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Abstract Constraints on phenotypic variation limit the capacity of organisms to adapt to the

multiple selection pressures encountered in natural environments. To better understand

evolutionary dynamics in this context, we select Escherichia coli for faster migration through a

porous environment, a process which depends on both motility and growth. We find that a trade-

off between swimming speed and growth rate constrains the evolution of faster migration.

Evolving faster migration in rich medium results in slow growth and fast swimming, while evolution

in minimal medium results in fast growth and slow swimming. In each condition parallel genomic

evolution drives adaptation through different mutations. We show that the trade-off is mediated by

antagonistic pleiotropy through mutations that affect negative regulation. A model of the

evolutionary process shows that the genetic capacity of an organism to vary traits can qualitatively

depend on its environment, which in turn alters its evolutionary trajectory.

DOI: 10.7554/eLife.24669.001

Introduction
In nature organisms adapt to complex environments where many biotic and abiotic factors affect sur-

vival. For microbes these factors include demands on metabolism (Savageau, 1983), motility

(Celani and Vergassola, 2010) and antibiotic resistance (Vetsigian et al., 2011). In this context, evo-

lution involves the simultaneous adaptation of many phenotypic traits. Organisms under complex

selection pressures often cannot vary traits independently and instead exhibit trade-offs

(Shoval et al., 2012).

Trade-offs constrain adaptive responses to selection. For example, phage exhibit a trade-off

between fecundity and virulence which depends on the relative duration of periods of horizontal and

vertical transmission (Messenger et al., 1999). Bacterial populations selected for efficient conversion

of nutrients to biomass exhibit a trade-off between yield and growth rate (Bachmann et al., 2013).

Predicting evolution in complex environments requires quantifying both trade-offs and selection

pressures (Lande, 1979). In wild populations of birds (Grant and Grant, 1995) and fish

(Ghalambor et al., 2003), phenotypic constraints and selection pressures have been inferred from

measurements of phenotypic variation. However, in wild populations of higher organisms it is chal-

lenging to observe evolution, determine selection pressures and elucidate mechanisms constraining

phenotypes. To better understand the interplay between trade-offs, selection and evolution, it is

necessary to study genetically tractable, rapidly evolving microbial populations in the laboratory.

However, laboratory-based experimental evolution of microbes typically selects for a single phe-

notype such as growth rate (Lang et al., 2013). There is evidence that metabolic trade-offs arise in
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these experiments from the decay of traits that are not subject to selection (Cooper and Lenski,

2000) rather than a compromise between multiple selection pressures. Other experiments explore

how phenotypes restricted by trade-offs evolve under alternating selection for individual traits

(Yi and Dean, 2016; Messenger et al., 1999). Less is known about evolutionary dynamics in the nat-

urally relevant regime where selection pressures are multifaceted.

To address this, we selected Escherichia coli for faster migration through a porous environment.

We showed that the evolution of faster migration is constrained by a trade-off between swimming

speed and growth rate. Evolution of faster migration in rich medium is driven by faster swimming

despite slower growth, while faster migration in minimal medium is achieved through faster growth

despite slower swimming. Sequencing and genetic engineering showed that this trade-off is due to

antagonistic pleiotropy through mutations that affect negative regulation. Finally, a model of multi-

trait selection supports the hypothesis that the direction of evolution when phenotypes are con-

strained by a trade-off is determined by the genetic variance of each trait. Our results show that

when selection acts simultaneously on two traits governed by a trade-off, the environment deter-

mines the evolutionary trajectory.

Results

Experimental evolution of migration rate
E. coli inoculated at the center of a low viscosity agar plate consume nutrients locally, creating a spa-

tial nutrient gradient which drives chemotaxis through the porous agar matrix (Righetti et al., 1981;

Maaloum et al., 1998) and subsequent nutrient consumption (Adler, 1966; Wolfe and Berg, 1989;

Croze et al., 2011). As a result, the outermost edge of the expanding colony is driven by both

growth and motility (Koster et al., 2012). The result is a three-dimensional bacterial colony that

expands radially across the plate as individuals swim and divide in the porous environment. We refer

to the outermost edge of an expanding colony as the migrating front. We tracked these migrating

fronts using webcams and light-emitting diode (LED) illumination (Materials and methods). The front

migrates at a constant speed s after an initial growth phase (Adler, 1966; Wolfe and Berg, 1989).

We performed experimental evolution by repeating rounds of allowing a colony to expand for a

fixed time interval, selecting a small population of cells from the migrating front and using them to

eLife digest In nature organisms face many challenges, and species adapt to their environment

by changing heritable traits over the course of many generations. How organisms adapt is often

limited by trade-offs, in which improving one trait can only come at the expense of another.

In the laboratory, scientists use well-controlled environments to study how populations adapt to

specific challenges without interference from their natural habitat. Most experiments, however, only

look at simple challenges and do not take into account that organisms in the wild face many

pressures at the same time. Fraebel et al. wanted to know what happens when an organism’s

performance depends on two traits that are restricted by a trade-off. The experiments used

populations of the bacterium Escherichia coli, which can go through hundreds of generations in a

week, providing ample opportunity to study mutations and their impact on heritable traits.

Through a combination of mathematical modeling and experiments, Fraebel et al. found that the

environment is crucial for determining how bacteria adapt when their swimming speed and

population growth rate are restricted by a trade-off. When nutrients are plentiful, E. coli populations

evolve to spread faster by swimming more quickly despite growing more slowly. Yet, if nutrients are

scarcer, the bacteria evolve to spread faster by growing more quickly despite swimming more

slowly. In each scenario, the experiments identified single mutations that changed both swimming

speed and growth rate by modifying regulatory activity in the cell.

A better understanding of how an organism’s genetic architecture, its environment and trade-offs

are connected may help identify the traits that are most easily changed by mutations. The ultimate

goal would be to be able to predict evolutionary responses to complex selection pressures.

DOI: 10.7554/eLife.24669.002
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inoculate a fresh low viscosity agar plate (Figure 1a). By isolating cells from the migrating front, our

procedure selects both for motility and growth rate. We performed selection experiments in this

way for two distinct nutrient conditions. First, we used rich medium (lysogeny broth (LB), 0.3 % w/v

agar, 30˚C) where all amino acids are available. In this medium the population forms concentric rings

(Figure 1b) that consume amino acids sequentially. The outermost ring consumes L-serine and most

of the oxygen (Adler, 1966). Second, we used minimal medium (M63, 0.18 mM galactose, 0.3 % w/v

agar, 30˚C) where populations migrate towards and metabolize galactose with a single migrating

front.

In rich medium, colonies of wild-type bacteria (MG1655-motile, founding strain) expand with a

front migration speed s» 0.3 cm h�1 and cells were sampled from the front after 12 hr (Figure 1b).

A portion of this sample was used to immediately inoculate a fresh plate while the remainder was

preserved cryogenically. The process was repeated every 12 hr for 15 rounds. We observed a nearly

50% increase in s over the course of the first 5 rounds of selection. The increase in s was largely

reproducible across five independent selection experiments (Figure 1c). We estimate that plate-to-

plate variation in agar concentration due to evaporative loss could change the migration rate by up

to 0.06 cm h�1 in later rounds (Appendix 1). However, independent replicate selection experiments

exhibit fluctuations in migration rate that exceed this estimate. For example, replicate 4 declines in

later rounds of selection, and this decline may reflect the unique low abundance mutation that

appears in this replicate by round 15 (Figure 5a). In addition, replicate 3 exhibits substantially faster

migration than replicates 1, 2 and 4 in round 7, and this may reflect the distinct mutations observed

in this replicate at round 5 (Figure 5a). So, while migration rates increased in all replicates, the mag-

nitude of the increase differed between replicates.

To check whether chemotaxis was necessary for increasing s, we performed selection experiments

using a motile but non-chemotactic mutant (DcheA-Z, Materials and methods). Motility in this strain

was confirmed by single-cell imaging in liquid media. As observed previously (Wolfe and Berg,

1989), the non-chemotactic strain formed dense colonies in low viscosity agar that remained local-

ized near the site of inoculation and expanded ~ 1 cm in a 24 hr period: a rate 10-fold slower than

the wild-type. To allow sufficient time for colony expansion, we performed selection experiments

using this strain with 24 hr incubation times and observed an increase in s from approximately 0.03

cm h�1 to 0.04 cm h�1 (Figure 1—figure supplement 1). We did not observe fast migrating sponta-

neous mutants which have been reported previously in multiple species (Wolfe and Berg, 1989;

Mohari et al., 2015), likely because our plates were incubated for a shorter period of time.

To determine the number of generations transpiring in our selection experiments, we measured

the number of cells in the inoculum and the number of cells in the colony after 12 hr of growth and

expansion (Materials and methods). We estimated that 10 to 12 generations occurred in each round

of selection. We then tested whether prolonged growth in well mixed liquid medium for a similar

number of generations could lead to faster migration by growing the founding strain for 200 genera-

tions in continuous liquid culture and periodically inoculating a low viscosity agar plate (Figure 1—

figure supplement 2). We observed only a 3.5% increase in the rate of migration, demonstrating

that selection performed on spatially structured populations results in more rapid adaptation for fast

migration than growth in well mixed conditions.

We then performed selection experiments in a minimal medium where growth and migration are

substantially slower than in rich medium (Figure 1d). In this condition we allowed 48 hr for each

round of expansion and took precautions to limit evaporative loss in the plates over this longer time-

scale (Materials and methods). In the first round, the population formed small ~1.5 cm diameter col-

onies without a well defined front. Populations formed well defined fronts in subsequent rounds of

selection (Figure 1d), reflecting a transition from growth and diffusion dominated transport to che-

motaxis dominated migration (Croze et al., 2011). We observed an approximately 3-fold increase in

s over the course of 10 rounds of selection. Variation across replicate experiments was substantial,

and exceeded our estimate of systematic error due evaporative losses changing the agar concentra-

tion (Appendix 1). So while all replicates increased their migration rate, the magnitude of the

increase in migration rate varied substantially. This variation may be due to the different mutations

present across replicates (Figure 5b).

When we performed selection in minimal medium using the non-chemotactic mutant (DcheA-Z),

we found little or no migration and only a very small increase in the migration rate over 10 rounds of
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Figure 1. E. coli evolves faster migration through a porous environment in rich and minimal media. (a) A schematic

of the selection procedure. E. coli are inoculated into the center of a low viscosity (0.3 % w/v) agar plate where

they form an expanding colony driven by metabolism and motility. After a fixed period of incubation, samples are

taken from eight locations around the outer edge of the expanded colony, mixed, and used to inoculate a fresh

plate. (b) Shows expanded colonies in rich medium (LB) plates after 12 hr of incubation over five successive rounds

of selection. The color bar to the right applies to all panels in (b), with darker gray indicating higher cell density.

Image intensity is assumed to be monotonic but not linear with cell density in the plate. Scale bar in the left panel

is 1 cm and applies to all panels in (b). (c) Shows the rate of migration as a function of round of selection over 15

rounds for five replicate selection experiments in rich medium. No rate is reported for replicate 1 round 8 due to

failure of the imaging device. Errors in measured rates of migration are smaller than the size of the markers. (d)

Shows colonies (gray regions) in minimal medium (M63, 0.18 mM galactose) after 48 hr of incubation. The color

bar to the right applies to all panels in (d). The scale bar in the left panel is 1 cm. (e) Shows the rate of migration

as a function of round of selection over 10 rounds for five replicate selection experiments in minimal medium.

Errors in migration rates were smaller than the size of markers. See Materials and methods for details of image

processing in both experiments.

DOI: 10.7554/eLife.24669.003

The following figure supplements are available for figure 1:

Figure supplement 1. Selection with non-chemotactic (DcheA-Z) mutant.

DOI: 10.7554/eLife.24669.004

Figure supplement 2. Change in migration rate during long-term liquid culture.

DOI: 10.7554/eLife.24669.005

Figure supplement 3. Adaptation in rich medium depends on sampling location.

DOI: 10.7554/eLife.24669.006

Figure supplement 4. Comparison of founding and evolved strains to RP437.

DOI: 10.7554/eLife.24669.007

Figure supplement 5. Persistence of rich medium fast migrating phenotype in liquid culture.

DOI: 10.7554/eLife.24669.008
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selection (Figure 1—figure supplement 1). We concluded that chemotaxis is also necessary for

increasing s in this medium.

Using the same technique described for rich medium, we estimated the number of generations

per round of selection in minimal medium to be <10. We tested whether approximately 120 genera-

tions of growth in liquid was sufficient to evolve faster migration in minimal medium. Here we found

that prolonged growth in well mixed conditions resulted in ~2-fold faster front migration. Despite

the increase in migration rate, selection in well mixed conditions resulted in slower migration than

selection in low viscosity agar plates for a similar number of generations (Figure 1—figure supple-

ment 2).

Increasing swimming speed and growth rate increase migration rate
To characterize the adaptation we observed in Figure 1c,e, we studied a reaction-diffusion model of

migrating bacterial fronts of the type pioneered by Keller and Segel (1971) and reviewed in

Tindall et al. (2008). We model the bacterial density �ðr; tÞ and a single chemo-attractant that also

permits growth cðr; tÞ. Our model includes only a single nutrient since the growth and chemotaxis of

the outermost ring in rich media is driven by L-serine (Adler, 1966) and our minimal media condi-

tions contain only a single carbon source/attractant. The dynamics of �ðr; tÞ and cðr; tÞ are governed

by

q�

qt
¼Dbr2��r�

�

k0KD

ðKDþ cÞ2
�rc

�

þ gð�;cÞ (1)

and

qc

qt
¼Dcr2c� f ð�;cÞ; (2)

where the spatial and temporal dependence of � and c have been suppressed for clarity. The three

terms on the right hand side of Equation 1 describe diffusion, chemotaxis and growth respectively.

Db is the bacterial diffusion constant, which describes the rate of diffusion of bacteria due to ran-

dom, undirected motility. k0 is the chemotactic coefficient, which captures the strength of chemo-

taxis in response to gradients in attractant. KD is the equilibrium binding constant between the

attractant and its associated receptor (Brown and Berg, 1974). Growth is modeled using the Monod

equation gð�;cÞ ¼ kg�c
Kgþc

, where kg is the maximum growth rate and is the concentration of nutrient

allowing half-maximal growth. f ð�;cÞ describes the nutrient consumption and has an identical form

to gð�;cÞ since we assume the yield (Y, cells mL-1mM-1) is a constant. Dc is the diffusion constant of

small molecules in water. The physiological parameters describing growth and attractant-receptor

binding (kg, Kg, Y and KD) were either measured here or have been reported in the literature and

can be applied directly in our simulation of migration in both nutrient conditions. Table 1 describes

each parameter used in this study.

The bacterial diffusion constant and the chemotactic coefficient depend on motility and the physi-

cal structure of the agar matrix. Motility in E. coli consists of runs, segments of nearly straight swim-

ming ~ 0.5 to 1 s long at ~20 mm s-1, and tumbles that rapidly reorient the cell over a period of

~ 0.1 s (Berg and Brown, 1972). Rivero et al. showed how the reaction-diffusion parameters Db and

k0 depend on run speed and duration (Rivero et al., 1989). Croze et al. (2011) modified these

results to account for the presence of the agar matrix. The approach treats interactions between

cells and agar as scattering events where the cell is forced to tumble.

We estimated Db and k0 using the method developed by Croze et al. for our conditions. With

these parameters we simulated the model in Equations 1 and 2 with parameters appropriate for

rich media (chemotaxis towards L-serine) and minimal media (chemotaxis towards galactose). For

the founder strain, these simulations predicted a migration rate of 0.61 cm h�1 for rich media and

0.08 cm h�1 for minimal media compared to measured rates of 0.30 � 0.01 cm h�1 and

0.0163 � 0.0038 cm h�1 respectively. We note that this comparison involves no free parameters.

In rich medium our model describes the dynamics of a single metabolite/attractant (L-serine), and

therefore fails to account for secondary fronts behind the outermost front, which arise from the

metabolism of other amino acids (Adler, 1966) (Figure 1b, Figure 2—figure supplement 2). This is

a reasonable approximation since we select cells only from the outermost front of the colony. In
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minimal medium, where only a single nutrient is available, we observe only a single migrating front

as our model predicts (Figure 2—figure supplement 2). Other limitations of this model include the

fact that it does not describe the process of adaptation by chemoattractant receptors (Berg and

Tedesco, 1975), nor does it describe stochastic processes at the single-cell level such as trapping in

the agar matrix and cell-to-cell variability. The discrepancy between predicted migration rate and

our observed migration rate most likely arises from the fact that cells are transiently trapped in the

agar matrix (Wolfe and Berg, 1989) rather than simply being scattered. While more sophisticated

models have been developed to include these processes (Vladimirov et al., 2008; Frankel et al.,

2014), the model in Equations 1, 2 captures the essential features of bacterial front migration with

fewer adjustable parameters. See Appendix 1 for further discussion.

To understand how changes in motility and growth could contribute to the evolution of migration,

we studied how the migration rate (s) varied with the parameters of our model through numerical

simulation (Appendix 1). We found that increases in run speed (jvrj) and growth rate (kg) had the larg-

est impact on s (Figure 2). Consistent with previous reports, our model indicates that only small

gains in migration rate can be achieved through increases in tumble frequency (Wolfe and Berg,

1989) ( ~ 10%, Figure 2—figure supplement 3).

Figure 2 shows how the front migration rate (heatmap) varies with run speed and growth rate for

both nutrient conditions studied in Figure 1. Our model predicts that the fastest migrating strain

should be the one that increases both its run speed and growth rate relative to the founder. There-

fore, in the absence of any constraints on accessible phenotypes, we expect both run speed and

growth rate to increase with selection.

A trade-off constrains the evolution of faster migration
To test the predictions of the reaction-diffusion model, we experimentally interrogated how the

motility and growth phenotypes of our populations evolved over the course of selection. We per-

formed single-cell tracking experiments using a microfluidic method similar to one described previ-

ously (Jordan et al., 2013). This method permitted us to acquire 5 min swimming trajectories from

Figure 2. Migration rate increases with run speed and growth rate. (a) Front migration rate (heatmap) as a function

of run speed (jvr j) and maximum growth rate (kg) simulated using the reaction-diffusion model discussed in the

text with parameters appropriate for rich medium conditions (Table 1). Model parameters were estimated using

the method developed by Croze et al (Appendix 1). Black square shows the run speed and growth rates measured

for the founding strain in rich medium (Figure 3). Standard error in jvr j is smaller than the size of the marker; error

bar in kg is the standard deviation across three replicate measurements. (b) Identical to panel (a) except for

minimal medium. The abrupt change in migration rate around kg ¼0.2 h�1 corresponds to a transition from

diffusion dominated front migration to a traveling wave (Appendix 1). The founding strain’s phenotype is shown as

a black circle, error bars are constructed identically to those in (a).

DOI: 10.7554/eLife.24669.010

The following figure supplements are available for figure 2:

Figure supplement 1. Reaction-diffusion model recapitulates qualitative features of colony expansion.

DOI: 10.7554/eLife.24669.011

Figure supplement 2. Comparison of front profiles from simulation and experiment.

DOI: 10.7554/eLife.24669.012

Figure supplement 3. Simulation of migration rate versus tumble frequency.

DOI: 10.7554/eLife.24669.013
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hundreds of individuals from strains isolated prior to selection (founder) and after 5, 10 and 15

rounds of selection in rich media (replicate 1, Figure 1c) and for the founder and strains isolated

after 5 and 10 rounds of selection in minimal media (replicate 1, Figure 1e). For tracking, cells were

grown in the medium in which they were selected. This technique permitted us to capture more

than 280,000 run-tumble events from approximately 1500 individuals. Tracking code is available

(Mickalide et al., 2017).

We identified run and tumble events for all individuals (Berg and Brown, 1972; Taute et al.,

2015) (Materials and methods). Figure 3a–b shows that run durations declined over the course of

selection in both rich and minimal media. We show the complementary cumulative distribution func-

tion (cðtrÞ) of run durations (tr) aggregated across all run events detected for the founding or

evolved strains (cðtrÞ ¼ 1�
R

tr

�¥ dt
0
rPðt0rÞ, where Pðt0rÞ is the distribution of run durations). cðtrÞ quanti-

fies the fraction of all runs longer than a time tr. These distributions show that the evolved strains

exhibited a reduction in the probability of executing long runs. We observed opposite trends for

tumble duration, with decreasing tumble duration in rich medium and increasing duration in minimal

medium (Figure 3—figure supplement 2). To summarize these changes in run-tumble statistics, we

computed the tumble bias (fraction of time spent tumbling) and the tumble frequency (tumbles per

second, Figure 3c–d). In both conditions, we observe an increase in the tumble frequency. This is

expected since previous studies showed that mutants with increased tumble frequencies have faster

migration rates through agar, likely due to tumbles freeing cells from being trapped in the agar

(Wolfe and Berg, 1989). In rich medium we observed a decline in tumble bias, while selection in

minimal medium increased the tumble bias. Tumble bias and frequency are reported in Table 2 for

all tracked strains.

Figure 3e–f show the probability distributions of run speeds for founding and selected strains in

both nutrient conditions. In rich medium we observed a nearly 50% increase in the run speed (jvrj)
between founder and rounds 10 to 15. Tracking strains isolated after 15 rounds from independent

selection experiments (replicates 3 and 4, Figure 1c) showed that this increase in run speed was

reproducible across independent evolution experiments (Figure 3—figure supplement 3). Finally,

to check that the phenotype we observed after 15 rounds of selection in rich medium was distinct

from standard laboratory strains used in chemotaxis studies, we tracked RP437 and found that its

swimming speed was slower than the round 15 strain (Figure 1—figure supplement 4).

Surprisingly, when we performed single-cell tracking for strains evolved in minimal media we

observed the opposite trend. In these conditions we observed a 50% reduction in run speed

(Figure 3f). Again, we found that this result was reproducible across independently evolved strains

(Figure 3—figure supplement 3).

While the overall trend in minimal medium was towards reduced run duration, one replicate

showed an increase in run duration (Figure 3—figure supplement 3). The strain where we observed

long runs after 10 rounds of selection (replicate 2, Figure 1e) also exhibited a slower migration rate

than the strain isolated from replicate 1, and the long run durations may be responsible for this

difference.

We then measured the growth rates of founding and evolved strains from both selection condi-

tions in well mixed liquid corresponding to the medium used for selection (Appendix 1). We

observed a decline of about 10% in the maximum growth rate with selection in rich medium and a

three-fold increase in the maximum growth rate after 10 rounds of selection in minimal medium

(Figure 3g-h). We found that these changes in growth rate are reproducible across independently

evolved strains in both environmental conditions (Figure 3—figure supplement 3).

Since motility is known to depend on the growth history of the population (Staropoli and Alon,

2000), we checked whether the phenotypic differences between founding and evolved strains shown

in Figure 3 remained valid when we tracked cells over a range of optical densities during population

growth. We performed these measurements for the founding strain in both rich and minimal media,

and for a round 15 strain in rich medium and a round 10 strain in minimal medium (Figure 3—figure

supplement 4). For both rich and minimal media, we found that the differences in run speed (jvrj)
between founding and selected strains were retained across the growth curve (Figure 3—figure

supplement 4d). Likewise, in minimal medium, the average run duration was shorter for the selected

strain than for the founder across the growth curve. For rich medium, average run durations for the

round 15 strain were not consistently shorter than founder, but the round 15 strain exhibited smaller

variability in run duration (Figure 3—figure supplement 4b).
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Figure 3. Dynamics of phenotypic evolution in rich and minimal media. (a–f) Show single-cell swimming

phenotypes (run duration (tr ), run speed (jvr j), tumble bias and tumble frequency, see Materials and methods).

Tracking was performed for founding strain (140 cells, 19,597 run events), strains isolated after 5 (79 cells, 12,217

run events), 10 (97 cells, 18,505 run events) and 15 (96 cells, 15,928 run events) rounds in rich media and in minimal

media for the founding strain (72 cells, 7556 run events), round 5 (45 cells, 9724 run events) and round 10 (25

cells, 4892 run events). (a) Shows the fraction of runs longer than a given tr for strains evolved in rich media (95%

confidence intervals from bootstrapping). The mean and standard deviation in run duration for founder is

0.66 � 0.78 s, for round 5: 0.63 � 0.61 s, for round 10: 0.58 � 0.50 s and for round 15: 0.65 � 0.57 s. Round 5, 10

and 15 strains exhibit shorter average run durations than founder (p<0.05). (b) Shows the same distribution for

strains in minimal medium with founder exhibiting average run duration 0.49 � 0.52 s, round 5: 0.44 � 0.48 s and

round 10: 0.33 � 0.28 s. Rounds 5 and 10 exhibit shorter average run durations than founder (p<10�8). (c–d) Show

average fraction of time spent tumbling (tumble bias) and tumble frequency (tumbles per second) for rich medium

and minimal medium respectively. Note the two vertical axes. In rich medium only the round 15 tumble bias is

significantly different from founder (p<0.001), but the tumble frequency is higher than founder for both rounds 10

and 15 (p<0.001). In minimal medium all tumble biases and frequencies are significantly different from founder for

all strains (p<0.001). (e) Shows run speed distributions for strains evolved in rich medium, legend in (a) applies. The

average � standard deviation run speeds are, for founder: 18.7 � 7.1 mm s�1, round 5: 24.9 � 7.1 mm s�1, round

10: 27.6 � 7.0 mm s�1, and for round 15: 28.7 � 6.8 mm s�1. Average run speeds for rounds 5, 10 and 15 are

greater than founder (f) Shows the same distributions for strains evolved in minimal medium, average run speed

for founder: 20.7 � 10.8 mm s�1, for round 5: 11.2 � 4.8 mm s�1 and for round 10: 13.3 � 4.4 mm s�1. Both rounds 5

and 10 exhibit slower average run speeds than founder, the legend in (b) applies. (g–h) Show growth rates in well

mixed liquid culture for all strains studied in panels (a–f) in the medium in which the strains were selected. (g)

Shows triplicate measurements from each of the four strains isolated in rich medium. Rounds 5, 10 and 15 exhibit

slower growth than founder (p<0.01). (h) Shows growth rates for strains isolated from minimal medium selection

experiment. Four replicate measurements were made for founder and round 10 and three replicate measurements

for round 5. Squares and circles demarcate measurements made on separate days. Rounds 5 and 10 have higher

growth rates than founder (p<10-5).

DOI: 10.7554/eLife.24669.015

The following figure supplements are available for figure 3:

Figure supplement 1. Microfluidic device and single-cell swimming trajectory.

DOI: 10.7554/eLife.24669.016

Figure supplement 2. Tumble durations and run lengths for evolved strains.

DOI: 10.7554/eLife.24669.017

Figure 3 continued on next page
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Combining growth rate measurements with single-cell motility measurements allowed us to pre-

dict the front migration rate for strains in rich and minimal media using the reaction-diffusion model

described above. We found that the model qualitatively recapitulated the increase in front migration

rate that we observed experimentally (Tables 3,4, Figure 4—figure supplement 1).

We conclude that there is a trade-off between run speed and growth rate in E. coli which con-

strains the evolution of faster migration through low viscosity agar. Figure 4, which summarizes this

trade-off for both conditions, shows the measured growth rates and swimming speeds for all strains

presented in Figure 3 overlaid on the predicted migration rates from our reaction-diffusion model.

The curves in Figure 4a–b show that the evolved phenotypes lie near a Pareto frontier in the pheno-

typic space of run speed and growth rate.

Parallel genomic evolution drives a trade-off through antagonistic
pleiotropy
To investigate the mechanism of the phenotypic evolution and trade-off we observed, we performed

whole genome sequencing of populations for the founding strain as well as strains isolated after

rounds 5, 10 and 15 in rich medium for four of five selection experiments and rounds 5 and 10 in

minimal medium for four of five selection experiments (Materials and methods). Figure 5 shows de

novo mutations observed in each strain sequenced. Since we sequenced populations, we report the

frequency of each mutation observed (see legend, Figure 5a, middle panel).

In the rich medium experiment we observed parallel evolution across replicate selection experi-

ments, with a mutation in clpX (E185*) and an intergenic single base pair deletion both rising to

Figure 3 continued

Figure supplement 3. Reproducibility of the evolved phenotype.

DOI: 10.7554/eLife.24669.018

Figure supplement 4. Swimming statistics as a function of culture density.

DOI: 10.7554/eLife.24669.019

Figure 4. Trade-off between growth rate and run speed constrains evolution of faster migration. (a) Shows run

speeds and growth rates for strains evolving faster migration in rich medium overlaid on a heatmap of the

prediction for front migration rate from the reaction-diffusion model (Figure 2). Phenotypes for strains from

Figure 3 are shown along with two independently evolved strains (replicates 3 (15(r3)) and 4 (15(r4)), Figure 1c). In

addition, the red ‘x’ marks the phenotype for the mutation clpXE185* in the founding strain background

(Figure 5). (b) Shows run speeds and growth rates for strains evolved in minimal medium overlaid on the

predicted from migration rate from the reaction-diffusion model. Growth rate and run speed for an independently

evolved round 10 strain is shown (10(r2), Figure 1e) as well as the phenotype for the galSL22R mutation in the

founder background (black ‘x’). Predicted front migration rates assume no change in run duration.

DOI: 10.7554/eLife.24669.022

The following figure supplements are available for figure 4:

Figure supplement 1. Predicted migration rates for evolved strains.

DOI: 10.7554/eLife.24669.023

Figure supplement 2. Swimming statistics, growth rates and migration rates for mutants.

DOI: 10.7554/eLife.24669.024
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fixation within approximately 5 rounds of selection. In this condition we observed transient mutations

in genes regulating chemotaxis or motility (near flhD, Figure 5a) in two of four replicates.

A previous study showed that mutations in clpX alter flhDC expression and motility (Girgis et al.,

2007). We therefore focused attention on the mutation in clpX, which converted position 185 from

glutamic acid to a stop codon in the 424 residue ClpX protein. ClpX is the specificity subunit of the

ClpX-ClpP serine protease. ClpX forms a homohexamer that consumes ATP to unfold and translo-

cate target proteins to the ClpP peptidase (Baker and Sauer, 2012). The ClpXP protease has many

targets in the cell including FlhDC, the master regulator of flagellar biosynthesis (Tomoyasu et al.,

2003). We found that this mutation in clpX was at high abundance (>70%) in all populations after 5

rounds of selection and fixed by round 10 in all four replicates (Figure 5a).

To determine the phenotypic effects of clpXE185*, we used scarless recombineering to recon-

struct this mutation in founding strain genetic background (Kuhlman and Cox, 2010)

(Materials and methods). We then performed migration rate, single-cell tracking and growth rate

measurements on this strain. We observed a statistically significant increase in migration speed for

the clpXE185* mutant (0.39 � 0.01 cm h�1, mean and standard error) relative to founder

(0.30 � 0.01 cm h�1, p ¼0.002). We also found that clpXE185* resulted in a statistically significant

increase in run speed relative to founder (24.2 mm s�1 compared to 18.7 mm s�1, p< 10-10). Finally, in

well mixed batch culture in rich medium, the clpXE185* mutant exhibited a maximum growth rate

kg ¼ 1.19 � 0.009 h�1 (standard error for triplicate measurements) with founder exhibiting a maxi-

mum growth rate of 1.23 � 0.01 h�1 (p ¼ 0:0174, Figure 4—figure supplement 2). Knocking out

clpX from founder resulted in very slow front migration (s ¼ 0.0036 � 0.001 cm h-1), suggesting that

the stop codon mutation we observe has a more subtle effect on the enzyme’s function than a sim-

ple loss of function. Finally, we reconstructed the intergenic single base pair deletion which fixed in

Figure 5. Genomic evolution. (a) De novo mutations observed in strains isolated after 5, 10 and 15 rounds of

selection in rich medium. Abscissa denotes position along the genome. Colors of the markers indicate

independently evolved replicates and correspond to traces in Figure 1c. Circles denote single nucleotide

polymorphisms (SNP) in coding regions, squares denote intergenic SNPs, and triangles denote larger insertions or

deletions. The size of the marker is proportional to the frequency of the mutation in the population. Only

mutations with a frequency above 0.2 in the population are shown. Genes of interest are labeled. The operons

coding for motility and chemotaxis are near flhD. (b) Identical to (a) but shows de novo mutations for strains

evolved in minimal medium. The marker near icd corresponds to multiple SNPs in close proximity to each other.

See Tables 5–12 for a list of all mutations observed and details of the sequencing.

DOI: 10.7554/eLife.24669.025
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all four replicate selection experiments but observed no phenotypic effects of this mutation when

placed in the founder or clpXE185* background (Figure 4—figure supplement 2). These results

suggest that this intergenic mutation is neutral.

We conclude that the clpX mutation observed in all four replicate experiments drives faster front

migration through increasing run speed, despite decreasing growth rate. Since the mutant exhibits

both faster swimming and slower growth rate relative to founder we conclude that the trade-off

between growth rate and swimming speed is driven by antagonistic pleiotropy (Cooper and Lenski,

2000).

Figure 5b shows the mutations observed in rounds 5 and 10 for four of five replicate selection

experiments in minimal medium. In all experiments, we observed mutations in the transcriptional

regulator galS which fixed in just five rounds. In one of four experiments, we observed a mutation in

the gene encoding the motor protein FliG, otherwise the observed mutations appear to be meta-

bolic in nature. In minimal medium we also observed a substantial number of synonymous mutations

rising to fixation (see Table 5–8). The role of these synonymous mutations is not known, but may be

due to tRNA pool matching (Stoletzki and Eyre-Walker, 2007).

To understand how these mutations drive phenotypic evolution, we focused on the galSL22R

mutation. galS encodes the transcriptional repressor of the gal regulon. The coding mutation we

observe occurs in the highly conserved N-terminal helix-turn-helix DNA binding region of this pro-

tein, we therefore expect that this mutation alters the expression of the gal regulon (Weickert and

Adhya, 1992). To assay the phenotypic effects of this mutation, we reconstructed it in the genetic

background of the founder.

The migration rate of the galSL22R mutant showed a statistically significant increase relative to

founder (s ¼ 0.039 � 0.001 cm h�1 for galSL22R and 0.0163 � 0.0038 cm h�1 for founder, p < 10�3).

We found that the growth rate of the mutant was approximately 2.5-fold larger than founder in mini-

mal medium (0.23 � 0.005 h�1 for galSL22R and 0.089 � 0.03 h�1 for founder, p ¼4�<10�4). Fur-

ther, this mutation reduced the mean swimming speed relative to founder by approximately 15%

(Figure 4b, Figure 4—figure supplement 2). However, when we knock out the galS gene from

founder we do not observe a significant increase in the migration rate (DgalS s ¼ 0.0165 � 0.002 cm

h�1, p ¼ 0:92).

Therefore, as shown in Figure 4b, we conclude that galSL22R alone drives faster growth and

slower swimming. As with the rich medium condition, this trade-off is governed by antagonistic

pleiotropy.

Genetic covariance determines direction of phenotypic evolution
To understand why we observe divergent phenotypic trajectories in the rich and minimal medium

conditions (Figure 4a–b), we studied a simple model of the evolution of correlated traits

(Lande, 1979; Mezey and Houle, 2005). We consider a vector of the two phenotypes of interest,

run speed and maximum growth rate, normalized to the values of the founder (Hansen and Houle,

2008), ~f ¼ ½j~vrj; ~kg�T (j~vrj ¼ hjvrji=hjvrjf i, ~kg ¼ hkgi=hkfgi, where hi denotes an average across the popu-

lation). The model describes the evolution of the mean phenotype (~f) under selection by

~f¼G~bþ~f0 (3)

where G, the genetic covariance matrix, describes the genetically driven phenotypic covariation in

the population, which is assumed to be normally distributed (Nð~f;GÞ). ~b is the selection gradient

which captures the change in migration rate with respect to phenotype since we are selecting for

faster migration. The matrix G is given by

G¼
s2

j~vr j �sj~vr js~kg

�sj~vr js~kg
s2

~kg

" #

; (4)

where s2

~� describes the (fractional) variance in the phenotype due to genetic variation and captures

the correlation between the two traits. Therefore, the diagonal elements of G describe the capacity

for mutations to vary each trait while the off-diagonal elements describe the capacity for mutations

to vary both traits. In our experiment we do not have a direct measurement of G. However, we do
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observe how ~f changes over the course of selection, our data suggest that �<0 and our reaction-dif-

fusion model permits us to estimate how migration rate depends on the two traits of interest. In

particular, ~b¼ q logðsÞ
qð �rj jÞ ;

q logðsÞ
qkg

h iT

.

We approximate ~b in both rich and minimal media by fitting a plane to the heatmap shown in

Figure 2a–b (Appendix 1). The resulting selection gradient is shown in Figure 6—figure supple-

ment 1 for both conditions. Using this formalism, we asked what values of s~kg
and sj~vr j would result

in the directions of phenotypic evolution we observed experimentally in rich and minimal media.

We found that the direction of phenotypic evolution in rich medium agreed well with our experi-

mental observations so long as sj~�r j=s ~kg
� 1 for �<� 0:1. This implies that our observed phenotypic

evolution is consistent with a genetic variance in run speed that is no smaller than the genetic vari-

ance in growth rate (Figure 6—figure supplement 2). In contrast, in minimal medium the model

predicts the direction of observed phenotypic evolution only if sj~�r j=s ~kg
<
~

0:3 for �<� 0:1. This result

indicates that our observed phenotypic evolution is consistent with at least three-fold larger propen-

sity for mutations to alter growth rate compared to run speed in minimal medium (Figure 6—figure

supplement 2). Figure 6 shows these geometric relationships between selection, genetic covariance

and phenotypic evolution.

This suggests that the capacity of mutations to alter run speed or growth rate relative to founder

depends on the nutrient conditions and that changes in this capacity qualitatively alter the direction

of evolution along a Pareto frontier (Shoval et al., 2012). This result captures the intuition that muta-

tions that can increase growth rate in rich medium are few while in minimal medium the propensity

for mutations increasing growth rate is substantially larger. The model presented here relies on a lin-

ear approximation to ~b , which is a good assumption for rich medium but not for minimal medium,

where the dependence of s on j�rj and kg is strongly nonlinear. Using simulations of the evolutionary

Figure 6. Evolution of correlated traits. The evolutionary model describes the change in phenotype relative to the

founder (~f ¼ ½j~vr j;~kg�T ) under selection described by ~b. Panels show unit vectors in the direction of observed

phenotypic evolution (f̂) and the direction of selection inferred from the reaction-diffusion model (b̂). Ellipses

show quartiles for a normal distribution of phenotypes with covariance matrix G that is consistent with ~f and ~b. In

both panels, we set the correlation coefficient between ~kg and j~vr j is � ¼ �0:75 but our conclusions hold for

�<� 0:1. In rich medium (a) sj~vr j=s~kg
¼ 1 and in minimal medium sj~vr j=s~kg

¼ 0:3. In rich medium b̂RM ¼ ½0:78; 0:61�
and in minimal medium b̂MM ¼ ½0:87; 0:49�.
DOI: 10.7554/eLife.24669.030

The following figure supplements are available for figure 6:

Figure supplement 1. Determining ~b from reaction-diffusion model.

DOI: 10.7554/eLife.24669.031

Figure supplement 2. Direction of phenotypic evolution with sj~vr j and s~kg
.

DOI: 10.7554/eLife.24669.032

Figure supplement 3. Stochastic simulations of selection in minimal medium.

DOI: 10.7554/eLife.24669.033
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process described by Equation 3 , we relaxed the assumption of linearity in the selection coefficient

and found that our qualitative conclusions were not altered (Figure 6—figure supplement 3).

We note that the structure of G inferred above reflects the capacity for mutations to change phe-

notypes at the outset of the experiment. As evolution proceeds in rich medium, we observe a satura-

tion in both run speed and growth rate (Figure 4a), suggesting that further variation is constrained,

either genetically or through biophysical constraints on swimming speed. Similarly, in minimal

medium, saturation in the growth rate occurs after 5 rounds of selection, suggesting that mutations

to further improve growth rate are either not available or fundamental constraints on growth inhibit

further increases (Scott et al., 2010).

Discussion
The most striking observation of our study is the divergent trajectories of phenotypic evolution

shown in Figure 4a–b. This observation shows that the evolution of faster migration results in

environmentally dependent phenotypic outcomes. This result has important implications for inter-

preting phenotypic variation in natural populations.

When trade-offs are observed in wild populations, it is sometimes proposed that phenotypes at

the extrema of a Pareto frontier reflect the outcome of selection for a specific task (Shoval et al.,

2012). Our study shows that when selection pressures place demands on multiple traits simulta-

neously, evolution along the frontier can reflect differing genetic capacity for adaptation of each

phenotype rather than simply the fitness benefit of improving each trait. This result suggests a cau-

tious approach to interpreting phenotypes in nature, where selection pressures and mechanisms

constraining phenotypes are often not known (Gould and Lewontin, 1979).

Our results point to the potential predictive power of determining the directions in phenotype

space in which genetic variation can most readily change phenotypes – so called, ‘genetic lines of

least resistance’ (Schluter, 1996). These directions may be related to genetic regulatory architec-

ture. The mutations we observe in both rich and minimal media alter negative regulators (a protease

in the case of clpX and a transcriptional repressor in the case of galS). This supports the hypothesis

that microevolution is dominated by the disruption of negative regulation (Lind et al., 2015) and

suggests that the direction of phenotypic evolution can be predicted by determining where negative

regulatory elements reside in genetic and proteomic networks. The mutations we examined appear

to be more subtle than simple loss of function, since knockout mutants for both clpX and galS do

not exhibit fast migration, therefore a detailed understanding of how mutations disrupt negative

regulation will be essential.

Previous experimental evolution studies have revealed a similar trade-off to the one presented

here. Comparing the results of these studies to our own demonstrates the impact of how selection is

performed on the phenotypic outcomes. For example, Yi and Dean, 2016 selected E. coli alter-

nately for growth in well mixed conditions and chemotaxis using a capillary assay and observed a

trade-off between growth rate and swimming speed which was circumvented by phenotypic plastic-

ity. We observe no evolution beyond the Pareto frontier in our study, possibly because our condi-

tions simultaneously select for growth and motility rather than alternating between selection

pressures. This suggests that evolutionarily persistent trade-offs may reflect selection pressures that

occur simultaneously in nature. In addition, van Ditmarsch et al. (2013) and Deforet et al. (2014)

select Pseudomonas aeruginosa for a hyperswarming phenotype on hard agar. Rather than sampling

from the population at a specific location in a swarming colony, they allow the population to swarm

for a fixed time interval, remove the entire colony from the plate and inoculate a second plate from

a mixed sample of the entire colony. This procedure likely selects both for swarming speed and for

growth in the bulk of the colony. Phenotypically, hyperswarmers selected in this way exhibit a

decline in growth rate and swimming speed in liquid and a deficit in biofilm formation

(van Ditmarsch et al., 2013; Deforet et al., 2014). In light of our study, these results suggest that

evolved phenotypes can depend on whether selection occurs at well defined spatial locations in a

structured population (e.g. migrating fronts) or through periodic removal of spatial structure. A

more precise understanding of the selection pressure applied by van Ditmarsch et al. might emerge

from the application of Lande’s (Lande, 1979) formalism to the observed genetic and phenotypic

variation.
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Interestingly, both Yi and Dean (2016) and van Ditmarsch et al. (2013) observe mutations that

alter regulation of motility and chemotaxis genes. None of the mutations observed in our experi-

ment were found by Yi and Dean, despite evolution along similar Pareto frontiers. This suggests that

determining the allowed directions of phenotypic variation may be a more powerful approach to

predicting evolution than cataloging mutations alone.

The mechanism of the trade-off between growth rate and swimming speed has, to our knowl-

edge, not been determined. However, over-expression of motility operons could drive the reduc-

tions in growth rate we observe in rich medium. Subsequent increases in speed could then arise

passively from reductions in cell size which reduce hydrodynamic drag (Taheri-Araghi et al., 2015).

Similarly, increases in growth rate in minimal medium should increase cell size and hydrodynamic

drag. Using the data of Taheri-Araghi et al. (2015), we estimated changes in cell size due to mea-

sured changes in growth rate for populations evolved in rich and minimal medium. We could not

account for the large change in swimming speed we observe through growth rate mediated changes

in cell size alone (Appendix 1). Since we have not measured cell size directly, we cannot conclusively

rule out this mechanism. To definitively characterize the mechanism of this trade-off will require

measurements of cell size, gene expression, flagellar length and proton motive force.

Our study shows how evolutionary dynamics are defined by the complex interplay between

genetic architecture, phenotypic constraints and the environment. Our hope is that a general

approach to predicting evolution can emerge from a more complete understanding of this interplay.

Materials and methods

Motility selection
Rich medium
10 mL of motile E. coli (strain MG1655-motile, Coli Genetic Stock Center (CGSC) #8237) from an

overnight LB culture was injected at the center of a 0.3 % w/v agar 15 cm diameter plate containing

LB. Images were acquired every minute via webcams (Logitech HD Pro Webcam C920, Logitech,

Lausanne, Switzerland) in a dark box using pulsed illumination provided by an LED light strip (part

number: COM-12021, Sparkfun Inc, Nilwot, CO). Only the Red and Green LEDs of the RGB strip

were used in order to avoid blue light response known to occur in E. coli (Taylor and Koshland,

1975). After 12 hr, 50 mL of cells was removed from each of eight points around the outermost ring.

This sample was briefly vortexed and 10 mL ( » 106 cells) was injected into a fresh plate from the same

batch. Remaining bacteria were preserved at �80˚C in 25% glycerol. Selection was performed by

repeating this sampling and growth over 15 rounds. Automated image processing then yielded

quantitative data about front speed. All experiments were performed at 30˚C in an environmental

chamber (Darwin Chambers, St. Louis, MO). Plates were allowed to equilibrate for 12 hr at 30˚C in

the environmental chamber before use. All plates for a single selection replicate were poured from a

single media bottle. Plates were allowed to cool, parafilmed and stored at 4˚C until use.

To estimate the number of generations that occur during each round of selection, we inoculated

an agar plate from a culture of the founding strain. We then measured the cell density of the inocu-

lum by serial dilution and plating. We permitted the colony to expand for 12 hr. To measure the

total population on the plate after growth, we mixed the entire contents of the plate in a beaker

and measured the density by serial dilution and plating again. From this we extracted an estimate of

the number of generations that occurred. The range reflects errors due to serial dilution and plating

and the difference in colony size during selection.

Minimal medium
Selection experiment was performed identically to rich medium experiment with the following modi-

fications. Plates were made with M63 0.18 mM galactose. Cultures used to initiate selection were

grown in M63 30 mM galactose for 24 to 48 hr prior to initiating selection. During each 48 hr round

of migration and imaging, plates were housed in a plexiglass box with a beaker of water to prevent

evaporative losses from the plate. Images were acquired every 2 min. We estimated the number of

generations per round as described above. Reliable plate counts were only obtained for plates of

round 10 strains where we estimate 10 generations per round. We therefore take this as an upper
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bound and conclude that the 10 round selection experiment includes <100 generations. Plates were

thermalized for 24 hr before use.

The DcheA-Z mutant was constructed via P1 transduction from a strain provided by the group of

Chris Rao and the mutation was confirmed by PCR. This mutant lacks the receptors tar and tap and

the chemotaxis genes cheAWRBYZ.

Table 1. Reaction-diffusion model parameters: Columns indicate parameter, explanation of parameter, units, value used in simulation

of founder strain in rich medium, and the value used in simulation of founder strain in minimal medium. Parameters marked with an m

were measured in this study. Db, k0 and Dc in rich medium were estimated as described in Appendix 1 using the methods of

Croze et al (2011). Dc is assumed to be the same in minimal medium as rich medium. Identical k0 and Db were used in rich and mini-

mal media since Ford and Lauffenburger (1992) find nearly identical values for galactose as Ahmed and Stocker (2008) do for ser-

ine. KD for both nutrient conditions was taken from Hazelbauer Adler et al., 1973. For minimal medium Kg and Y were taken from

Lendenmann et al., 1999. The values cited for s were measured from numerical simulation of the reaction-diffusion model as outlined

in Materials and methods.

Parameter Explanation Units Founder value RM Founder value MM

Single-cell swimming (this study)

tr run duration s 0.67m 0.47m

tt tumble duration s – –

jvr j run speed mm s�1 18.7m 22.2m

Reaction-diffusion model

�ðr; tÞ cell density m�3 – –

cðr; tÞ nutrient density mM – –

c0 nutrient concentration in medium mM 1m 0.18m

Db bacterial diffusion constant cm2h�1 0.0576 0.0576

Dc nutrient diffusion constant cm2h�1 0.036 0.036

k0 chemotactic coefficient in liquid cm2h�1 6.12 6.12

KD receptor-nutrient binding constant mM 2 0.1

kg maximum growth rate h�1 1.23m 0.125m

Kg c concentration for half-maximum growth rate mM 0.1 3P <10-4

Y yield biomass per unit nutrients cells mL�1mM�1 5�107m 3�108

C agar concentration % (w/v) 0.3m 0.3m

s front migration rate cm h�1 0.61 0.09

DOI: 10.7554/eLife.24669.009

Table 2. Tumble bias and frequency for additional strains.

Tumble bias and frequencies

strain Tumble bias Tumble frequency [Hz]

Rich medium

founder 0.197 � 0.006 0.59 � 0.02

15(r3) 0.174 � 0.006 0.78 � 0.02

15(r4) 0.2 � 0.01 0.79 � 0.01

clpXE185� 0.19 � 0.01 0.66 � 0.02

Minimal medium

founder 0.29 � 0.01 0.41 � 0.03

10(r2) 0.25 � 0.02 0.44 � 0.03

galSL22R 0.3 � 0.02 0.44 � 0.05

DOI: 10.7554/eLife.24669.014
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We selected the motile MG1655 wild-type strain for these experiments rather than the more com-

monly used RP437 strain since the latter is auxotrophic for several amino acids. Minimal medium

experiments were therefore performed without additional amino acids which could confound results.

Image analysis
Webcam acquired images of migrating fronts were analyzed by custom written software (Matlab,

Mathworks, Natick, MA). A background image was constructed by median projecting six images

from the beginning of the acquisition before significant growth had occurred. This image was sub-

tracted from all subsequent images prior to further analysis. The location of the center of the colony

was determined by first finding the edges of the colony using a Canny edge detection algorithm. A

circular Hough transform (Hough, 1959) was applied to the resulting binary image to locate the cen-

ter. In rich medium, where signal to background was >10, radial profiles of image intensity were

measured from this center location and were not averaged azimuthally due to small departures from

circularity in the colony. The location of the front was determined by finding the outermost peak in

radial intensity profiles. Migration rate was determined by linear regression on the front location in

time. Imaging was calibrated by imaging a test target to determine the number of pixels per centi-

meter. The results of the calibration did not depend on the location of the test target in the field of

view. In minimal medium, where the signal to background is reduced due to low cell densities, back-

ground subtraction was employed as described above but radial density profiles were not always

reliable for locating the front. Instead, a circular Hough transform was applied to each image to

locate the front at each point in time.

Single-cell tracking
Single-layer microfluidic devices were constructed from polydimethyl-siloxane (PDMS) using stan-

dard soft-lithography techniques, (Quake and Scherer, 2000) following a design similar to the one

used previously (Jordan et al., 2013), and were bonded to coverslips by oxygen plasma treatment

(Harrick plasma bonder, Harrick Plasma, Ithaca, NY). Bonded devices formed a circular chamber of

diameter 200 mm and depth 10 mm (Figure 3—figure supplement 1). Devices were soaked in the

medium used for tracking (LB for rich medium strains, M63 0.18 mM galactose for minimal medium

strains) with 1% Bovine Serum Albumin (BSA) for at least 1 hr before cells were loaded. Bacteria

were inoculated directly from frozen stocks into medium containing 0.1% BSA in a custom continu-

ous culture device. BSA was necessary to minimize cells adhering to the glass cover slip. For rich

Table 3. Reaction-diffusion model parameters estimated from measurements of tumble frequency

(a0) and run speed (jvrj) for rich medium evolved strains in C ¼ 0.3% agar.

Evolution of population level migration parameters

strain a0 [s�1] jvr j [ mm s�1] Db [ cm2h�1] k0 [ cm2h�1]

founder 1.45 18.7 0.02 0.65

round 5 1.56 24.9 0.027 0.90

round 10 1.72 27.6 0.029 1.04

round 15 1.54 28.7 0.031 1.04

DOI: 10.7554/eLife.24669.020

Table 4. Reaction-diffusion model parameters estimated from measurements of tumble frequency

(a0) and run speed (jvrj) for minimal medium evolved strains in C ¼0.3% agar.

Evolution of population level migration parameters

strain a0 [s�1] jvr j [ mm s�1] Db [ cm2h�1] k0 [ cm2h�1]

founder 2 20.7 0.021 0.66

round 5 2.5 11.2 0.011 0.39

round 10 3 13.3 0.011 0.5

DOI: 10.7554/eLife.24669.021
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medium tracking experiments, cells grew to a target optical density and the continuous culture

device was run as a turbidostat. In minimal medium experiments the device was run as a chemostat

at an optical density of ~0.15. The culture was stirred by a magnetic stir bar at 775 RPM and the

temperature was maintained at 29.75˚C by feedback.

To perform single-cell tracking, cells were sampled from the continuous-culture device and

diluted appropriately (to trap one cell in the chamber at a time) before being pumped into the

microfluidic chamber. Video was acquired at 30 frames per second with a Point Grey model FL3-U3-

32S2M-CS camera (Point Grey, Richmond, Canada) and a bright-field microscope (Omano OM900-T

inverted) at 20x magnification. Movies were recorded for 5 min before a new cell was loaded into

the chamber. An example movie is available at https://doi.org/10.13012/B2IDB-4912922_V2. Two

microscopes were operated in parallel. The stock microscope light source was replaced by a high-

brightness white LED (07040-PW740-L, LED Supply, Randolf, VT) to avoid 60 Hz flickering that was

observed with the stock halogen light source. All experiments were performed in an environmental

chamber maintained at 30˚C.
Movies were segmented and tracked with custom written Matlab routines described previously

(Jordan et al., 2013; Jaqaman et al., 2008). Code is available at https://github.com/dfraebel/Cell-

Tracking (Mickalide et al., 2017; copy archived at https://github.com/elifesciences-publications/

CellTracking). At times when two individuals are present in the chamber, ambiguous crossing events

can lead to loss of individual identities. All crossing events were inspected manually to prevent this.

To identify runs and tumbles, we utilized a method based on reference (Taute et al., 2015) which

was modified from the approach used by Berg and Brown (1972). Briefly, for each cell the segmen-

tation routine results in a matrix of spatial locations~xðtÞ. We compute the velocity by the method of

Table 5. Minimal medium replicate 1: All mutations detected in rounds 5 and 10 of minimal medium

replicate 1. The galSL22R mutation in rounds 5 and 10 was confirmed by Sanger sequencing. See

Table 9 caption.

Minimal medium replicate 1

round, (coverage) 5, (71�) 10, (214�)

Mutation (loc., mut., frac., cov.)

1196220, icd H366H,78.4%, 46 1196220, icd H366H, 100%, 141

1196232, icd T370T, 71.1%, 34 1196232, icd T370T, 100%, 101

1196247, icd L375L, 72.0%, 25 1196247, icd L375L, 100%, 75

1196277, icd N385N, 47.1%, 17 2015871, fliG V331D, 100%, 111

1196280, icd A386A, 47.1%, 17 2241604, galS L22R, 100%, 184

1196283, icd K387K, 47.2%, 17 2685013, glyA H165H, 100%, 197

1196292, icd T390T, 46.2%, 13 3815859, rph D82 bp, 100%, 260

1196304, icd E394E, 46.2%, 13

2015871, fliG V331D, 70.0%, 60

2241604, galS L22R, 100%, 45

2685013, glyA H165H, 100%, 62

DOI: 10.7554/eLife.24669.026

Table 6. Minimal medium replicate 2: All mutations detected in rounds 5 and 10 of minimal medium replicate 2. The galSL22R muta-

tion in rounds 5 and 10 was confirmed by Sanger sequencing. See Table 9 caption.

Minimal medium replicate 2

round, (coverage) 5, (67�) 10, (64�)

Mutation (loc., mut., frac., cov.)

2241604, galS L22R, 100%, 70 1757419, IG þ17 bp insertion, 94.9%, 37

2685013, glyA H165H, 100%, 65 2241604, galS L22R, 100%, 47

2685013, glyA H165H, 100%, 79

3815828, IG T!G, 43.5%, 62

DOI: 10.7554/eLife.24669.027
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central differences resulting in ~vðtÞ from which we compute an angular velocity between adjacent

velocity vectors (!ðtÞ). We then define a, a threshold on !. Tumbles are initiated if !ðtÞ & !ðt þ 1Þ>a
or if !ðtÞ>a and the angle defined between the vectors ~xðt � 2Þ �~xðtÞ and ~xðtÞ �~xðt þ 2Þ is greater

than a. The latter condition detects tumbles that occur on the timescale of the imaging (0.033 s).

Runs are initiated only when !ðtÞ & !ðt þ 1Þ& !ðt þ 2Þ<a. As a result, tumbles can be instantaneous

and runs are a minimum of four frames. a was determined dynamically for each individual by initializ-

ing a0 and then detecting all runs for a cell. A new ai ¼ c�medianð!runsÞ was computed with c a con-

stant and !runs is the angular velocity during runs. The process was iterated ten times but typically

converged to a final af in less than five iterations. c ¼ 5 was determined by visual inspection of

resulting classified trajectories. Approximately, 1% of cells exhibited sustained tumbling and had

average tumble durations greater than 0.4 s and were excluded from further analysis.

We only considered run events that were in the bulk of the chamber and were not interrupted by

interactions with the circular boundary of the chamber. We computed tumble bias by measuring the

total time spent tumbling when the cell was not interacting with the chamber boundaries. Tumble

frequency was computed by counting the number of tumble events that occurred in the bulk of the

chamber and dividing by the total time the cells spent swimming in the bulk. Tumble bias and fre-

quency were computed for each individual over the duration tracked. Averages across individuals

are reported in Figure 3c–d.

Due to interactions with the chamber floor and ceiling (boundaries perpendicular to the optical

axis), we intermittently observed cells circling. We developed a method to detect this behavior auto-

matically and found that our results are unchanged when we consider individuals that are not

interacting with the chamber boundaries (Appendix 1). Data presented in the main text excludes

cells determined to be circling.

Whole genome sequencing and analysis
Whole genome sequencing was performed using the Illumina platform with slight variations between

four independent runs. For all sequencing, cultures were grown by inoculating fresh medium from

frozen stocks isolated during the course of selection and growing to saturation at 30˚C. For sequenc-
ing of rich medium strains from replicate 1, DNA was extracted and purified using a Bioo Scientific

NEXTprep-Bacteria DNA Isolation Kit. Libraries were prepared from these strains with the Kapa

HyperLibrary Preparation kit (Kapa Biosystems, Wilmington MA), pooled and quantified by qPCR

and sequenced for 101 cycles from each of the fragments on a HiSeq 2500 (Illumina, San Diego,

CA). This HiSeq run was performed by the Biotechnology Core Facility at the University of Illinois at

Table 7. Minimal medium replicate 3: All mutations detected in rounds 5 and 10 of minimal medium replicate 3. See Table 9 caption.

Minimal medium replicate 3

round, (coverage) 5, (208�) 10, (229�)

Mutation (loc., mut., frac., cov.)

1291079, rssB A280T, 29.7%, 54 2241595, galS D1bp, 100%, 218

2241595, galS D1bp, 64.7%, 102 3277264, prlF +CATTCAA insertion, 93.6%, 109

3762200, rhsA A6A, 23.5%, 181 3350529, IG T!C, 100%, 117

3762212, rhsA G10G, 23.1%, 164 3762200, rhsA A6A, 45.8%, 320

3762212, rhsA G10G, 42.0%, 292

DOI: 10.7554/eLife.24669.028

Table 8. Minimal medium replicate 4: All mutations detected in rounds 5 and 10 of minimal medium

replicate 4. See Table 9 caption.

Minimal medium replicate 4

round, (coverage) 5, (256�) 10, (230�)

Mutation (loc., mut., frac., cov.)

2241232, galS R146L, 72.4%, 274 2020519, fliM E145K, 100%, 205

2241665, galS I2L, 100%, 304

DOI: 10.7554/eLife.24669.029
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Urbana-Champaign and included additional strains not presented here. All other sequencing was

performed on a locally operated and maintained Illumina MiSeq system.

For MiSeq runs which generated data for all minimal medium evolved strains and replicates

2 to 4 of the rich medium selection experiments, DNA was extracted with either the Bioo Scientific

NEXTprep kit or the MoBio Ultraclean Microbial DNA isolation kit. Different isolation kits were used

due to the discontinuation of the Bioo Scientific kit. DNA was quantified by Qubit and Bioanalyzer

and libraries were prepared using the NexteraXT kit from Illumina.

Sequencing adapters for the HiSeq generated data were trimmed using flexbar (http://source-

forge.net/projects/flexbar/). MiSeq runs were demultiplexed and trimmed using the onboard Illu-

mina software. Analysis was performed using the breseq platform http://barricklab.org/twiki/bin/

view/Lab/ToolsBacterialGenomeResequencing in polymorphism mode. Breseq uses an empirical

error model and a Bayesian variant caller to predict polymorphisms at the nucleotide level. The algo-

rithm uses a threshold on the empirical error estimate (E-value) to call variants (Barrick and Lenski,

2009). The value for this threshold used here was 0.01, and at this threshold, with the sequencing

coverage for our samples, we report all variants present in the population at a frequency of 0.2 or

above (Barrick and Lenski, 2009). All other parameters were set to their default values. Reads were

aligned to the MG1655 genome (INSDC U00096.3). We note that breseq is not well suited to pre-

dicting large structural variation. Since we sequence populations at different points during selection,

observation of the same mutations at different points in time significantly reduces the probability of

false positives (Lang et al., 2013).

The founder strain was sequenced at an average depth of 553� when aggregating reads from

four separate sequencing reactions. Any mutations observed in this strain were excluded from fur-

ther analysis. Tables 5–12 document mutations, important mutations were confirmed by Sanger

sequencing as noted in the captions to these tables. Since these genomes were sequenced at very

high depth, we did not confirm every mutation by Sanger sequencing. All mutation calls made by

breseq were inspected manually and found to be robust or they were excluded. We also manually

inspected the founder strain reads aligned to regions where frequent mutations were observed in

Table 9. Rich medium replicate 1: All mutations detected above a frequency of 0.2 in rounds 5, 10 and 15 of rich medium selection

replicate 1. The first number in each cell denotes the distance in base pairs from ori (location). The second entry (mutation) identifies

the mutations with ‘IG’ denoting an intergenic mutation. The third entry (fraction) is the fraction of the population carrying this muta-

tion (as inferred by breseq in polymorphism mode). The fourth entry (coverage) is the number of reads that aligned to this location. In

the round 15 strain, the clpX SNP and D1 bp deletion at position 523,086 were confirmed by Sanger sequencing.

Rich medium replicate 1

Round, (coverage) 5, (172�) 10, (213�) 15, (180�)

Mutation (loc., mut., frac., cov.)

457978, clpX E185�, 75.2%, 179 457978, clpX E185�, 100%, 199 457978, clpX E185�, 100%, 164

523086, IG D1 bp, 100%, 194 523086, IG D1 bp, 100%, 266 523086, IG D1 bp, 100%, 168

950518, pflA T188I, 22.2%, 144 990379, IG A!C, 100%, 201 663115, dacA D1 bp, 100%, 150

1978458, IG G!T, 21.2%, 156 990379, IG A!C, 100%, 156

3618863, nikR H92H, 20.7%, 189

DOI: 10.7554/eLife.24669.034

Table 10. Rich medium replicate 2: All mutations detected in rounds 5, 10 and 15 of rich medium replicate 2. See Table 9 caption.

Note low coverage on D1 bp mutation at 523086 noted in bold.

Rich medium replicate 2

Round, (coverage) 5, (218�) 10, (100�) 15, (166�)

Mutation (loc., mut., frac., cov.)

457978, clpX E185�, 100%, 220 457978, clpX E185�, 100%, 109 457978, clpX E185�, 100%, 184

950518, pflA T188I, 27.2%, 210 523086, IG D1 bp, 100%, 16 523086, IG D1 bp, 100%, 24

523086, IG D1 bp, 100%, 10/18 667259, mrdA R320H, 39.5%, 159

794472, modE L58*, 42.4%, 136

DOI: 10.7554/eLife.24669.035
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the evolved strains (clpX E185*, the D1 bp mutation at position 523086 and galS L22R) to confirm

that those mutations were not present in the founder. Sequencing data are available at https://doi.

org/10.13012/B2IDB-3958294_V1.

Mutant reconstruction
Knockout mutants (DclpX, DgalS) were constructed by P1 transduction from KEIO collection mutants

(Baba et al., 2006). Mutations were confirmed by PCR. Antibiotic markers were not removed prior

to phenotyping.

Three commonly observed single nucleotide polymorphisms (SNPs) observed across evolution

experiments were reconstructed in the chromosome of the ancestral background (founder) using a

recombineering method presented previously (Kuhlman and Cox, 2010; Tas et al., 2015). These

mutations were the clpXE185* mutation, the single base pair deletion between ybbP and rhsD

(which we refer to as ‘D1bp’) and galSL22R. For full details of the recombineering we performed see

Appendix 1. Briefly, recombineering proficient cells were prepared by electroporation of the helper

plasmid pTKRED (Kuhlman and Cox, 2010) and selection on spectinomycin. A linear ‘landing pad’

fragment consisting of tetA flanked by I-SceI restriction sites and homologies to the desired target

site was synthesized from the template plasmid pTKLP-tetA and site specific primers. The landing

pad was inserted by electroporation into recombineering proficient cells and transformants were

selected by growth on tetracycline. Successful transformants were confirmed by PCR. A second

transformation was then performed using a 70 bp oligo containing the desired mutation near the

center and flanked by homologies to target the landing pad. Counterselection for successful trans-

formants was performed with NiCl2 (6 mM for the ClpX and GalS mutations, 6.5 mM for D1 bp). Suc-

cessful recombination at this step resulted in removal of the landing pad and integration of the 70

bp oligo containing the desired mutation. The helper plasmid pTKRED was cured by growth at 42˚C
and confirmed by verifying spectinomycin susceptibility. The presence of desired mutations in the

final constructs was confirmed by Sanger sequencing.

Table 11. Rich medium replicate 3: All mutations detected in rounds 5, 10 and 15 of rich medium replicate 3. See Table 9 caption.

Note low coverage on D1 bp mutation at 523086 noted in bold.

Rich medium replicate 3

Round, (coverage) 5, (291�) 10, (45�) 15, (186�)

Mutation (loc., mut., frac., cov.)

457978, clpX E185�, 100%, 300 457978, clpX E185�, 100%, 43 457978, clpX E185�, 100%, 185

523086, IG D1 bp, 50%, 38 523086, IG D1 bp, 100%, 8 523086, IG D1 bp, 100%, 16

950518, pflA T188I, 26.3%, 332 950518, pflA T188I, 53.3%, 53 950518, pflA T188I, 30.6%, 190

321263, IG T!C, 25%, 16 1968653, cheR Q238K, 29.6%, 190

382794, yaiX þ9bp insertion, 64%, NA 382794, yaiX þ9bp insertion, 25.8%, NA

4161562, fabR D17bp, 46.2%, 67

DOI: 10.7554/eLife.24669.036

Table 12. Rich medium replicate 4: All mutations detected in rounds 5, 10 and 15 of rich medium replicate 4. See Table 9 caption.

Note low coverage on D1 bp mutation at 523086 noted in bold.

Rich medium replicate 4

Round, (coverage) 5, (384�) 10, (555�) 15, (333�)

Mutation (loc., mut., frac., cov.)

457978, clpX E185�, 100%, 370 457978, clpX E185�, 100%, 559 457978, clpX E185�, 100%, 339

523086, IG D1 bp, 50%, 72 523086, IG D1 bp, 100%, 34/83 523086, IG D1 bp, 100%, 19/33

950518, pflA T188I, 31.7%, 446 3619915, rhsB W242G, 24.9%, 20

DOI: 10.7554/eLife.24669.037
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Appendix 1

Measurements of evaporative losses in agar plates
As discussed in Materials and methods, all plates for a single selection experiment were

prepared from a single autoclaved bottle of medium and agar (0.3 % w/v). Plates were

poured, allowed to cool, parafilmed and stored at 4˚C. To initiate a new round of selection,

plates were allowed to equilibrate at 30˚C for 12 hr (rich medium) or 24 hr (minimal medium)

in the environmental chamber prior to inoculation. We performed a series of control

experiments by weighing plates to estimate the magnitude of the evaporative water loss

due to storage, thermalization and the colony migration assay. For plates stored at 4˚C for 9

days and then used in a round of selection we found the total evaporative losses would

increase the agar concentration by 5% (e.g. from 0.3 % w/v to 0.315 % w/v). Using the data

shown in Figure 4 of Croze et al. (2011), this corresponds to a change in migration rate of

0.06 cm h�1. We take this as an upper bound on the uncertainty in migration rate in the rich

medium condition due to uncontrolled variation in the agar concentration due to

evaporative losses.

In minimal medium evaporative losses due to storage are similar to rich mediu but losses

during colony expansion are diminished due to saturating humidity over the 48 hr expansion

(Materials and methods). We therefore expect the fractional change in agar concentration to

be similar between the two experiments. We measured migration rates for the founder

strain in soft agar at two concentrations (0.2% and 0.3%) to estimate the change in

migration rate as a function of agar concentration. From this we estimate that the error in

migration rate due to evaporative losses in the plates during storage and migration are

approximately 0.005 cm h�1.

Additional selection experiments
We performed selection on the motile but non-chemotactic mutant DcheA-Z in the same

genetic background used for all other experiments (MG1655-motile). In rich medium, we

observed migration an order of magnitude slower than the wild-type and only a small

increase in s over 10 rounds of selection (Figure 1—figure supplement 1). In this

experiment each round of selection lasted 24 hr to permit this strain to form colonies large

enough for reliable sampling. In minimal medium the non-chemotactic mutant formed no

measurable front during 48 hr of incubation and selection, performed by sampling from the

periphery of this colony, resulted in only a very small increase in migration rate in one

replicate after seven rounds of selection. For the minimal medium experiment, antibiotics

were used to limit the possibility of contamination and the DcheA-Z deletion was confirmed

by PCR.

We performed selection in rich medium where populations were sampled every 12 hr from a

point halfway between the center of the colony and the outer edge; results are shown in

Figure 1—figure supplement 3. When sampling at this location we observed slower

adaptation and a reduction in the maximum rate of expansion compared to populations

selected by sampling at the migrating front.

Since previous work has shown that non-genetic diversity can be important in chemotaxis

and front migration (Frankel et al., 2014; Løvdok et al., 2007), we asked whether long-

term growth in liquid culture resulted in loss of the fast migration phenotype. We inoculated

a strain isolated after 15 rounds of selection in rich medium (Figure 1c, main text, replicate

1) into a custom turbidostat that maintained a population of ~ 109 cells under well mixed

and constant temperature conditions. We inoculated soft agar plates from this continuous

culture at regular intervals over approximately 140 generations of growth in liquid culture.

We observed no decrease in the rate of migration due to prolonged growth in liquid culture
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(Figure 1—figure supplement 5), suggesting that non-genetic variation likely does not play

a large role in the adaptation we observed. Whole genome sequencing revealed that all

mutations observed in the round 15 strain were retained after 40 generations of liquid

culture (Appendix 1—table 1).

Appendix 1—table 1. Mutations present after 40 generations of liquid culture growth for rich

medium replicate 1 round 15 strain.

Rich medium, round 15 rep. 1, after 40 generations in liquid culture.

# gen. (coverage) 40, (187�)

Mutation (loc., mut., frac., cov.)

457978, clpX E185�, 100%, 254

523086, IG D1 bp, 100%, 256

990379, IG A!C, 100%, 165

663115, D1 bp dacA FS, 100%, 161

DOI: 10.7554/eLife.24669.038

Measurements of growth rates
Growth rate measurements were performed using custom-built optical density measurement

device (Merritt and Kuehn, 2016). Briefly, this device used an infrared LED and a

photodetector to measure the transmitted light passing through a culture vial. The LED

and photodetector were embedded in an aluminum block that was temperature controlled

by a Peltier element and PID feedback software. Strains were inoculated from overnight

culture into 20 ml vials of the appropriate medium stirred at 850 rpm and maintained at

30˚C. The growth rate was measured by linear regression of logðODðtÞÞ over a 150 to 200

min window where the change in OD is determined to be exponential by inspecting the

residuals. We checked that the conclusions in Figure 3, Figure 3—figure supplement 3

and Figure 4—figure supplement 2 did not depend qualitatively on the time interval used

in fitting the optical density curves.

Numerical simulations of reaction-diffusion model
Under the assumptions of vertical uniformity in the plate and azimuthal symmetry, the

numerical integration of Equations 1 and 2 in the main text was coded in C++ as a one

dimensional lattice representing a horizontal line projecting from the center of the plate to

the edge. Each lattice site had both a food/attractant density (cðr; tÞ, initially uniform) and a

bacterial surface density (�ðr; tÞ, with an initial inoculum corresponding to 1.4 � 108 cells

ml�1 at the center). A lattice spacing of 0.15 mm was used with a step time of 0.0625 min;

every step the entire system was updated according to the model (in cylindrical

coordinates) using standard nearest-neighbor finite difference equations for the first and

second derivatives on a lattice. To prevent seeding the far end of the plate with bacteria in

nonphysical time, densities greater than 100 cells ml-1 were required to seed a lattice site

as the bacteria propagated outward. Changing this threshold did not alter the results. The

front position was determined by finding the first local maximum in � from the edge of the

plate. Front velocities were determined via linear fit on front position with time. Examples

of simulation outputs are shown in Figure 2—figure supplement 1. Parameters for our

simulation in both rich and minimal medium were either measured or taken from the

literature and values are given in Table 1 of the main text.
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Relationship between single-cell behavior and front
migration
The relationship between single-cell swimming parameters (jvrj, tr and tt) and population

transport parameters (k0 and Db) has been described in detail elsewhere (Rivero et al.,

1989; Croze et al., 2011; Celani and Vergassola, 2010). Here we summarize the results

of these calculations and give details for the estimates given in the main text. Rivero et al.

(1989) considered chemotaxis in one spatial dimension by considering the dynamics of two

populations of cells: those moving left and those moving right at constant speed jvrj. They
neglect variation in jvrj across the population and time; they also treat tumbles as

instantaneous. They define the probability that a cell swimming to right tumbles and

begins swimming to the left as aþ and the converse as a�. Under these assumptions they

show that

Db ¼
2v2r

aþ þa� (5)

k0 ¼ vr
a� �aþ

aþ þa� : (6)

Note that the tumble frequency is a0 ¼ aþ þ a�. As discussed in the main text, Croze et al.

use this as a starting point for deriving a relationship between the transport parameters Db

and k0 and the behavioral parameters jvrj and tr. For completeness we give the main

results of their derivation here; for further details see Appendix A of Croze et al., 2011.

First, E. coli modifies its tumble frequency in response to environment according to

aðtÞ ¼ a0½1�
Z t

�¥
dt0Kðt� t0Þfk0ðxðt0ÞÞ� (7)

where a0 is the unstimulated tumble frequency, x is a spatial coordinate, the integral

contains the response function (K) (Segall et al., 1986) and fk0 ¼ cðxÞ=ðcðxÞ þ KDÞ) describes
the binding of an attractant at concentration cðxÞ to the relevant receptor. Experimentally,

it has been shown that
R

¥

�¥ dtKðtÞ ¼ 0.(Segall et al., 1986) We proceed by assuming that

the effective tumble frequency due to collisions with the agar can be written as

aeðt;CÞ ¼ aðtÞ þ aAðCÞ. The authors then compute an average run duration given aeðt;CÞ.
We note that in this derivation, fk0 is expanded and truncated to first order. The result is

DbðCÞ ¼
v2r
a0

1

ð1þaAðCÞ=a0Þ
(8)

k0ðCÞ ¼
v2r
a0

1

ð1þaAðCÞ=a0Þ2
Z

¥

0

dtKðtÞe�ða0þaAðCÞÞt (9)

For k0 the authors approximate the integral when aAðCÞ»a0 (the ‘efficient limit’) to
R

¥

0
dtKðtÞe�ða0þaAðCÞÞt

» 1� kaAðCÞ=a0 with k ¼
R

¥

0
dt0a0t

0Kðt0Þe�a0t
0
=
R

¥

0
dt0Kðt0Þe�a0t

0
. Using a

previously proposed parameterization of KðtÞ ¼ N0e
�a0tð1� A0ða0t þ 1=2a2

0
t2ÞÞ(Clark and

Grant, 2005), we find that k ¼ 0:1 (A0 ¼ 0:5). Thus,

k0ðCÞ»
v2r
a0

ð1�kaAðCÞ=a0Þ
ð1þaAðCÞ=a0Þ2

(10)

The authors then postulate that
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aAðCÞ ¼ a0e
ðC�C1Þ=C0 (11)

and empirically determine the constants C1 and C0 by fitting the measured dependence of

front migration rate on agar concentration. They compute C1 ¼ 0:28% and C0 ¼ 0:035%.

They show that the efficient limit described above captures the dependence of the rate of

migration on agar concentration as well as changes in the shape of the front due to

changes in agar concentration. Using Equations 8, 10 and 11 for our conditions (C ¼ 0:3%)

with previously measured values of Db and k0 in liquid (Ahmed and Stocker, 2008), we

estimate Db and k0 in the presence of agar for both rich and minimal medium conditions

To generate the heat maps shown in Figures 2,4 of the main text, we varied jvrj and kg.

Tumble frequency (a0) was assumed fixed for these simulations since changes in tumble

frequency alone were found to drive only small changes in front migration rate (Figure 2—

figure supplement 3). We therefore recomputed Db and k0 for each value of jvrj and kg

and performed a simulation of front migration.

To estimate how the evolution of run tumble statistics at the single-cell level (Figure 3,

main text) in liquid changed Db and k0, we assumed KðtÞ and aA were unchanged by

selection. We recomputed Equations 8 and 10 using the observed changes in a0 and jvrj
(Tables 3 and 4, main text). We then simulated Equations 1 and 2 from the main text

using these values and the measured change in growth rates (Figure 3g–h, main text). We

found that these changes predicted an increasing rate of migration with selection which

was qualitatively correct (Figure 4—figure supplement 1). We note that our single-cell

measurements were made in a uniform environment without spatial gradients in attractants

and we therefore cannot determine whether or not K has changed during selection.

The effect of boundary interactions in microfluidic device
on run-tumble statistics
When E. coli swims very close to a surface, interactions between the helical bundle and the

surface can result in cells swimming in circles (DiLuzio et al., 2005; Frymier et al., 1995).

However, wild type cells execute tumbles even in the presence of surfaces (Frymier et al.,

1995) and previous methods for tracking single-cells similar to ours have found that cells

exhibit typical run-tumble behaviors even in microfluidic devices with a floor to ceiling

height as small as 4 mm (Umehara et al., 2007). Our chambers are 10 mm in depth and we

typically observe run-tumble behavior similar to that shown in Figure 3—figure

supplement 1. However, we did transiently observe cells ‘circling’ likely due to close

proximity to the floor or ceiling of the chamber. To check that this circling behavior was

not biasing our results, we devised an automated technique to detect circling. For each run

event longer than 10 frames we compute the sign of !ðtÞ for each frame included in the

run, which we denote signð!runðtÞÞ. For each run we compute � ¼ jhsignð!runðtÞÞij. � is close
to unity for cells that are circling and close to zero for cells that are not circling. By

inspection of trajectories we determined that cells with �>0:17 more than 65% of their

entire trajectory could be regarded as circling. This classified approximately 15% of the

data as circling due to boundary interactions. The data shown in Figure 3 and all

supplemental figures excludes these circling cells. However, we checked that the

conclusions of our study, most importantly changes in run speed, were not qualitatively

altered even when we included circling cells in our analysis.
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Comparison of rich medium round 15 strain with RP437
We tested whether or not the strain selected for fast migration in rich medium differed

substantially from the RP437 strain most commonly used in chemotaxis studies. We

measured the migration rate for RP437 to be 0.15 � 0.009 cm h�1 in rich medium,

approximately a factor of two slower than MG1655-motile (founder strain) in identical

conditions. We observed similar single-cell behavioral statistics between the two strains

(Figure 1—figure supplement 4) so we attributed slower migration to the reduced growth

rate of RP437 relative MG1655-motile (1.1 � 0.02 h�1 and 1.24 � 0.02 h�1 respectively)

measured in well mixed liquid culture.

Experimental details of mutant reconstruction
To reconstruct point mutations in the chromosome of the founding strain, we followed a

method described in Kuhlman and Cox (2010) and outlined in the Materials and methods

section of the main text. Here we detail the experimental methods used in this

reconstruction.

Preparation and electroporation of electrocompetent cells
0.5 mL of an overnight culture was added to a flask containing 30 mL of LB with appropriate

antibiotic(s) and inducer(s) and grown at 30˚C with shaking until the OD600 reached

0.5 to 0.7. The flask was removed and the culture was cooled by swirling in an ice water

slurry for five minutes then placed on ice for ten minutes. The culture was transferred to a

pre-chilled centrifuge tube and pelleted by centrifugation (5 min, 5K RPM) in a refrigerated

centrifuge chilled to 4˚C. The supernatant was dumped and the cells were washed in 10 mL

of ice cold 10% glycerol. Glycerol wash was repeated twice followed by a resuspension in

200 mL. The cells were immediately placed on ice and kept cold until electroporation.

Typically, ~ 100 �L of cells was mixed with ~ 5 �L of DNA in a pre-chilled microcentrifuge

tube before being transferred to a pre-chilled 0.1 cm gap electroporation cuvette (USA

Scientific) and electroporated at 2 kV in an Electroporator 2510 (Eppendorf).

Synthesis and integration of the landing pad
Custom primers were designed and ordered from Integrated DNA Technologies. These

primers contain homologies to tetA flanking regions on template plasmid pTKLP-tetA as

well as 50 bp homologies just upstream/downstream of the desired chromosomal mutation

site. PCR using these primers generated the linear landing pad fragment for each desired

mutation site. Purification was performed with AmpureXP magnetic beads followed by a

DpnI digest and an additional AmpureXP cleanup. Fragment length was confirmed by 1%

agarose gel. Electrocompetent founder+pTKRED cells were prepared from frozen stock,

with 2 mM IPTG induction of the l-Red enzymes on pTKRED. These cells were transformed

with the landing pad fragment. After 4 hr outgrowth on the bench, half the culture was

pelleted in a microcentrifuge (1 min, 14000 RPM). 410 �L of the supernatant was removed,

cells were resuspended in the remaining media and plated on LB+tetracycline

+spectinomycin plates. The remaining half of the culture was plated in the same way after

an additional day of outgrowth on the bench. The plates were grown at 30˚C and colonies

typically took a few days to appear at this step. PCR and 1% agarose gel electrophoresis

on resultant colonies was used to confirm successful landing pad integration at the desired

site. The presence of a secondary band consistent with the wild-type revealed

heterogeneity within transformant colonies. The landing pad strain was therefore purified

by overnight growth (30˚C, shaking) in LB+tetracycline+spectinomycin followed by serial

dilution and plating.
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Integration of desired mutation
A 70 bp oligo containing each desired mutation was designed following the design

considerations outlined in Sawitzke et al., 2013 as closely as possible and ordered from

Integrated DNA Technologies. Electrocompetent founder+pTKRED+LP cells were

prepared from frozen stock, with 2 mM IPTG induction of the l-Red enzymes as well as 0.4

% w/v L-Arabinose induction of Isce-I from pTKRED. These cells were electroporated with

the oligo and 1 mL of LB was immediately added. The cells were then transferred to a flask

containing 100 mL of RDMþ0.5 % glycerol with inducers and spectinomycin. The flask was

grown for 2 hr at 30˚C with shaking before adding NiCl2.

The appropriate NiCl2 concentration was determined in a separate experiment wherein

growth of founder+pTKRED as well as founder+pTKRED+LP was assayed in the

supplemented RDM described above. At each day of the outgrowth until successful

transformants were identified, a sample was diluted and plated on LB+spectinomycin.

Colonies from these plates were screened for tetracycline resistance. A few tetracycline-

susceptible colonies were checked for successful landing pad removal by colony PCR and

1% agarose gel electrophoresis. Finally the pTKRED plasmid was cured by growth at 42˚C.
Mutations were confirmed by Sanger sequencing.

Modeling evolution of correlated traits
The model of evolving correlated traits is derived in detail elsewhere (Lande, 1979). We infer

constraints on entries in the matrix G by comparing the predicted (f̂pred) direction of

phenotypic evolution to that which we observed (f̂obs). We determined the observed

direction of phenotypic evolution by linear regression of the data shown in Figure 4a–b of

the main text. We then compute the dot product f̂pred � f̂obs over a range of values of s~kg
,

sj~vr j and � (Figure 6—figure supplement 2).

We note that the migration rate in minimal media as a function of jvrj and kg contains a

strong nonlinearity around a growth rate of 0.2 h�1. This transition occurs between regimes

where bacterial transport is dominated by growth and diffusion (founder) and chemotaxis

(evolved) (Croze et al., 2011). The characteristic timescale for the migration process is set

by the growth rate t ~ 1=kg and the length scale by the distance a cell diffuses over its

lifetime l ~
ffiffiffiffiffiffiffiffiffiffiffiffi

Db=kg
p

. For the founding strain in minimal medium, t ~ 10 hr while l ~0.5 cm. In

this case rc remains small and transport is dominated by diffusion and subsequent growth.

As growth rates increase during selection and Db decreases only modestly (see Table 4,

main text) and t ~ 3 hr and l ~ 0.15 cm. In this case chemotactic transport becomes

substantial due to gradients that form over lengthscale l and we observe this transition to

migrating fronts around kg ~ 0.2 h�1. We note that this transition predicted by our model is

also observed experimentally (Figure 1e, main text).

However, as a result of this non-linearity our estimate of ~b in minimal medium relies on a

poor linear fit (Figure 6—figure supplement 1). To asses whether or not this poor

approximation might alter our conclusions, we performed stochastic simulations of an

evolving population that did not require us to make a linear approximation to infer ~b. To

accomplish this, we generated a population of 1000 individuals whose phenotype was

drawn from the multivariate normal distribution Nð~ff ;GÞ where ~ff is the mean phenotype

of the founding population and G is the genetic covariance matrix discussed in the main

text. Using the predicted migration rate as a function of jvrj and kg as a fitness landscape

(Figure 2b, main text) we then select that fastest 1% of the population. From this selected

population we compute a new ~f1 and generate a second population from the distribution

Nð~f1;GÞ. The process is repeated iteratively. The results of these simulations are shown in

Figure 6—figure supplement 3. We find that our qualitative conclusions hold. Large
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negative values of the correlation coefficient (�<� 0:9) and s~kg
>sj~vr j result in evolution in

the same direction we observe experimentally. We note that in these simulations

populations with finite sj~vr j and �>� 1 are able to evolve both higher run speeds and

growth rate.

Estimated change in drag due to change in growth rate
For a bacterium swimming at constant speed u (at low Reynolds number) the propulsion force

provided by the flagella (Fflag ) equals the drag force from the fluid (FD). Thus, we can

write:

u¼ Fflag

FD=u
(12)

The ratio of swimming speeds in a given medium for evolved and founding strains is

therefore:

uev

uf
¼
Fev
flag Fev

D =u
ev

� ��1

F
f
flag F

f
D=u

f

� ��1
(13)

If we assume the flagellar force is unchanged with selection, then we have:

uev

uf
¼ F

f
D=u

f

Fev
D =u

ev
(14)

The drag force on an ellipsoid moving along its symmetry axis at speed u in a fluid with

viscosity � is given by equation (2.3) in Cox, 1970:

FD ¼ 16p�au
�2�

�2 � 1
þ 2�2 � 1

�2 � 1ð Þ32
þ ln

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1

p

��
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1

p

" #�1

(15)

Where � is the ratio of the major axis (half-length) b to the minor axis (half-width) a.

�¼ b

a
¼ l=2

w=2
¼ l

w
(16)

It can be shown that (Equation 11) is equivalent to:

FD ¼ 6p�auK 0 (17)

where

K 0 ¼
4

3
�2 � 1ð Þ

2�2�1
ffiffiffiffiffiffiffiffi

�2�1

p ln �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2� 1

p

h i

��
(18)

Using the above, we have:
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uev

uf
¼

wfK
0
f

wevK 0
ev

(19)

Figure S1A of Taheri-Araghi et al., 2015 gives the average length and width of an E. coli

as a function of its growth rate:

l¼ 2:08 � 20:41�divisionshour �m¼ 2:08 � 20:41� r
ln2�m (20)

w¼ 0:41 � 20:36�divisionshour �m¼ 0:41 � 20:36� r
ln2�m (21)

Using this expression for the width, we have:

uev

uf
¼

K 0
f

K 0
ev

� 20:519ðrf�revÞ (22)

Where rf and rev are the founder and evolved growth rates respectively. From our growth

rate experiments, we have:

r
f
LB ¼1.24 h�1; revLB0.08 h�1

revLB ¼1.09 h�1 ; revgal ¼0.40 h�1

Using these values, we can calculate � (and therefore K’) from Equations 16 and 17 and

plug these into (Equation 18). Doing this, we find that:

uevLB

u
founder
LB

¼ 1:059

uevgal

u
founder
gal

¼ 0:884

We see that the change in drag due to the change in cell size that we calculate using

(Equations 16 and 17) and our growth rate data would only account for a 6% swimming

speed increase in LB (rich medium) and a 12% swimming speed decrease in

galactose (minimal medium). We note that the growth rates of our strains in rich medium

(LB) lie within the range of growth rates measured by Taheri-Araghi et. al, however the

growth rates in galactose minimal medium are significantly slower. Finally, since we have

not measured cell size in our evolved strains we cannot definitively rule changes in size as a

mechanism for the trade-off observed here.
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