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Using the Fisher information (FI), the design of neutron reflectometry

experiments can be optimized, leading to greater confidence in parameters of

interest and better use of experimental time [Durant, Wilkins, Butler & Cooper

(2021). J. Appl. Cryst. 54, 1100–1110]. In this work, the FI is utilized in

optimizing the design of a wide range of reflectometry experiments. Two lipid

bilayer systems are investigated to determine the optimal choice of measure-

ment angles and liquid contrasts, in addition to the ratio of the total counting

time that should be spent measuring each condition. The reduction in parameter

uncertainties with the addition of underlayers to these systems is then

quantified, using the FI, and validated through the use of experiment simulation

and Bayesian sampling methods. For a ‘one-shot’ measurement of a degrading

lipid monolayer, it is shown that the common practice of measuring null-

reflecting water is indeed optimal, but that the optimal measurement angle is

dependent on the deuteration state of the monolayer. Finally, the framework is

used to demonstrate the feasibility of measuring magnetic signals as small as

0.01 �B per atom in layers only 20 Å thick, given the appropriate experimental

design, and that the time to reach a given level of confidence in the small

magnetic moment is quantifiable.

1. Introduction

Experimental design is a deep and open-ended subject, but it

is one that can often be reduced to the quantitative problem of

maximizing the amount of information produced by a given

experiment. It is often the case that the experimentalist has

the ability to change a limited set of well defined experimental

conditions, and wishes to find those conditions that will reduce

the uncertainty in the outcome by the largest amount. This is a

particularly pertinent problem in the field of neutron reflec-

tometry (NR), where the analysis of reflectivity data is ill-

posed and, as a consequence, the quality of the data is of great

importance. This is further compounded by the significant lead

time and cost of accessing a neutron beamline; a typical

experiment will take months to organize, last only a few dozen

hours, and have operating costs of the beamline running into

the thousands of pounds per day. Despite these significant

challenges, NR can provide valuable insight, for example,

investigating the structural properties of lipid leaflets in

biological membranes (Skoda, 2019), probing magnetism in

thin-film heterostructures (Liu & Ke, 2015), examining surface

chemistry at the air/water interface (Welbourn & Clarke,

2019) and exploring layer structures in organic photovoltaics

(Zhang et al., 2017).

Typically, the design of an NR experiment is determined by

the knowledge gained in similar previous experiments, i.e. trial

and error and ‘rules of thumb’. To provide more rigorous and
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quantifiably optimized designs, we developed a framework

(Durant et al., 2021a) using the Fisher information (FI)

(Fisher, 1925) that quantifies the maximum information in an

NR experiment using the assumption of Poisson-based

counting statistics. Using the FI and accurate experiment

simulation, the framework was shown to be capable of opti-

mizing experimental design in a computationally inexpensive

manner. In this work, we extend the framework and demon-

strate its utility in experimental design of a diverse selection of

commonly measured systems.

In NR, a collimated neutron beam is directed onto a surface

of a sample and the intensity of the reflected radiation is

measured as a function of angle and neutron wavelength, and

for polarized measurements, spin state. Therefore, as an

experimenter, one is presented with the non-trivial choice of

angle(s) and counting time(s) for any NR measurement. The

resulting reflectivity profile provides insight into the structure

and properties of the sample surface, including the thickness,

scattering length density (SLD, the product of a material’s

density and its neutron scattering length) and interfacial

roughness of any thin films. For certain systems, additional

properties can be inferred, such as the sample hydration in

liquid-based experiments and magnetic moments in magnetic

samples; these systems often present added complexity in their

experimental design, e.g. contrast choice.

In NR analysis, one is usually tasked with inversion of the

reflectivity curve, with the aim of reconstructing the SLD

profile. This is a known inverse problem due to the loss of

phase information upon scattering (Majkrzak & Berk, 1995)

and, consequently, the analysis is predominantly model

dependent. An initial model is typically defined using a series

of contiguous layers and is informed by prior knowledge of a

system and the underlying science. The model reflectivity is

calculated using the Abelès matrix formalism for stratified

media (Abelès, 1948) or the Parratt recursive method (Parratt,

1954). The difference between the model reflectivity and the

data is then calculated, using a metric such as the chi-squared,

and the model is then iteratively modified in order to find the

best agreement between the two. For this work, we use the

Python packages refnx (Nelson & Prescott, 2019) and Refl1D

(Kienzle et al., 2017) for our model definitions and reflectivity

calculations. Since it is an inverse problem, NR analysis is

provably unsolvable in the general case with no additional

information. Approximation methods have been devised to

alleviate this issue and find likely solutions, including the use

of evolutionary algorithms (Storn & Price, 1997) and even

neural networks (Mironov et al., 2021; Loaiza & Raza, 2021;

Doucet et al., 2021; Greco et al., 2021). However, there is no

guarantee that such methods will provide the sample proper-

ties describing the ‘true’ SLD profile. For a given reflectivity

curve, there will be a large number of models which give

equivalently good fits to the data. As a result, it is imperative

that an experiment is well designed to produce data that

support the experimentally measured sample as best as

possible.

For advanced data analysis, a Bayesian approach is

commonly taken, often employing the use of sampling

methods such as Metropolis–Hastings Markov chain Monte

Carlo (MCMC) (Metropolis et al., 1953; Hastings, 1970) and

nested sampling (Skilling, 2004, 2006). These methods

approximate parameter values and confidence bounds

through estimation of the parameter posterior distributions.

For this work, we use nested sampling implemented in the

Python package dynesty (Speagle, 2019). In general, sampling

methods will not be able to extract the maximum information

that a data set contains, as calculated using the FI. They

instead determine the maximum extractable information,

given the limitations of the data, e.g. parameter correlations

which limit the ability to determine certain values. We use the

computationally expensive sampling methods as a form of

‘ground truth’ to validate the improvements in individual

parameter variances and parameter-pair covariances using the

experimental designs determined from the FI.

By simulating experiments with a known model, the FI

framework can be used to calculate the information content of

any set of experimental conditions without requiring expen-

sive fitting, sampling calculations or beamtime for data

acquisition. The experiment simulation has been shown to be

accurate, fast and general; any beamline and reflectometer can

be simulated, given the instrument-specific incident flux

profile. In our previous work, we used the framework to

consider the experimental design of a common model system

for structural biology: a 1,2-dimyristoyl-sn-glycero-3-phos-

phocholine (DMPC) bilayer deposited onto a silicon surface.

In this work, we apply a new optimization approach, using the

FI, to this system and several others that are frequently

measured from different fields. We strive to answer some of

the fundamental questions presented in the design of NR

experiments, including the choice of measurement angle(s),

counting time(s), bulk water SLD(s) in liquid-submerged

samples, and underlayer SLD(s) and thickness(es) in lipid

bilayer and magnetic samples. These example model systems

have been chosen to best demonstrate the wide applicability

of the framework and can be modified to investigate other

experimental conditions of interest. All examples shown here

are presented on our GitHub repository (Durant et al., 2021b),

alongside the underlying code for more advanced investiga-

tions.

2. Methods

2.1. Reflectometry models

In NR, a model is defined by a structure representing a

physical sample, some level of background noise, an experi-

mental scale factor and the instrument resolution function.

The way this structure is defined is unimportant in our

framework, as long as the model reflectivity can be calculated

at a given neutron momentum transfer, Q,

Q ¼
4� sin �

�
; ð1Þ

where � is the neutron wavelength and � is the measurement

angle. For this work, our model structures consist of contiguous
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layers of homogeneous SLD (i.e. slab models). For our

experiment simulation, we use the Poisson-based counting

statistics approach shown alongside the FI derivation in our

previous work (Durant et al., 2021a). As input, this method

simply requires a model (or multiple models if multiple data

sets are required) and the incident flux as a function of

wavelength for the instrument being simulated. For this work,

the flux profile (both polarized and non-polarized) was taken

on the OFFSPEC neutron reflectometer (Dalgliesh et al.,

2011). This flux profile is used with the model(s) to calculate

the expected number of neutrons in each Q bin, as is required

for the FI. The framework also requires parameter values to

be input which can be estimated from the given data or

specified manually if known. We use refnx and Refl1D to

define our models and to load the models’ associated

measured or simulated reflectivity data.

The simulation framework was developed on the principle

that, for a given measurement angle, each neutron wavelength

corresponds to a single momentum-transfer point, Q, as is

often the case in reflectometry. As a result, the experiment

simulation would require modification for other techniques

where this is not the case, e.g. small-angle neutron scattering.

Further, the simulation was developed to synthesize data

without background subtraction.

2.2. Beamline setup

A conventional neutron reflectometer relies on two sets of

apertures in order to collimate a neutron beam, limiting the

beam footprint at the sample point. For the majority of the

examples shown in this work it is appropriate to limit the beam

footprint to be less than the sample extent, i.e. under-illumi-

nating, so as not to add background noise by illuminating

sealing gaskets or similar. When using an algorithm such as

that described by Cubitt et al. (2015), the angular resolution of

the measurement is dependent on the sample-to-detector

distance and the detector pixel size. Therefore, there is an

infinite set of aperture openings with equivalent resolutions

that will achieve the same sample footprint. We chose the

openings that maximize the flux on the sample, which can be

proven to be half the maximum opening (which stays within

the footprint) for each aperture. Thus, the beamlines here are

already optimized (in hardware) for maximum flux, i.e.

maximum information gain. For systems where this algorithm

cannot be applied, the effect of resolution on the model (and

therefore information) may need to be considered.

In this work, we consider the beamlines at the ISIS Neutron

and Muon Source at the Rutherford Appleton Laboratory.

These beamlines very commonly operate with a footprint of

�60 mm, as much of the sample environment equipment has

been standardized. For the non-polarized experiments

described in this work, we assume a footprint of 60 mm

(polarized experiments are described below). For all simula-

tions, both apertures are scaled linearly with measurement

angle to maintain a constant footprint on the sample. This

scales the incident flux by a factor proportional to the angle

squared and assumes no changes in beam profile with opening

apertures; this is generally true in practice. Thus, when simu-

lating an experiment, only a single incident flux profile is

required, and the profile is scaled appropriately to the

measurement time and angle.

It is not common practice on the ISIS beamlines to apply

background subtraction, the preference normally being to fit

the background in the analysis software. This is not the case in

all reflectometer beamlines and many rely on background

subtraction for all of their measurements, so we mention some

considerations which should be taken into account when using

this framework. The issue lies in the fact that the statistics

governing background-subtracted data are no longer Poisson

distributed but follow something like a Skellam distribution

(i.e. the difference between two Poisson distributions). In this

case our derivation of the FI no longer holds since equation

(4) of Durant et al. (2021a) is not correct for anything other

than a Poisson distribution. The best way to circumvent this

issue is to include the background in the model as a parameter;

our framework then still applies, and indeed from a statistics

point of view, it is a more correct procedure. From a practical

standpoint, we believe that given the uncertainties associated

with model parameters before they are measured (i.e. in the

experimental design phase) a sufficiently optimal experiment

may still be designed solely using a modification to the inci-

dent flux profile and its behaviour at higher Q. Irrespective,

the treatment of the data post-experiment should not affect

any experimental design as long as an appropriate background

term is included in the model.

2.3. Experimental design optimization

The derivation and initial demonstration of the FI for

NR are given fully by Durant et al. (2021a) and will not be

repeated here. Instead, we focus on how the systems being

investigated are described and how the FI is utilized in opti-

mizing their experimental design.

By refining the ideas introduced in our initial work, we have

developed an improved methodology for experiment optimi-

zation using the FI. Previously, we had not been able to

directly compare the information content of parameters of

differing units, since parameters can be on widely differing

scales and the units of the FI are ‘nats’ (natural units of

information) per parameter unit squared. We addressed this

issue by weighting parameter importance. We have assumed

that our model parameters are all of equal importance in

terms of their specified units, but the methodology can be

easily adapted to accommodate a custom importance

weighting if desired. Another limitation of our previous work

was that we had only considered the diagonal entries of the FI

matrix (the information content of each individual para-

meter). With all parameters now on the same scale, we can

include the off-diagonal elements of the FI matrix by finding

the experimental conditions that maximize the minimum

eigenvalue: a maximin approach. This effectively finds the

conditions that improve the ‘worst’ possible combination of

parameters the most, thereby minimizing the overall uncer-

tainty of the experiment. The reader is referred to the
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supporting information (SI) for further details of this

approach and the importance scaling.

One benefit of the new optimization method is that the

optimization function is multivariate scalar, whereas our

previous approach required optimization of a vector of para-

meter information values. Bounds are placed on the variable

experimental conditions and so the optimization is

constrained. It is therefore possible to take every experimental

condition into account simultaneously and find the ‘complete’

optimal experimental setup using established optimization

algorithms, e.g. differential evolution (DE) (Storn & Price,

1997); for a minimizing algorithm like DE, the negative of the

minimum eigenvalue can be used as the optimization objec-

tive. This ‘complete’ optimization can account for any complex

relationships between experimental conditions that may be

missed if these conditions were considered individually.

2.4. Lipid bilayers

In this work, we take two lipid bilayer models and investi-

gate the choice of measurement angles, counting times,

contrasts and the effect of underlayers on the models’ para-

meter uncertainties. The first of these models is taken from our

previous work where we quantified the information content of

each model parameter of a DMPC bilayer deposited onto a

silicon surface as a function of the bulk water SLD. The bilayer

model was defined by two lipid leaflets with fixed surface

coverage. The lipids were measured against two water

contrasts, H2O and D2O, using the CRISP neutron reflect-

ometer (Penfold et al., 1987) as part of the ISIS neutron

training course. The data were simultaneously fitted using

RasCAL (Hughes, 2017) with the fitting constrained against

measured data for a bare Si/D2O interface including a native

SiO2 layer. The fitted model was converted to refnx and

reparameterized as a function of the bulk water contrast SLD,

enabling simulation of the bilayer on the OFFSPEC reflect-

ometer with arbitrary contrast SLD. Further details of the

model parameterization can be found in our previous work

(Durant et al., 2021a).

In addition to the DMPC bilayer, we consider a more

sophisticated bilayer model in this work. We take a data set

from Clifton et al. (2016) who studied a highly asymmetric

bilayer structure made of a phospholipid-rich inner leaflet

composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine

(DPPC) and a Ra lipopolysaccharide (LPS) outer leaflet.

Specifically, we investigate tail-deuterated DPPC (d-DPPC)

data. Three isotopic contrasts were measured for the DPPC/

RaLPS bilayer using the INTER reflectometer (Webster et al.,

2006): d-DPPC/RaLPS in D2O, d-DPPC/RaLPS in silicon-

matched water (SMW) and d-DPPC/RaLPS in H2O. As with

the DMPC bilayer, the model for this data was originally

defined and fitted with RasCAL but was recreated in refnx for

this work. The model accounted for each individual layer

hydration, the presence of bilayer defects across the surface

and the lipid asymmetry. For additional details of the model

parameterization, the reader is directed to the SI where the

fitted model parameters for both models can also be found.

Like in our previous work, we have assumed that the

molecular volumes do not vary with measurement conditions.

These volumes may not necessarily be constant in practice

(Campbell et al., 2018), but to simplify the models, the volumes

have remained fixed. Using this assumption, we can optimize

the choice of contrast(s) for both bilayer models. To support

the addition of underlayers, whose presence changes the

reflectivity curves and may improve the information gain, we

set the SiO2 hydration to 0%. We then add a layer of given

SLD and thickness between the SiO2 and the inner bilayer

headgroups for each underlayer added; a fixed 2 Å roughness

and 0% hydration are assumed for each underlayer. With the

addition of these underlayers, the SiO2 hydration and SiO2/

bilayer roughness parameters are excluded from the FI

calculation.

When simulating data for both bilayer models, angles of 0.7

and 2.3�, and times of 15 and 60 min, respectively, are used (or

the same ratio of times between angles is used when the total

time is altered) with 100 data points per angle. The experi-

mental scale factor and instrument resolution function used

are 1.0, 5� 10�6 and constant 2% dQ/Q, respectively. The

background level varied between 2� 10�6, for D2O, and

4� 10�6, for H2O. We optimize the measurement angles over

the interval [0.2, 4.0]�, representing realistic bounds on the

physically possible measurement angles of the OFFSPEC

reflectometer being simulated. The contrast SLDs, underlayer

thicknesses and underlayer SLDs are optimized over the

intervals [�0.56, 6.36] � 10�6 Å�2 (pure H2O to pure D2O),

[0, 500] Å and [1, 9] � 10�6 Å�2, respectively, the latter being

the range of SLDs within which most non-isotopically enri-

ched film materials would fall.

We first consider a simple form of optimization where we

visualize the optimization space for the simultaneous choice of

two contrasts for both bilayers, assuming no prior measure-

ments and assuming that the two contrasts are measured for

equal amounts of time. We then validate the improvement

attained with the optimal solution, suggested by the frame-

work, using nested sampling. Following this, we generalize by

optimizing the choice of up to four contrasts and additionally

optimize the proportion of the total time spent measuring each

contrast. However, as we go beyond optimizing two experi-

mental conditions at once (e.g. three or more contrasts), we

run into two problems: a brute-force approach becomes

computationally difficult or infeasible, and the optimization

space becomes challenging to visualize. Therefore, for our

more advanced optimization results, we apply the DE algo-

rithm. To significantly reduce the dimensionality and

complexity of the optimization problem, we make the

simplifying assumption that all contrasts are measured using

the same angles and the same proportion of times between

angles (but the total time spent measuring each contrast is not

necessarily equal). In practice, this may not always be the case.

However, for these model systems, it is unlikely that the added

complexity of considering different angles (and counting time

splits between angles) for each contrast would influence the

end results drastically. Using the simplifying assumption, we

optimize contrasts and then separately optimize the
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measurement angles (and proportion of the time spent

measuring each angle) for the contrasts.

Thus far, we have considered the choice of measurement

angles, counting time ratios and contrasts for the bilayer

models but we also have the ability to improve the experiment

through modification of the sample structure itself. When a

chemical surface other than silicon dioxide is required to

interact with lipids, it is common practice to use a gold layer

grown onto the silicon. This can be functionalized almost

arbitrarily using self-assembled thiol-based monolayers to give

any desired chemical termination. In addition to chemical

functionalization there is also a portion of the field using

magnetic underlayers as an additional contrast mechanism.

Commonly, a permalloy or nickel thin film is deposited onto

the substrate and then coated in gold again with a functio-

nalized surface. The whole system is then measured with a

polarized neutron beam, using the different SLDs the two spin

states experience in the permalloy either instead of changing

the water contrast or in addition to it. Such systems offer a

wealth of potential optimization; however, the complexity of

them means that the benefits of the magnetic contrasts will be

highly model, and even beamline, specific. Thus, we do not

investigate them further in this work, but we do expect the

tools described here to have huge utility in designing such

experiments. We instead demonstrate the ability to increase

experimental information solely through the addition of an

underlayer or underlayers whose SLDs and thicknesses are

optimized using DE. We also visualize the optimization space

for a single added underlayer, compare the results with gold

and permalloy underlayers in common use (Clifton et al.,

2015), and use nested sampling to validate the improvement in

the estimated parameter uncertainties and posterior distri-

butions. We note that, when investigating the parameter

uncertainties, we do not include the underlayer parameters,

since they are essentially ‘nuisance’ parameters, whose values

are needed but not important for the comparison. In real

experiments the underlayer parameters are likely to be well

defined enough by the initial characterization of the wafer

(due to strong scattering and a large number of fringes) that

very little additional ambiguity will be included in the bilayer

parameters.

When competing experimental conditions are involved, we

perform our optimization using DE and assuming a fixed time

budget; when optimizing contrasts (or angles), the time spent

measuring all contrasts (or angles) is constrained to be

constant and the proportion of the total time spent measuring

each contrast (or angle) is optimized in addition to the

contrast SLDs (or angles) themselves. The optimization is also

performed using a large total time budget to reduce the impact

of noise in the simulated data and assist in convergence to the

global optimum. To illustrate this, suppose we were optimizing

two contrasts and DE was in a region of the optimization

space where one contrast had a counting time of 1% and the

other 99% of the total time budget, and the total time budget

was only 10 min; the former contrast would only have a

counting time of 6 s, resulting in very poor data and thus

hindering the optimization process. Note that using a large

total time does not influence the results of optimization (other

than reducing the effect of noise); if the total time is increased

and the ratio of times between contrasts remains fixed, there is

no change in the relative difference in information between

contrasts.

2.5. Kinetics

Often in NR, we wish to make measurements where the

sample changes over time, for example, where a sample

degrades due to some reaction. Typically, when measuring

these kinetic systems, only a single measurement is possible,

and the designs of such experiments must reflect this. There-

fore, when considering such a design, a time budget becomes

irrelevant as there are no longer multiple conditions to

consider splitting a time budget between. Instead, we wish to

make the measurement that results in the greatest information

about the system using the experimental conditions we do

have control over; for a liquid-submerged sample, these are

the measurement angle and liquid contrast.

To demonstrate the framework’s flexibility in the experi-

mental design of a kinetic system, we modelled a system

(Clifton et al., 2011) that investigated the binding of puroin-

doline-a (Pin-a) proteins to lipid monolayers composed of 1,2-

dipalmitoyl-sn-glycero-3-phospho-(1-rac-glycerol) (DPPG);

the original measurements were carried out using the SURF

neutron reflectometer (Penfold et al., 1997) with the isotopic

contrasts measured being an equilibrium Pin-a adsorbed

d-DPPG (chain-deuterated DPPG) monolayer on null-

reflecting water (NRW), h-DPPG (hydrogenated DPPG) on

NRW and h-DPPG on D2O. The model was originally defined

and fitted by RasCAL, but for this work we have recreated the

model in refnx without a protein, leaving just a monolayer. In

the original work, the model SLDs and thicknesses were fitted

directly and then converted to volume fractions. We use a

more sophisticated model here, defined by area per molecule

(APM). The model can describe both h-DPPG and d-DPPG,

accounting for the headgroups containing water through

defects across their surfaces and also the water bound to the

hydrophilic headgroups. The model has been parameterized as

a function of the bulk water contrast SLD to facilitate contrast

optimization. The full details of the model parameterization

and fitting can be found in the SI. As with Section 2.4, we have

assumed the molecular volumes are invariant with changing

experimental conditions.

To introduce kinetics into the model, we simulate the

surface excess decreasing over time by increasing the lipid

APM, since the surface excess (in mg m�2), �, is related to the

APM (in Å2) by

� ¼
Molecular weight � 1023

NA � APM
: ð2Þ

NAis Avogadro’s constant. Typically, the reflectivity profile of

a monolayer is fairly featureless and so the model parameters

are not particularly well defined when only considering a

single contrast (as is the case for our model system). As a

consequence, we only investigate the parameter of greatest

research papers

J. Appl. Cryst. (2022). 55, 769–781 James H. Durant et al. � Optimizing experimental design in neutron reflectometry 773



significance: the lipid APM. As there is just a single parameter,

there are no parameter-pair covariances to consider and so we

can simply use the FI itself as our objective to maximize.

For our results, we simulate data using an experimental

scale factor of 1.0, instrument background of 5� 10�6 and

resolution function of constant 2% dQ/Q. To account for the

sample degradation, data are simulated for 20 lipid APM

values, ranging from the fitted value of 54.1 to 500 Å2, with the

FI calculated over the entire simulated data set; this quantifies

the maximum information obtainable about the APM over the

full experiment using the given conditions. The entire data set

is given a time budget of 150 min with 100 data points per

APM value. When optimizing the experimental design, the

measurement angle and contrast SLD are optimized over the

intervals [0.2, 4.0]� and [�0.56, 6.36] � 10�6 Å�2, respectively.

2.6. Magnetism

An area where it is particularly important to be able to

discern small signals and maximize differences between

models is in thin-film magnetism. It is often the case that small

moments are induced by a ferromagnet in neighbouring layers,

proximity magnetism (Khaydukov et al., 2013; Cooper et al.,

2017; Duffy et al., 2019; Zhan et al., 2019; Inyang et al., 2019), or

a layer might only have a very small moment in the first place,

but it is particularly important to know the magnitude of this

moment. The advantage of neutrons in these situations is that

they provide an absolute moment, so in many ways are the

idea tool for the task. However, neutron sensitivity is much

lower than the sensitivity of some other techniques, with a

rough rule of thumb putting the minimum measurable

moment with polarized neutron reflectivity at around 0.05 �B

per atom.

In this work, we use a data set (Cooper et al., 2017) that was

measured to quantify the moment that an yttrium iron garnet

(YIG) film, grown on an yttrium aluminium garnet (YAG)

substrate, induces in an adjacent platinum capping layer. This

experiment was already unusually sensitive to the induced

moment, allowing a limit of�0:02�B per atom to be placed on

the induced magnetism. The model for this work was origin-

ally defined and fitted in the reflectivity analysis package

GenX (Björck & Andersson, 2007) but was recreated in

Refl1D for our experimental design analysis. The polarized,

but not analysed, measurements were made using the

MAGREF neutron reflectometer (Ambaye et al., 2008). The

reader is directed to the SI for further details of the model

parameterization and fitting.

To keep the focus of the experimental design on the sample

itself, we use three pre-defined incident angles of 0.5, 1.0 and

2.0� with measurement times of 30, 60 and 120 min, respec-

tively (or the same ratio of times between angles when the

total time is altered), and 100 data points per angle: a

commonly used array of angles and times for OFFSPEC when

polarized. More angles are required than for unpolarized

measurements since polarizing systems reduce the incident

flux at low wavelengths. As such, a different incident flux

profile for OFFSPEC is used for this section, suitable for

simulating polarized data. For our simulation, we use an

experimental scale factor, level of background noise and

instrument resolution function of 1.0, 5� 10�7 and constant

2% dQ/Q, respectively. We assume a scale factor of unity, i.e.

every incident neutron interacts with the sample, but this is

usually not the case for magnetic samples due to the difficul-

ties of getting large homogeneous films. For scale factors less

than unity, the results shown here will hold true, but the

counting times will scale inversely to the scale factor (e.g. a

scale factor of 0.1 would require counting 10 times longer to

achieve the same uncertainty).

Without changing any of the interface physics, we are able

to reparameterize the model as a function of the thicknesses of

both the YIG and platinum layers in a quest to make our

experiment more sensitive to the moment. For simplicity we

assume that there is a constant moment of 0:01�B per atom

(equivalent to a magnetic SLD of 0.0164 � 10�6 Å�2) in the

21 Å-thick platinum layer, i.e. within our current error bound.

When changing the platinum layer thickness, we constrain the

magnetic moment to remain within this 21 Å layer so as not to

increase the total magnetism in the system as the platinum

layer thickness increases. We calculate the optimal thicknesses

of the YIG and platinum layers in the intervals [400, 900] Å

and [20, 100] Å, respectively.

To validate the improvement with the suggested experi-

mental design, we use the ratio of likelihoods between two

models, one with an induced moment of 0:01�B per atom in

the platinum layer and one with no moment, as a function of

measurement time, to determine what level of statistics is

required for a differentiable difference between the two

models. The likelihood, L, provides a measure of difference

between a given data set and model and, for this work, is

defined as

lnL ¼ �
1

2

XN

i¼1

ri � rim

�ri

� �2

þ ln 2�ð�riÞ
2

� �( )
; ð3Þ

where N is the number of data points, ri is the experimental/

simulated reflectivity at the ith Q point, �ri is the uncertainty in

the experimental/simulated reflectivity at the ith Q point and

rim
is the model reflectivity at the ith Q point calculated using

the Abelès matrix formalism. The data for the models are

simulated with the induced moment and hence we should

expect the correct model to become more ‘likely’ as the

measurement time is increased. This process is performed

twice, once with an optimized design and once with a sub-

optimal design, to illustrate how the optimized design reduces

the time to confidently discern the magnetic moment.

3. Results and discussion

3.1. Lipid bilayers

3.1.1. Contrasts. The fitted SLD profiles and experimental

reflectivity data for the two lipid bilayer systems of Section 2.4

are shown in Fig. 1. Fig. 1 also visualizes the optimization

space for the simultaneous choice of two contrasts, for the two

models, assuming no prior measurement. The plot has
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Figure 1
Plots on the left correspond to the DMPC bilayer and plots on the right to the DPPC/RaLPS bilayer. Shown [(a) and (b)] are the plots of minimum
eigenvalue versus bulk water contrast SLD for the bilayer models, for the simultaneous choice of two contrasts assuming no prior measurement. Higher
values of minimum eigenvalue are better. Also shown are the nested sampling corner plots from sampling simulated data of solely D2O [(c) and (d)] and
simulated data of D2O and H2O [(g) and (h)]. The insets are the fitted SLD profiles [(e) and ( f )] and reflectivity curves [(i) and ( j)] for the experimentally
measured data sets of the two models. For clarity, the H2O and D2O DMPC bilayer data sets have been offset by factors of 10�2 and 10�4, respectively.
The H2O and SMW DPPC/RaLPS data sets have been offset by the same factors, respectively. All figures are generated by scripts available at GitHub
(Durant et al., 2021b), with full-resolution figures stored there also.



symmetry as, assuming that each contrast is measured under

the same conditions, the choice of contrast is commutative

(the order does not matter). For both bilayer models, it is clear

that measuring contrasts of maximum difference in SLD is

optimal and that measuring the same contrast twice (i.e. for

twice as long) or contrast matching a layer are both sub-

optimal. These results agree with both common practice and

sampling methods. This is illustrated in Fig. 1 where the nested

sampling corner plots (using the default dynesty stopping

criteria) from sampling simulated data of D2O and H2O, and

D2O measured for twice as long, are shown. The distributions

are clearly much better defined (i.e. more Gaussian) in the

D2O and H2O case when compared with only D2O. In addi-

tion, the 95%/2� credible intervals of the parameters are

considerably lower in the former case when compared with the

latter, with the median parameter error at �50% of the

parameter value for only D2O, decreasing to �10% with the

addition of the second contrast.

3.1.2. Time-constrained optimization. Table 1 shows the

optimized contrasts and counting time splits for each bilayer

model using one to four contrasts, assuming a fixed time

budget. For a single contrast, it appears that D2O is optimal for

DMPC and H2O optimal for DPPC/RaLPS. Since the DMPC

bilayer tailgroup is hydrogenated and the DPPC tailgroup

deuterated, we hypothesize that the contrasts are optimal as a

result of maximum contrast variation. For both models, there

is a clear and large improvement in measuring two contrasts

over just one. This is particularly noticeable for the DPPC/

RaLPS model as it is defined using a large number of model

parameters which are poorly described with just a single

contrast. When measuring two contrasts, the results clearly

agree with those of Fig. 1: measuring D2O and H2O is optimal

for both models, given the measurement conditions detailed in

Section 2.4.

When considering three contrasts, it can be seen that a small

improvement can be obtained with an additional contrast of

SLD around 1.9 � 10�6 Å�2 for DMPC and 3.4 � 10�6 Å�2

for DPPC/RaLPS. This conforms with current practices where

D2O and H2O are typically measured and a third contrast of

SMW (SLD of 2.07 � 10�6 Å�2) is sometimes also measured.

Although these contrast SLDs differ from SMW, an

improvement can still be attained from measuring SMW. This

is illustrated in Fig. 2 which shows how the minimum eigen-

value changes with a third contrast SLD for both models; the

split of the total counting time between each contrast was

defined by the three contrast results of Table 1. We emphasize

that the minimum eigenvalues should not be compared

between models (e.g. DMPC versus DPPC/RaLPS), since they

have a different number of parameters, but rather the water

contrast at which they are individually maximized is of

importance. When considering which third contrast improves

both models the most, SMW is an ideal candidate and prob-

ably a suitable choice if the optimal (model-dependent) third

contrast is unknown. The gains achieved in measuring a third

contrast are relatively small and the time to change contrast

may outweigh the minor gains achieved when compared with

measuring either D2O or H2O for longer. Therefore, we

proceed with the assumption that D2O and H2O will be

measured. Finally, the results suggest that measuring more

than three contrasts is unnecessary; given four or more

contrasts, the solution is essentially the same as with three

after combining the times of (near) identical contrast SLDs.

From Table 1 it can also be seen that the time spent

measuring each contrast is highly model dependent; for the

DMPC model, a much smaller proportion of the total time

budget needs to be spent measuring D2O when compared with

the DPPC/RaLPS model. This may initially seem surprising

when referring to our previous hypothesis that the maximum

information is obtainable in the contrast opposite to that of

the tailgroup, e.g. D2O for hydrogenated tailgroups. However,

we need to consider that there will be important information

in both D2O and H2O contrasts, but it will take more time to

obtain the equivalent complementary information in the

contrast matching the tailgroup deuteration state when

compared with the contrast with maximum variation. We see

that this is indeed the case when looking at the optimal time

splits for two contrasts; the contrast with the most information

(i.e. that which is chosen when only a single contrast can be
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Table 1
Optimized contrast SLDs and counting time splits for the DMPC and
DPPC/RaLPS bilayer models using one to four contrasts.

Also shown is the minimum eigenvalue for each set of conditions which was
maximized using DE optimization.

Contrast SLD (10�6Å
�2

) Split of time (%)

Sample 1st 2nd 3rd 4th 1st 2nd 3rd 4th
Minimum
eigenvalue

DMPC 6.36 – – – 100.0 – – – 4:957� 10�6

�0.56 6.36 – – 70.7 29.3 – – 1:919� 10�3

�0.56 1.91 6.36 – 22.0 26.5 51.5 – 2:666� 10�3

�0.56 1.90 1.93 6.36 22.7 5.8 19.4 52.1 2:666� 10�3

DPPC/
RaLPS

�0.56 – – – 100.0 – – – 6:367� 10�8

�0.56 6.36 – – 21.9 78.1 – – 2:771� 10�3

�0.56 3.38 6.36 – 24.5 21.5 54.0 – 4:387� 10�3

�0.56 3.37 3.41 6.36 25.0 3.8 17.7 53.6 4:387� 10�3

Figure 2
Minimum eigenvalue versus bulk water contrast SLD for the DMPC
(blue) and DPPC/RaLPS (green) bilayer models, for a third contrast
choice, assuming D2O and H2O have been previously measured.



measured) does not need to be measured as long as the

optimal second choice. From this, we suggest that an optimal

‘model blind’ measurement strategy would be to measure two

contrasts (D2O and H2O), and either spend an equal time on

both or spend slightly longer on the contrast matching the

tailgroup deuteration state.

Now that we have an idea about how many contrasts to

measure, we can optimize the choice of angle(s). Table 2 shows

the optimized angles and counting time splits for each bilayer

model, assuming a fixed time budget, using one to four angles

and D2O and H2O contrasts. From Table 2, it appears that

measuring two angles is an improvement on just one, but with

any more angles, the choices are once more repeated. The

results suggest that, for the DMPC and DPPC/RaLPS models,

a single low angle (0.8 and 0.7�, respectively) and a single high

angle (4.0�) is preferable. This is generally in line with current

practices, although for OFFSPEC, angles of more than 3.0� are

not commonly measured. For reference, the original experi-

mentally measured data for the DPPC/RaLPS bilayer were

measured using two angles of 0.7 and 2.3� (Clifton et al., 2016).

A low angle typically captures detail about the critical edge

whereas a high angle provides information at high Q. What

may come as a surprise is the counting times, with only about

11 and 9% of the total time budget spent measuring the low

angles in each case, respectively. This could suggest that there

is little information about the model parameters of interest at

low Q (there is no critical edge for H2O) and it is therefore not

worthwhile measuring for very long when compared with

measuring for longer at a higher angle. Alternatively, it could

indicate that the information at low Q can be extracted more

easily and therefore less time needs to be spent probing there.

We note that if the times to change angle were included in the

optimization, the results could differ slightly from those shown

here. This result is also instrument dependent. For example, it

is likely that a white-beam instrument with a smaller wave-

length range would favour more angles, although for any

instruments similar to OFFSPEC (wavelength range of

[1, 14] Å) the optimal angles will be very similar. We also note

that it may be beneficial to run sub-optimal angles since

increased overlap of data points may add diagnostic data, e.g.

checking that the data scale correctly with angle and that

overlapping data points agree.

3.1.3. Underlayers. As detailed in Section 2.4, we were able

to parameterize the bilayer models as a function of an added

underlayer, whose thickness and SLD we can control. Table 3

shows the optimized underlayer properties for each bilayer

model using zero to three underlayers, assuming D2O and

H2O contrasts are being measured. As can be seen, there is a

large improvement when adding an underlayer to both

models. There does also seem to be an improvement when

adding multiple underlayers, but the relative improvements

attained are comparatively small. When considering imple-

mentation of these designs in practice, two underlayers are

typically required to achieve the desired surface chemistry

(Clifton et al., 2015), but the additional underlayer parameters

may result in the model becoming too complex for the

experimentally measured data. As a result, fitting could be

problematic due to large parameter uncertainties and so, for

simplicity, we proceed here with the addition of a single

underlayer.

We compare the values of Table 3 with those of commonly

used gold and permalloy, whose SLDs are 4.7� 10�6 and 8.4�

10�6 Å�2, respectively, and we see that these are relatively

close to the optimal values for the DMPC experiments (albeit

in a different order). Since most of the improvement comes

from the addition of a single layer, we hypothesize that the

majority of measurements made on silicon would improve if

measured with a gold or permalloy underlayer, even though

this is not the optimal underlayer for all circumstances. For the

DMPC bilayer, we get minimum eigenvalues of 3:835� 10�3

and 3:490� 10�3 for the addition of single 100 Å gold and

permalloy underlayers, respectively (compared with 4.694 �

10�4 with no underlayer); for the DPPC/RaLPS bilayer, we get

minimum eigenvalues of 4:576� 10�3 and 1:011� 10�2,

respectively (compared with 1:312� 10�3 with no under-

layer). Therefore, for DMPC, it appears that either gold or

permalloy will result in a significant improvement, but for

DPPC/RaLPS, permalloy is preferable. To better visualize the
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Table 2
Optimized measurement angles and counting time splits for the DMPC
and DPPC/RaLPS bilayer models using one to four angles.

Also shown is the minimum eigenvalue for each set of conditions which was
maximized using DE optimization.

Angle (�) Split of time (%)

Sample 1st 2nd 3rd 4th 1st 2nd 3rd 4th
Minimum
eigenvalue

DMPC 3.17 – – – 100.0 – – – 1:027� 10�2

0.82 4.00 – – 11.9 88.1 – – 1:599� 10�2

0.8 3.94 4.00 – 11.8 2.9 85.3 – 1:599� 10�2

0.8 3.98 3.99 4.00 11.6 45.0 32.1 11.3 1:599� 10�2

DPPC/
RaLPS

2.91 – – – 100.0 – – – 1:035� 10�2

0.68 4.00 – – 8.9 91.1 – – 2:314� 10�2

0.68 4.00 4.00 – 9.1 5.8 85.2 – 2:313� 10�2

0.43 0.69 4.00 4.00 0.0 8.7 61.4 29.9 2:313� 10�2

Table 3
Optimized underlayer SLDs and thicknesses for the DMPC and DPPC/
RaLPS bilayer models using zero to three underlayers.

Also shown is the minimum eigenvalue for each set of underlayer properties
which was maximized using DE optimization. Layer 1 is nearest to the silicon
substrate and layer 3 is nearest to the water solution.

Underlayer
SLD (10�6 Å�2)

Underlayer
thickness (Å)

Sample Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3
Minimum
eigenvalue

DMPC – – – – – – 4:694� 10�4

5.39 – – 127.1 – – 4:016� 10�3

5.19 8.99 – 50.2 105.9 – 5:284� 10�3

2.32 5.34 8.99 29.3 46.8 129.4 5:414� 10�3

DPPC/
RaLPS

– – – – – – 1:312� 10�3

9.00 – – 76.5 – – 1:128� 10�2

9.00 1.70 – 61.7 23.2 – 1:818� 10�2

1.01 8.93 2.33 61.0 63.1 15.8 1:944� 10�2



optimization space, Fig. 3 shows how the minimum eigenvalue

changes for each SLD and thickness of the added underlayer.

As can be seen, for the DMPC bilayer, the majority of opti-

mization space is relatively flat and so most underlayer SLDs

and thicknesses will result in a significant improvement.

However, for the DPPC/RaLPS bilayer, this is not the case,

and the choice of both conditions appears to have a more

significant effect.

To illustrate the improvement achieved by underlayer

addition, nested sampling was used on simulated D2O and
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Figure 3
Plots on the left correspond to the DMPC bilayer and plots on the right to the DPPC/RaLPS bilayer. Shown [(a) and (b)] are the plots of minimum
eigenvalue versus underlayer SLD and underlayer thickness for the bilayer models, assuming D2O and H2O are being measured. Also shown are the
nested sampling corner plots from sampling simulated data of D2O and H2O without any underlayer [(c) and (d)] and with a single underlayer [(e) and
( f )] defined by the optimized values of Table 3.



H2O data with the default dynesty stopping criteria, as shown

in Fig. 3. The simulation conditions were the same as

previously used except only the 0.7� angle was simulated to

better illustrate the improvement in parameter uncertainties

and posterior distributions with the added underlayer; with

two angles, the distributions are already well defined (as can

be seen in Fig. 1) and so the improvement would be less

noticeable. From Fig. 3, an improvement in both the estimated

posterior distributions and 95%/2� credible intervals can

clearly be seen when the suggested underlayer is added.

3.2. Kinetics

Using the monolayer model of Section 2.5, the lipid APM

was increased (and therefore surface excess decreased) to

simulate the monolayer degrading over time. Fig. 4 shows the

SLD profile for the monolayer and how the FI in the lipid

APM parameter changes with measurement angle and

contrast SLD. The results were obtained for two models: one

with h-DPPG and the other with d-DPPG.

For both h-DPPG and d-DPPG, a contrast SLD of

approximately 0 � 10�6 Å�2 appears to maximize the APM

information. This strongly agrees with common practices

where NRW (SLD of approximately 0 � 10�6 Å�2) is

commonly measured for its sensitivity to the water–lipid

interfacial region (Clifton et al., 2011). When considering

angles, 1.4 and 0.4� maximize the APM information in the h-

DPPG and d-DPPG models, respectively. For the d-DPPG

model, there does also appear to be another solution that is

only slightly worse than the optimal solution where D2O is

measured at a high angle. There is more information in the

lipid APM parameter when the tailgroups are deuterated,

probably due to the increased reflectivity resulting in a greater

total neutron count.

3.3. Magnetism

Fig. 5 shows the experimentally fitted SLD profile and

reflectivity data for the magnetic sample of Section 2.6. Also

shown is how the FI in the platinum layer magnetic SLD

changes with YIG and platinum layer thicknesses. The YIG

thickness has virtually no effect on the FI in the platinum layer

magnetic SLD. This is perhaps unsurprising, since the oscil-

lations in reflectivity from the YIG are mostly damped at high

Q where the signal from the induced magnetism would lie.

However, the platinum thickness does have an effect, and

maximizes the FI at around 26 Å. This is reasonably close to

the fitted value of 21 Å (from the experimentally measured

data) and so the original experiment appears to have fortui-

tously been near optimal, given the varying conditions (i.e.

ignoring the choice of angles, counting times etc.). The

difference in maximum and minimum FI in the Fig. 5 plot is

not particularly large and so, in practice, the improvement

could be diminished by other unaccounted-for factors.

Fig. 5 demonstrates the improvement obtained using the

suggested platinum layer thickness by illustrating how the log

ratio of likelihoods between two models, one with an induced

moment of 0:01�B per atom and one with no moment,

changes as a function of measurement time from 1 to 100 h.

The plot shows two lines: one for the optimized design with

26 Å platinum layer thickness and the other for a sub-optimal

design with 80 Å platinum layer thickness. As can be clearly

seen, over the entire range of times under consideration, the

improved design requires a lower level of counting statistics to

discriminate the 0:01�B per atom moment. In fact, the change

of thickness away from the optimal requires that the experi-

ment be counted for several thousand more minutes to obtain

the same certainty in the result. These results also show that,

with an optimized experiment, a moment of 0:01�B per atom

in a layer around only 20 Å thick is measurable in a reasonable

time frame.
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Figure 4
Shown are the model SLD profiles for the d-DPPG monolayer on NRW,
h-DPPG on NRW and h-DPPG on D2O (a). Also shown are the plots of
FI in the lipid APM versus contrast SLD and measurement angle for the
h-DPPG monolayer (b) and d-DPPG monolayer (c) models.



3.4. Discussion

This work has shown that, with relatively minor tweaks to

experimental procedures, experiments can be performed in

shorter time frames or with greater confidence in the results of

interest. In covering the wide breadth of experimental tech-

niques presented here, we have made occasional assumptions

that may mean the optimal conditions presented here are not

necessarily those that you might choose to measure with, e.g.

changing contrast has no time penalty, or measuring higher

angles does not increase background significantly. We have

shown that the optimal values for a large number of the

variable experimental measurement conditions are highly

model dependent. However, taking the example of the two

bilayer models, while the optimal third contrast choice is quite

different, a commonly chosen middle value of SMW avoids the

complications of having to know the model in advance, with

only a very minor loss of information. The shapes of many of

the optimization surfaces are complex, and it may well suit the

experimenter better to choose a slightly less optimal but flatter

region for experimental design, for example if the behaviour is

highly oscillatory. For multi-parameter problems where larger-

dimensional spaces are to be probed, DE is able to provide the

global optimum without exhaustive calculation; however, in

these cases care should be taken to avoid sharp maxima if not

all parameters can be appropriately controlled (e.g. film

thicknesses, roughnesses, coverages or SLDs in alloys). This

could be achieved either through a modification of the opti-

mizer or, more simply, by semi-manually investigating lower-

dimensional projections of the FI with individual parameters

or parameter pairs in the way of Fig. 2 or Fig. 5(a).

We note that the increases in the minimum eigenvalue

shown here correspond to better experimental outcomes; an

increase by a factor of 100 in the minimum eigenvalue

corresponds to a reduction in uncertainties of a factor of 10

across the worst linear combination of parameters. Addi-

tionally, since the FI increases linearly with neutron counts, an

increase in the information gained is equivalent to a

commensurate increase in the neutron flux. As was shown with

the magnetic example, this can mean the difference between

an experiment being feasible in the allotted time, or not. We

should note that the maximin optimization we use here is not

the only possible way of reducing the N �M matrix of the FI

down to a single number (and changing this in the codebase is

fairly trivial), but it does represent what we believe would be

the ‘expected’ optimal, i.e. minimizing variance and covar-

iance across all parameters of interest.

The FI framework is developed from a frequentist view, but

similar Bayesian approaches have been developed, also aimed

at reflectometry experiment optimization. As described in our

previous work (Durant et al., 2021a), the main difference in

approaches is that the FI is calculated from the model and the

neutron counts; this therefore assumes that the model

describes the data but gives the benefit of never having to fit

the data or sample the posteriors. The Bayesian approach

instead probes the data, trying to match models to the data

and reconstruct the posteriors, requiring, at the very least,

fitting of the data sets and expensive calculations which would

usually preclude the development of equivalent tools to those

presented here. One such Bayesian approach quantifies the

extractable information gain by comparing the entropies of

the prior and posterior probability density functions, repre-

senting the knowledge about a sample before and after an

experiment (Treece et al., 2019; Heinrich et al., 2020). That

approach led to many of the same conclusions that are

presented here about contrasts and underlayers. However, the

framework requires the use of computationally expensive

MCMC simulation and therefore may not be suitable for on-

experiment design optimization or searching large parameter

spaces.

The code for interfacing the framework, with all of the

model systems presented in this work, is available in our

GitHub repository (Durant et al., 2021b). The repository also

presents many of the examples discussed here as interactive

Jupyter notebooks. These examples should be relatively easily

modifiable for local applications. An incident flux file profile
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Figure 5
FI in the platinum layer magnetic SLD versus YIG and platinum layer
thicknesses (a). Also shown are the experimentally fitted SLD and
reflectivity profiles [(b) and (c), respectively]. Finally, shown is the log
ratio of likelihoods between two models, one with an induced moment in
the platinum layer and one with no moment, versus counting time (d) for
two structures: one with an optimized 26 Å platinum layer thickness and
the other with a sub-optimal 80 Å thickness. The counting times shown
are minutes per measured spin state (i.e. for this model, the total times are
double the values shown here).



for the instrument being simulated is required; however the

files for several of the ISIS instruments are provided.

4. Conclusions

In this work, we demonstrated how the FI can be used to

optimize experimental design across a wide range of different

scientific applications in NR. We have shown that, for the two

lipid bilayer systems investigated, the addition of an under-

layer on the silicon substrate could provide a significant

improvement, often over a factor of 10 in the minimum

eigenvalue, but that the details of the optimal underlayer are

model dependent. When choosing contrasts in these experi-

ments, the first two should always be pure D2O and H2O; the

optimal third contrast is model dependent but the commonly

used SMW is a good compromise if the model is not well

known. For a kinetic measurement of a monolayer on water,

we showed that the optimal water contrast to measure is air

matched, but that the optimal angle depends on the deutera-

tion state of the monolayer. For magnetic measurements, we

demonstrated that it is possible to measure induced moments

as low as 0:01�B per atom in a thin layer, as long as the sample

is optimized, and that it is possible to determine how long the

measurement should be conducted in order to exceed any

given confidence threshold that the moment is present.

The framework is not specific to NR; any technique that can

be accurately simulated, and whose error bars rely on Poisson

statistics, can interface with the code. A number of Jupyter

notebooks as well as all of the code for this work are open

source and freely available on GitHub (Durant et al., 2021b).
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