049 0.0200  

Table 5 
Validation dataset used to test RSM and ANN models.  

Run. 
No 

NaOCl 
(%) 

Impregnation 
time (min) 

HgCl2 

(%) 
AgNO3 

(%) 
Observed 
clean 
culture (%) 

RSM- 
predicted 
clean culture 
(%) 

ANN- 
predicted 
clean culture 
(%) 

Observed 
explant 
viability (%) 

RSM- 
predicted 
explant 
viability (%) 

ANN- 
predicted 
explant 
viability (%) 

1 2.5 30 1.25 0.5 46.25 8.67 52.48 42.28 24.30 58.58 
2 2.5 20 0.75 1.5 52.88 59.58 47.15 53.42 64.08 51.22 
3 0.5 30 1.25 1.5 42.15 27.33 47.59 49.87 22.30 51.65 
4 1.5 10 0.25 0.5 49.76 51.13 47.20 48.92 45.69 51.13 
5 2.5 30 1.25 1 78.44 32.29 86.90 81.65 36.86 84.90 
6 0.5 10 0.25 1.5 48.31 22.67 56.63 60.77 40.63 61.78  
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Fig. 9. The pareto chart depicts the percentage of clean culture vs percentage of explant viability.  

Fig. 10. Effect of sterilization procedure of nodal explants of the grape root stock 3309C (a). Shoot initiation after three weeks of inoculation from 
the viable nodal explants from the optimised sterilization procedure (1.5099% of NaOCl, 0.7085% HgCl2 and 1.0054% of AgNo3). (b) Shoot 
initiation after a week of second subculture in the optimised disinfection protocol. (c) Explants with chlorosis in higher concentration of 
HgCl2 (0.72%). 

Table 6 
The pareto solutions obtained from multi-objective GA.  

Solution No. NaOCl (%) Impregnation time (min) HgCl2 (%) AgNO3 (%) Clean culture % Explant viability % 

1 1.5099 18.9501 0.7085 1.0051 91.2937 88.4518 
2 1.4181 18.8522 0.7133 1.0106 91.1594 88.5583 
3 1.4657 18.9177 0.7107 1.0066 91.2631 88.5287 
4 1.4813 18.9155 0.7101 1.0065 91.2808 88.5074 
5 1.5012 18.9058 0.7102 1.0074 91.2917 88.4723 
6 1.4927 18.8867 0.7104 1.0090 91.2874 88.4897 
7 1.4940 18.9406 0.7092 1.0055 91.2898 88.4849 
8 1.4628 18.9437 0.7095 1.0090 91.2576 88.5332 
9 1.4262 18.8543 0.7129 1.0101 91.1819 88.5575 
10 1.4408 18.8852 0.7101 1.0080 91.2178 88.5511 
11 1.4509 18.8932 0.7115 1.0088 91.2382 88.5447 
12 1.4688 18.9110 0.7095 1.0055 91.2672 88.5242 
13 1.5045 18.9475 0.7091 1.0056 91.2932 88.4640 
14 1.4541 18.9103 0.7114 1.0094 91.2437 88.5421 
15 1.4240 18.8706 0.7132 1.0106 91.1760 88.5578 
16 1.4610 18.8742 0.7107 1.0077 91.2556 88.5347 
17 1.4963 18.9069 0.7096 1.0068 91.2904 88.4815 
18 1.4474 18.8989 0.7118 1.0095 91.2312 88.5475 
19 1.4181 18.8522 0.7133 1.0106 91.1594 88.5583 
20 1.4292 18.8715 0.7129 1.0101 91.1899 88.5567 
21 1.5099 18.9501 0.7085 1.0054 91.2937 88.4520  
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acknowledged as a potent technique for application in various in vitro culture fields. Neural modelling may be used in the future to 
mechanize and automate plant breeding through in vitro cultures and to separate plant tissues based on quality, even under aseptic 
conditions. ANNs have a strong potential for modelling studies in plant in vitro cultures and can be useful as a prognostic tool as well. 
Additionally, ANNs are more advantageous than other strategies in hybrid models and are very flexible. 
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