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ABSTRACT

Kinases play central roles in signaling pathways
and are promising therapeutic targets for many
diseases. Designing selective kinase inhibitors
is an emergent and challenging task, because
kinases share an evolutionary conserved ATP-
binding site. KIDFamMap (http://gemdock.life.nctu.
edu.tw/KIDFamMap/) is the first database to explore
kinase-inhibitor families (KIFs) and kinase-inhibitor-
disease (KID) relationships for kinase inhibitor
selectivity and mechanisms. This database
includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor
interactions (KIIs), 35 788 kinase inhibitors, 399
human protein kinases, 339 diseases and 638
disease allelic variants. Here, a KIF can be defined
as follows: (i) the kinases in the KIF with significant
sequence similarity, (ii) the inhibitors in the KIF
with significant topology similarity and (iii) the KIIs
in the KIF with significant interaction similarity. The
KIIs within a KIF are often conserved on some
consensus KIDFamMap anchors, which represent
conserved interactions between the kinase subsites
and consensus moieties of their inhibitors. Our
experimental results reveal that the members of a
KIF often possess similar inhibition profiles. The
KIDFamMap anchors can reflect kinase conform-
ations types, kinase functions and kinase inhibitor
selectivity. We believe that KIDFamMap provides
biological insights into kinase inhibitor selectivity
and binding mechanisms.

INTRODUCTION

Protein kinases play central roles in signaling pathways
and cell cycle regulation (1,2). Protein kinases are one of
the most important classes of drug targets, because the
deregulation of kinase functions is often implicated in
many diseases, such as cancers and neurological and meta-
bolic diseases (2–4). Therefore, inhibition of protein
kinases has been considered as a promising therapeutic
strategy for the treatment of the diseases. Although
many kinase inhibitors have been developed, most of
them lack selectivity and interact with multiple protein
kinases, resulting in unexpected side effects (5–7). The
major factor is that the protein kinases share an evolution-
ary conserved ATP-binding site (8). Therefore, under-
standing of kinase-inhibitor binding mechanisms and
selectivity, as well as kinase-inhibitor-disease (KID) rela-
tionships will be helpful for designing selective kinase
inhibitors.

As increasing numbers of reliable kinase-inhibitor
assays and complex structures become available, and as
high-throughput binding assays provide systematic identi-
fication of kinase-inhibitor interactions (KIIs), there is a
growing need for the establishment of a comprehensive
database to describe kinase-inhibitor and KID relation-
ships for studying protein kinase inhibitor selectivity and
binding mechanisms. Kinase-inhibitor structures provide
the atomic details of KIIs, kinase conformations and
inhibitor types. Large-scale kinase profiling of known
inhibitors has proven useful for studying the selectivity
of protein kinases and inhibitors, with various reports
elucidating the inhibition assays of 38 compounds
against 317 kinases (5), 178 compounds against 300
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kinases (6) and 72 compounds against 442 kinases (7).
Moreover, some databases such as Protein Data Bank
(PDB) (9) and BindingDB (10) have accumulated kinase
inhibition assays. ChEMBL kinase SARfari incorporates
and links kinase sequences, structures, compounds and
screening data (11). As the number of these databases
and binding assays continues to grow, they will become
increasingly useful for analyzing kinase inhibitor selectiv-
ity and binding mechanisms. In addition, many methods
have been proposed to design selective kinase inhibitors
for minimizing adverse effects (12–15) by comparing the
sequence and structure diversity and conservation.
However, most of these methods are often unable to
provide the large-scale subsite–moiety interactions of
kinase subsites and compound moieties for reflecting
kinase inhibitor selectivity and binding mechanisms.

We have recently reported site-moiety maps (SiMMaps)
for elucidating protein-inhibitor binding mechanisms and
discovering new inhibitors (16,17). A SiMMap represents
physicochemical properties and interaction preferences of
a protein-binding site by several anchors. A SiMMap
anchor consists of three essential elements: the binding
pocket (a part of the binding site) with conserved interact-
ing residues; the compound moiety preferences of the
pocket; and the pocket–moiety interaction type (electro-
static, hydrogenbonding or van der Waals). The consensus
anchor, the subpocket–moiety interactions with statistical
significance sharing by some particular protein kinases,
can be regarded as a ‘hot spot’ that represents the
conserved binding environments involved in inhibitor
bindings and biological functions. As a result, a group
of KIIs with consensus anchors can constitute a kinase-
inhibitor family (KIF), which is analogous to a protein
sequence family (18,19), a structure family (20) and a
protein–protein interaction family (21).

To elucidate protein kinase inhibitor selectivity and
binding mechanisms, we have developed the
KIDFamMap database to explore KIFs and KID rela-
tionships. The KIIs exhibited in a KIF are often conserved
on a number of consensus anchors, the conserved struc-
tural subsites interacting with consensus moieties of their
inhibitors. These anchors are situated in the ATP-binding
site, N-terminal lobe (N-lobe), head of activation loop
(A-loop) pocket, C-terminal lobe (C-lobe) and substrate
site. We evaluated 1208 KIFs in this database by
comparing the results of large-scale kinase profiling
assays. Our experimental results reveal that the members
of a KIF often possess similar inhibition profiles. In this
database, we also collected 962 kinase-disease relation-
ships and 638 disease allelic variants from public data-
bases to provide KID relationships. In addition, the
anchors of KIFs can reflect several major kinase conform-
ation types [e.g. DFG-in (22), DFG-out (22), A-loop-out
and A-loop-in], kinase functions (638 disease allelic
variants are often conserved interacting residues) and
kinase inhibitor types [e.g. type I, II and III inhibitors
(23,24)]. Our results show that the KIDFamMap
database can provide further insights in the elucidation
of protein kinase inhibitor selectivity and binding mech-
anisms. We believe that this database can be further
applied to design selective kinase inhibitors.

MATERIALS AND METHODS

Data collection and preparation

KIDFamMap contains 1208 KIFs, 962 kinase-disease
relationships, 186 985 kinase-inhibitor assays, 339 kinase-
related diseases and 638 disease allelic variants (Table 1)
collected from the following sources, such as ChEMBL
kinase SARfari, PDB, BindingDB, PubChem (25),
KinBase (8), UniProt (26), KEGG (27), OMIM (28) and
large-scale kinase profiling assays (5–7). First, the annota-
tions of 518 human protein kinases were obtained from
the KinBase and UniProt databases. Among these 518
kinases, 172 kinases with 1208 X-ray structures were
obtained from PDB. In addition, we used the in-house
protein structure prediction server, (PS)2 (29,30), to
model 227 protein kinases whether both the sequence simi-
larity (BLASTP E-value �e�40) and interface interacting
residues (sequence identity �60%) are significantly similar
between the structure template and the modelled kinases.
Furthermore, we collected non-redundant 35 788 kinase
inhibitors and 55 603 KIIs (binding affinity or inhibitory
activity �10 mM) by eliminating the redundant com-
pounds and interactions.

Identification of a KIF

Figure 1A and Supplementary Figure S1 show the details
of the KIDFamMap database to identify the KIF and
KID relationships of a kinase-inhibitor crystal structure.
For a query kinase or compound, KIDFamMap first
identifies the structure template candidate (kinase K
and inhibitor I) of the query using BLASTP (31) [or
compound topology similarity tools (32–34)] to search
the structural template database (Figure 1B). For this
structure template (K–I), the KIDFamMap then
searches the kinase candidates (K0) with significant
sequence similarity (E-values �e�10) using BLASTP and
also searches the compound candidates (I0) with significant
topology similarity (�0.6) using atom pairs and moiety
composition from the annotated KII database (�10 mM)
(Figure 1C). Our template-based scoring function was
utilized to statistically evaluate the interaction similarity

Table 1. A summary of the contents of KIDFamMap

Content type Number

Kinases 399
Kinases with PDB structures 172
Kinases with predicted models 227

Kinase inhibitors 35 788
Kinase-inhibitor assays 186 985
KIIs (�10 mM) 55 603
Diseases 339
Disease allelic variants 638

KIFs 1208
Conformation types of 1208 KIFs
Type A structures 669
Type B structures 381
Type C structures 34
Type D structures 16
Type E structures 80
Type F structures 28

KID relationships 962
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Figure 1. Overview of the KIDFamMap database’s process and workflow for identifying KIF and KID relationships using tyrosine-protein kinase
ABL1 as the query. (A) Main procedure. (B) Identification of the template candidate ABL1 (PDB code 3CS9) with inhibitor nilotinib of the query
using BLASTP to scan the structural template database. The KIDFamMap anchors of ABL1 are shown. (C) Identification of the kinase and
compound candidates of the template using BLASTP and compound topology similarity tools, respectively, for the subsequent search of the
annotated KII database. The anchors occupied by nilotinib are labeled with red dots. (D) Identification of the kinase-inhibitor candidates with
significant interaction similarity (Z-value �1.645) of the template ABL1-nilotinib using interaction similarity scores. (E) Identification of the KID
relationships of ABL1-nilotinib family. (F) The relationships between KIDFamMap anchors and drug resistance mutations. The anchor NLP1 is
formed by three residues (T315, K271 and F382) and the residue T315 forms a hydrogen bond with nilotinib. The mutation, T315I (threonine to
isoleucine), reduces inhibitory activity of nilotinib against ABL1 by �150 folds (IC50 value from 13 to >2000 nM).
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between the kinase-inhibitor candidates (K0–I0) and the
template (K–I) according to the KIDFamMap anchors
derived from our in-house tool SiMMap (16,17). Those
kinase-inhibitor candidates with significant interaction
similarity (Z-value �1.645) were considered as the KIF
members (Figure 1D) of the template K–I. For each
KIF, we inferred its consensus anchors, the subsite–
moiety interactions with statistical significance. A consen-
sus anchor (e.g. anchors ATP1-4 and NLP1-2 in
Figure 1D) often represents the conserved binding envir-
onment that is involved in inhibitor binding mechanisms,
biological functions and kinase inhibitor selectivity
(Supplementary Figure S1D). In addition, the anchors of
a KIF can reflect the kinase conformations and inhibitor
types. Based on the members in a KIF, KIDFamMap
provides the KID and anchor-mutation-inhibitor relation-
ships (Figure 1E and F; Supplementary Figure S1F).
Thus, for a given query, this database finally provides
the KIFs, KID relationships, graphic visualization of
binding models, KIDFamMap anchors (conserved inter-
acting residues and moiety preferences), inhibitor-anchor
map, kinase profiling assays, kinase conformation types
and inhibitor types.

The kinase-inhibitor family

The concept of a KIF forms the core of the KIDFamMap
database to explore the binding mechanisms, inhibition
selectivity and KID relationships of a query kinase or
compound. Here, we used a structural template (kinase
K and inhibitor I) as a simple case to define the KIF as
follows: (i) the kinases (e.g. K and K0) in a KIF with
significant sequence similarity (BLASTP E-value �e�10);
(ii) the inhibitors (e.g. I and I0) in a KIF with significant
topology similarity (�0.6); (iii) the KIIs in a KIF with
significant interaction similarity (Z-value �1.645). The
interaction similarity Z-value is defined as Z=(S��)/�,
where S is the interaction similarity score between the KIIs
K0–I0 and K–I. S is calculated as S=EX� IR�MP�CI,
where EX is the similarity score of anchor patterns; IR and
MP are the similarity scores of the conserved interacting
residues and moiety preferences of the aligned anchors,
respectively; CI is the similarity score of the KII profiles.
The four similarity scores range between 0 and 1. � and �
are the mean and the standard deviation of the interaction
similarity scores of 12 090 pairs of complex comparisons
derived from non-redundant 156 X-ray kinase-inhibitor
complexes in PDB.

KIDFamMap anchors

To study the binding mechanisms of KIIs and evaluate the
interaction similarity between any two KIIs, we used
SiMMap to describe the conserved kinase structural
subsites interacting with consensus moieties of the inhibi-
tors (Figure 2D; Supplementary Figure S1D). We con-
structed a SiMMap for each X-ray kinase-inhibitor
complex using the in-house tools GEMDOCK (35) and
SiMMap. We selected 5844 diverse kinase inhibitors from
a total of 35 788 inhibitors by discarding the inhibitors
with similar topology through the use of atom pairs and
moiety compositions. For the kinase structure of each of

the 1208 complexes selected from PDB, these 5844 inhibi-
tors were docked into the binding site of each structure
using GEMDOCK, which yielded similar performance to
that reported with other docking tools (36–38). Among
these 5844 kinase inhibitors, the docked poses of the
top-ranked 2000 inhibitors, as determined by using the
piecewise linear potentials of GEMDOCK, were used to
construct the site-moiety map by considering the inter-
action profiles between the inhibitors and the kinase.
Figure 1B and Supplementary Figure S1B show the
site-moiety map of the ABL1 kinase.
After constructing 1208 site-moiety maps for all the

kinase structures, the global protein structures were
aligned using a structural alignment tool (39). Among the
residues of the kinase domain, 14 residues (i.e. A179-K181
of b3-strand,M229-N233 of hinge andK277-M282 of cata-
lytic loop in AKT2 kinase numbering) are common to 399
human protein kinases, the conformations of these 14
residues does not change substantially upon kinase activa-
tion (40). We then manually refined the structural align-
ments by visual inspection (41) to minimize the
root-mean-square deviation of these 14 residues between
the kinases and the template structure AKT2 structure
(PDB code 1O6K). The superimposed SiMMap anchors
of these kinases can be roughly clustered into 14 groups,
called KIDFamMap anchors (Supplementary Figure S2),
based on spatial distances and domain knowledge.
According to the conformations and functions of the
kinases, these 14 KIDFamMap anchors were divided into
five pockets, namely, ATP site (anchors ATP1-5), N-lobe
pocket (anchors NLP1-3), head of A-loop pocket (HAP
pocket, anchors HAP1-3), C-lobe pocket (anchors
CLP1-2) and substrate pocket (anchor SP). To facilitate
the observation, we constructed a pseudostructure with
14 anchors by combining six representative kinase struc-
tures (i.e. PDB codes 1AQ1 [CDK2], 3EQH [MAP2K1],
1O6K [AKT2], 2WGJ [MET], 3CS9 [ABL1] and 2HZ0
[ABL1]) and by eliminating the collision residues located
near the bound inhibitors. In addition, we deleted the
phosphate-binding loop and A-loop occupying the ATP
and HAP pockets, respectively, for clarity of the structure.
Furthermore, to identify the consensus anchors (e.g.
anchors NLP1-2, HAP1-2 and CLP1 in Figure 1D) of a
KIF, we utilized the structural alignment tool and an auto-
matic procedure to align these structures and anchors
of these kinase members. The consensus anchors of the
KIF revealed the conserved binding environments which
are often involved in inhibitor binding mechanisms, biolo-
gical functions and kinase inhibitor selectivity for these
kinases.

Kinase conformation types

Kinase conformations are highly correlated to catalytic
activity and inhibitor selectivity (kinase inhibitor types)
(24,42). The 14 KIDFamMap anchors identified in this
study can reflect kinase conformations and inhibitor
types (24,43). An inhibitor occupying mainly the anchors
ATP1-5 is assigned as a type I inhibitor (e.g. staurosporine
in Figure 2), whereas an inhibitor occupying both ATP
site (anchors ATP1-4) and the HAP pocket (anchors

Nucleic Acids Research, 2013, Vol. 41, Database issue D433



Figure 2. KIDFamMap search results using compound staurosporine as the query. (A) The query interface for inputting a kinase, compound or
disease name. (B) The ‘Template’ page shows summarized query results, related diseases, the available KIFs (such as CKD2-staurosporine and
ITK-staurosporine families), kinase conformation types and inhibitor types. (C) The members of the CKD2-staurosporine family (PDB code 1AQ1)
share similar interactions and atomic interactions, as seen on the ‘Kinase-Inhibitor Family’ page. KIDFamMap also offers the analysis of family
kinases and kinase profiling assays. (D) The ‘Family Anchors’ page provides anchor patterns, interacting residues and moiety preferences of each
anchor. (E) The ‘Inhibitor-Anchor Map’ offers the anchor pattern distributions (consensus anchors) of KIIs and the docked poses of family
inhibitors. (F) The family related diseases, the associated family kinases and disease allelic variants are provided on the ‘Diseases’ page.
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HAP1-3) is assigned as a type II inhibitor (e.g. nilotinib in
Figure 1). The type III inhibitors [e.g. U0126 (44)], that
bind outside the ATP-binding site, occupy both N-lobe
pocket (anchors NLP1-3) and HAP pocket (anchors
HAP1-3).

Based on the 14 KIDFamMap anchors, we can divide
kinase conformations into the following six types
(Supplementary Figure S3): (A) DFG-in and A-loop-out;
(B) N-lobe pocket presented and HAP pocket presented;
(C) C-lobe pocket absent; (D) DFG-in and A-loop-in; (E)
DFG-out and A-loop-in; (F) DFG-out and A-loop-out.
Here, the A-loop is regarded as an ‘in’ conformation
(A-loop-in) when A-loop is close to the g-phosphate
group of ATP; otherwise, the A-loop is regarded as an
‘out’ conformation (A-loop-out). The anchors NLP2,
NLP3 and HAP2 appear for binding type III inhibitors
when the aC-helix in the ‘out’ conformation
(Supplementary Figure S3B) (24). The anchors CLP1 and
CLP2 are absent in the AGC group kinases which consist
of the AGC C-terminal domain occupying these two
anchors (Supplementary Figure S3C). The anchors
HAP1-3 are present or absent when the DFG motif is
‘out’ or ‘in’ conformation, respectively (Supplementary
Figure S3A and E). The ATP5 anchor, which is close to
the g-phosphate group of ATP and which forms electro-
static interactions with the DFG motif, is often occupied
by the A-loop which adopts an ‘in’ conformation
(Supplementary Figure S3E). The A-loop would be
inferred as ‘in’ or ‘out’ conformation when the anchor
ATP5 is absent or present, respectively.

DATABASE ACCESS

User interface

KIDFamMap is an easy-to-use database in which the
users give an input in the form of a kinase, compound or
disease name. The typical workflow of KIDFamMap
is shown in Figure 2 and Supplementary Figure S1. This
database provides KIF candidates and KID relationships
in the query result pages, which are termed ‘Template’,
‘Kinase-Inhibitor Family’, ‘Family Anchors’, ‘Inhibitor-
Anchor Map’ and ‘Diseases’. Here, we show the steps in
accessing information by querying the compound
staurosporine (Figure 2A).

(1) Template: A quick overview includes the molecular
formula, molecular weight, the conformation type of
the target kinases of the query compound (Figure 2B).
For each conformation type, the 3D visualization of
the KIDFamMap anchor pattern is presented dynam-
ically using Jmol (45). Users can select the interested
template to examine its KIF and KID relationships
in the following results pages. KIDFamMap shows
the KIF statistics of the selected template, including
the kinases, inhibitors and diseases associated with
the query compound.

(2) Kinase-Inhibitor Family: KIDFamMap indicates the
binding interfaces, binding models and binding
affinities of KIIs for the selected KIF on this page
(Figure 2C). For the family kinases, the multiple

sequence alignment, which was obtained from Pfam
(19), is used to present conserved residue positions.
Recently, large-scale kinase profiling assays have
provided new insights for the kinase inhibitor selectiv-
ity. KIDFamMap uses two sets of large-scale profiling
assays (6,7) to present the inhibition patterns between
the family kinases and their inhibitors.

(3) Family Anchors: This page first lists the anchors with
different interacting forces (electrostatic in red,
hydrogen bonding in green and van der Waals in gray)
(Figure 2D; Supplementary Figure S1D). For each
anchor, the interacting residues, pocket patterns,
moiety preferences and reached compounds are shown
for studying the bindingmechanisms.Moreover, disease
allelic variants often provide the clues for revealing KID
relationships. The conserved interacting residues, which
are recorded as disease allelic variants (e.g. T315I), are
labeled (Supplementary Figure S1D).

(4) Inhibitor-Anchor Map: This page offers an overview
of the relationships between the anchor patterns and
inhibitory activities of KIIs (Figure 2E), which provide
useful clues to design inhibitors. For example, the
anchor patterns with potent binding affinities can
guide the direction to design potency inhibitors.
Moreover, the inhibitor-anchor map would be
helpful for exploring kinase inhibitor selectivity.

(5) Diseases: The related diseases and disease allelic
variants of the selected KIF are presented on this
page (Figure 2F). Based on these diseases and
associated mutations, KIDFamMap provides the
KID relationships (Figure 1E).

Examples

ABL1-nilotinib family
Chronic myeloid leukemia (CML), a malignant condition
of white blood cells with an annual incidence of �10 cases
per million, is caused by a defect in the BCR-ABL1 fusion
gene coding for an aberrant tyrosine kinase (46,47).
Currently, the ABL1 kinase is the main pharmaceutical
target for the treatment of CML (48). After querying for
the ABL1 kinase, KIDFamMap found 18 structure
template candidates with three conformation types (A, E
and F), six diseases (i.e. three types of leukemia and three
infectious diseases) and six allelic variants (e.g. T315I and
Y253H) (Supplementary Figure S1B). The template
ABL1-nilotinib complex (PDB code 3CS9) with conform-
ation type E (DFG-out and A-loop-in), which binds to the
type II inhibitor nilotinib approved for the treatment of
drug-resistant CML (49,50), was selected as an example.
The ABL1-nilotinib family consists of 195 KIIs with 125
similar inhibitors (40 known inhibitors for ABL1) and
12 similar kinases, including 9 kinases (e.g. ABL2 and
KIT) in the TK group, 2 kinases (MAPK11 and
MAPK14 with E-values of e�17 and e�18, respectively) in
the CMGC group, and the BRAF kinase in the TKL
group (Figures 1D and 3). Conversely, the FES kinase,
which shares a high-sequence similarity but different
anchor patterns with ABL1 (E-value=e�63), is not a
member of the ABL1-nilotinib family because FES is in
the ‘DFG-in and A-loop-out’ conformation (Figure 3B).
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KIDFamMap also provides additional information about
this KIF, such as the docked poses of ABL1 inhibitors and
the multiple sequence alignment of these 12 kinases.
Excluding KDR kinase, the remaining 11 kinases are in-
hibited by nilotinib according to the kinase profiling
assays (6,7).
For the ABL1-nilotinib family, the KIDFamMap

database infers nine consensus anchors (i.e. ATP1-4,
NLP1-2, HAP1-2 and CLP1) to represent the conserved
binding environments (Supplementary Figure S1C and
D). For each anchor, the database shows the conserved
interacting residues, pocket patterns and moiety prefer-
ences. The anchor NLP1 consists of three interacting
residues (T315, K271 and F382) to form a van der
Waals environment that prefers aromatic and heterocyclic
moieties. The gatekeeper residue T315 often forms
hydrogen bonds with inhibitors (e.g. nilotinib)
(Figures 1F and 3C). The conserved residue K271
located on the b3-strand binds to the phosphate groups
of ATP, and the residue F382 situated in the DFG motif is
also conserved. The gatekeeper residue T106 and corres-
ponding residues of MAPK14 are also involved in
hydrogen bond and van der Waals interactions,

respectively. Experimental results show that nilotinib
inhibits both ABL1 and MAPK14 (7), which suggests
that kinases in a KIF can be inhibited by similar inhibitors
due to the similar binding environments. In contrast, the
EPHA7 kinase, which shares a high-sequence similarity
with ABL1 (E-value=e�55), is not a member of ABL1-
nilotinib family and has the different binding environment
at the anchor NLP1. The corresponding residues of
EPHA7 (I711) and FES (M636) located at the gatekeeper
form a longer side chain than the threonine of ABL1, thus
generating a steric clash with the methylphenyl group of
nilotinib and disrupting the hydrogen bonding with
nilotinib (Figure 3C–E).

Among the six allelic variants of ABL1, two (Y253 and
T315) of them are located at the ligand binding site and are
identified as conserved interacting residues. Three approved
drugs (nilotinib, imatinib and dasatinib) targeting ABL1
form hydrogen bonds with T315. The mutation T315I
disrupts the hydrogen bonding and the inhibitory effects
of three drugs are drastically reduced more than 140-fold
(Figure 1F) on average (48). Conversely, the moiety of
CHEMBL1171836 has been modified to overcome this
mutation is responsible for drug resistance (51).

Figure 3. The anchor patterns and interacting residues of the kinases ABL1, MAPK14, EPHA7 and FES. (A) The partial anchor patterns of the
ABL1-nilotinib family. The kinase groups are labeled in parentheses with the corresponding kinase names. (B) The partial anchor patterns of EPHA7
and FES, which are not members of the ABL1-nilotinib family. (C) Residues, pocket surfaces and nilotinib reference poses of ABL1, MAPK14,
EPHA7 and FES using the ABL1-nilotinib structure (PDB code 3CS9). (D) Superimposed structures. (E) Residues of ABL1, MAPK14, EPHA7
and FES.
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Based on the relationships between the KIF and diseases
(Figure 1E), KIDFamMap can help in the understanding
of adverse effects of drugs and in the identification of new
uses for existing drugs. For instance, nilotinib is a drug
for treating CML by inhibiting ABL1 originally.
Applying the relationships between the KIF and diseases,
nilotinib can be potentially used to some indications,
such as amyotrophic lateral sclerosis, non-small cell lung
cancer and gastrointestinal stromal tumor (GIST), as
revealed by the inhibition of MAPK14, BRAF and KIT,
respectively. For example, nilotinib was previously used
to inhibit KIT for the treatment of GIST in a phase III
study (52–54).

CDK2-staurosporine family
We used the staurosporine, a microbial alkaloid widely
used kinase inhibitor, as the second example (Figure 2).
The KIDFamMap database found cyclin-dependent
kinase 2 (CDK2)-staurosporine structure as the template
of the query. CDK2 is essential for the G1/S phase tran-
sition of the cell cycle. Supplementary Figure S4A shows
the relationship between interaction similarity and
sequence similarity in the CDK2-staurosporine family, re-
vealing that more than 189 kinases in eight kinase groups
have similar interfaces for staurosporine binding in the
conformation type A (e.g. DFG-in and A-loop-out).
This result is consistent with the previous kinase profiling
studies that report staurosporine as one of the most non-
selective inhibitor (24,43). Supplementary Figure S4B
presents the similar docked poses of staurosporine in
these diverse kinases. These poses generally match the
anchors ATP1-ATP4 and CLP1, all of which are low
selectivity anchors.

To understand the inhibitor selectivity and binding
mechanisms of staurosporine, we selected the following
kinases to compare the structures with KIDFamMap
anchors (Supplementary Figure S5A): CDK2 (CMGC
group), IRAK4 (TKL group), MAPKAPK3 (CAMK
group), PRKCQ (AGC group), AURKA (other group),
STK25 (STE group) and MAPK11 (CMGC group). The
selected kinases are good representatives due to the fact
that their interfaces are significantly similar, and their se-
quences are diverse in this KIF. We found that the selected
kinases have similar kinase conformations and anchor
patterns; in particular, they contain the ATP1-ATP4
and CLP1 anchors, which match staurosporine.
Moreover, these anchors have similar interaction types,
the conserved interacting residues and moiety preferences
(Supplementary Figure S5B).

The anchors and their properties within a KIF can
be applied to explore kinase inhibitor selectivity and to
understand binding mechanisms. For example, in the
CDK2-staurosporine family, the hydrophobic residues
(V18, F80 and L134) of the ATP2 anchor are involved
in van der Waals interactions with the planar ring of
staurosporine (Supplementary Figure S6A). In this
family, the RPS6KB1 kinase has a similar binding envir-
onment formed by the three hydrophobic residues
(V105, L172 and M225) interacting with staurosporine
(Supplementary Figure S6B). Previous studies showed
that staurosporine inhibits CDK2 and RPS6KB1 (24,43),

suggesting that kinases in a KIF can be inhibited by the
similar inhibitors and can serve as new uses of existing
drugs. In contrast, the RAF1 and BRAF kinases, which
are not the members of the CDK2-staurosporine family,
have a different binding environment at the ATP2 anchor
from that of CDK2. The ATP2 pockets of these two
kinases consists of two hydrophobic residues (V363 and
F475 in RAF1 numbering) and one polar residue (T421)
(Supplementary Figure S6C). The gatekeeper residue T421
has a shorter and a polar side chain than the phenylalanine
residue (F80) of CDK2 and the leucine residue (L172) of
RPS6KB1. These three interacting residues of the anchor
ATP2 of RAF1 and BRAF cannot provide stable van der
Waals interactions with the planar ring of staurosporine
(Supplementary Figure S6D and E). In addition, the
ATP2 pockets of RAF1 and BRAF contain a phenylalan-
ine residue that has a relatively long side chain compared
with the leucine (L134) of CDK2 and the methionine
(M225) of RPS6KB1, resulting in the reduction of the
volume of the pocket. Therefore, the pocket cannot accom-
modate the planar ring of staurosporine, and staurosporine
fails to exert an inhibitory effect on RAF1 and BRAF
(24,43). The ATP2 anchor can be further applied to
design selective inhibitors for RAF1 and BRAF by
forming hydrogen bonds with the threonine residue.
These results reveal that the kinases belonging to a KIF
often interact with similar inhibitors and the anchor
properties are useful for studying the binding mechanisms
and kinase selectivity of inhibitors.

EVALUATION

To evaluate the KIDFamMap database for KIFs, we col-
lected two sets with the available large-scale kinase
profiling assay (7), term PDB156 and LIG72. In total,
12 090 pairs of comparisons between protein interfaces
in the PDB156 set, which consists of 156 kinase-inhibitor
structures with binding affinities, were used to assess the
correlation between inhibition similarities and interaction
similarity Z-values (Figure 4). Pearson’s correlation coef-
ficient (PCC) was calculated as 0.97. The distribution of
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Figure 4. The correlation between inhibition similarity and interaction
similarity (Z-value). Z-values of interaction similarity scores are highly
correlated with inhibition similarities and the PCC is 0.97.
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Z-values is shown in Supplementary Figure S7. These
12 090 comparisons were also used to calculate the correl-
ation between inhibition similarities and kinase sequence
similarities (PCC=0.93; Supplementary Figure S8A).
Furthermore, we evaluated the correlation between inhib-
ition similarities and compound topology similarities
(PCC=0.9) by generating 2556 pairs of comparisons
between 72 inhibitors in the LIG72 set, which are
diverse inhibitors that have been previously tested
against 370 human protein kinases in large-scale kinase
profiling assays (Supplementary Figure S8B). These
results show that compounds with similar topologies
possess similar inhibition profiles and inhibit similar
kinases. Similarly, kinases with significant sequence simi-
larity are inhibited by similar inhibitors and KIIs with
significant Z-values have similar inhibition profiles.
We collected 3240 inhibition assays of 72 inhibitors

against 45 mutant variants (belonging to nine kinases)
from large-scale profiling inhibition assays (7) to validate
that conserved interacting residues (Supplementary
Tables S1 and S2) are indeed causally implicated in the
inhibitions. Among these 45 mutant variants, 27 have mu-
tations in the conserved interacting residues. Moreover,
1663 (inhibitory activity �10 mM; Supplementary
Dataset S1) of these 3240 inhibition assays were used to
calculate the average fold changes between the wild-type
kinases and mutant variants. For example, the
phosphorylated ABL1 kinase is inhibited by 41 (inhibitory
activity �10 mM) of 72 inhibitors (Supplementary
Table S2) and the average fold change of T315I-mutant/
wild-type ABL1 is 122.62 (Supplementary Figure S9A).
For T315I mutant of ABL1, the top three inhibitors
with the highest fold changes are dasatinib (from 0.046
to 120 nM, 2608 folds), PD-173955 (from 0.58 to
480 nM, 827 folds) and nilotinib (from 13 to
�10 000 nM, 769 folds). Among 27 mutant variants with
mutations in the conserved interacting residues, 55.6%
(15/27) have high average fold changes (�10).
Conversely, the average fold changes of 100% (18/18)
mutant variants with mutations in the other residues are
low (<4). In addition, we collected 638 disease allelic
variants from OMIM (28) and 1041 kinase mutations in
cancer from MoKCa (55). Among 51 conserved interact-
ing residues, 42 (82.4%) of them were disease related mu-
tations (Supplementary Table S1). These results suggested
that conserved interacting residues often implicated in the
inhibitory activity and diseases.

CONCLUSIONS

The KIDFamMap database provides the utility and
feasibility to explore KIFs and KID relationships for
kinase inhibitor selectivity and binding mechanisms. To
our knowledge, KIDFamMap is unique in exploring
comprehensive ‘family-selective’ inhibitors based on
KIDFamMap anchors and KIFs. This database includes
1208 KIFs, 962 KIDs, 55 603 KIIs, 35 788 kinase inhibi-
tors, 399 human protein kinases, 339 diseases and 638
disease allelic variants. Our experimental results indicate
that the KIIs of a KIF often possess similar inhibition
profiles and our interaction similarity Z-values are

highly consistent with those obtained from large-scale
kinase profiling assays. In addition, the KIDFamMap
anchors of a KIF often represent the conserved binding
environments involved in the structural conformations of
kinases and can reliably guide the processes of discovering
selective kinase inhibitors. We believe that KIDFamMap
is able to provide valuable insights for elucidating kinase
inhibitor selectivity and binding mechanisms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–2, Supplementary Figures 1–9
and Supplementary Dataset 1.
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