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Glioblastoma multiforme (GBM) is the most malignant brain tumor with an

extremely poor prognosis. The Cancer Genome Atlas (TCGA) database has

been used to confirm the roles played by 10 canonical oncogenic signaling

pathways in various cancers. The purpose of this study was to evaluate the

expression of genes in these 10 canonical oncogenic signaling pathways, which

are significantly related to mortality and disease progression in GBM patients.

Clinicopathological information and mRNA expression data of 525 patients

with GBM were obtained from TCGA database. Gene sets related to the 10

oncogenic signaling pathways were investigated via Gene Set Enrichment

Analysis. Multivariate Cox regression analysis was performed for all the genes

significantly associated with mortality and disease progression for each

oncogenic signaling pathway in GBM patients. We found 12 independent

genes from the 10 oncogenic signaling pathways that were significantly

related to mortality and disease progression in GBM patients. Considering the

roles of these 12 significant genes in cancer, we suggest possible mechanisms

affecting the prognosis of GBM. We also observed that the expression of 6 of

the genes significantly associated with a poor prognosis of GBM, showed

negative correlations with CD8+ T-cells in GBM tissue. Using a large-scale

open database, we identified 12 genes belonging to 10 well-known oncogenic

canonical pathways, which were significantly associated with mortality and

disease progression in patients with GBM. We believe that our findings will

contribute to a better understanding of the mechanisms underlying the

pathophysiology of GBM in the future.
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Introduction

Glioblastoma multiforme (GBM) is the most malignant and

common primary brain tumor with an extremely poor

prognosis. Despite the variety of modern therapies against

GBM, the median survival of GBM patients is approximately

14 to 15 months from the diagnosis (1).

The Cancer Genome Atlas (TCGA) is the world’s largest

and richest collection of genomic data, including digital

pathologic slides, clinicopathological information, and gene

expression and RNA sequencing data (2). TCGA data have

confirmed the roles of 10 canonical oncogenic signaling

pathways with frequent genetic alterations in cancer (3). The

10 oncogenic signaling pathways are cell cycle, Hippo, Myc,

Notch, nuclear factor erythroid 2-related factor 2 (Nrf2),

phosphatidylinositol 3-kinase (PI3K), receptor tyrosine

kinase (RTK), transforming growth factor beta (TGF-b), p53,
and Wnt/b-catenin (3). With the aid of TCGA, we recently

showed that dickkopf-3 (DKK3) in the Wnt/b-catenin
signaling pathway is associated with an immunosuppressive

tumor microenvironment and a poor prognosis in patients

with GBM (4). Since Wnt/b-catenin signaling is one of the 10

oncogenic signaling pathways, we expanded the scope of the

study to use TCGA data to identify additional genes in the

remaining 9 oncogenic signaling pathways that are

significantly related to mortality and disease progression in

GBM patients.

Therefore, the primary aim of the study was to use TCGA

data to identify genes in the 10 canonical oncogenic signaling

pathways, which are significantly associated with mortality and

disease progression in GBM patients. The secondary objective of

the study was to investigate correlations between these genes and

between these genes and immunosuppressive conditions in

GBM. Further, drug sensitivity screening was also performed

in GBM cell lines using the Genomics of Drug Sensitivity in

Cancer (GDSC) and the Catalog of Somatic Mutations in Cancer

(COSMIC) databases.
Materials and methods

Study patients

As we recently reported, the same 525 GBM cases with

virtual histopathological slides, clinical information, and mRNA

expression data from TCGA were used to conduct this study

(https://gdc.cancer.gov/about-data/publications/pancanatlas

and https://www.cbioportal.org/) (4). The raw data used in this

study are presented in the Supplementary Data 1 file.

Extra informed consent is not essential because the data were

all obtained from public TCGA database.
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Gene sets related to the 10 oncogenic
signaling pathways

To identify genes significantly associated with disease

progression and mortality in GBM, we used the Molecular

Signatures Database (MSigDB version 7.5.1) with 32,880 gene

sets of the Gene Set Enrichment Analysis (GSEA) (version 4.1.0)

(https://www.gsea-msigdb.org/) (5). Gene sets related to the 10

oncogenic signaling pathways were investigated via GSEA. The

gene sets in the 10 canonical signaling pathways used for the

analysis are from the following signaling pathways (1): cell cycle

(standard name, KEGG_CELL_CYCLE; systematic name,

M7963; when matching with TCGA database, 112 genes out of

125 were available for analysis) (2), Hippo signaling (standard

name, GOBP_HIPPO_SIGNALING; systematic name, M11445;

29 genes out of 40 were available for analysis) (3), Myc signaling

(standard name, PID_MYC_PATHWAY; systematic name,

M139; 23 genes out of 25 were available for analysis)

(4), Notch signaling (standard name, KEGG_NOTCH_

SIGNALING_PATHWAY; systematic name, M7946; 36 genes

out of 47 were available for analysis) (5), Nrf2 signaling

(standard name, WP_NRF2_PATHWAY; systematic name,

M39454; 106 genes out of 145 were available for analysis) (6),

PI3K signaling (standard name, HALLMARK_PI3K_AKT_

MTOR_SIGNALING; systematic name, M5923; 97 genes out

of 105 were available for analysis) (7), RTK signaling (standard

name, KEGG_ERBB_SIGNALING_PATHWAY; systematic

name, M12467; 80 genes out of 87 were available for analysis)

(8), TGF-b signaling (standard name, KEGG_TGF_BETA_

SIGNALING_PATHWAY; systematic name, M2642; 79 genes

out of 86 were available for analysis) (9), p53 signaling (standard

name, KEGG_P53_SIGNALING_PATHWAY; systematic

name, M6370; 59 genes out of 68 were available for analysis),

and (10) Wnt/b-catenin signaling (standard name,

ST_WNT_BETA_CATENIN_PATHWAY; systematic name,

M17761; 31 genes out of 34 were available for analysis). We

present raw data related to the mRNA levels of all gene sets in

GBM tissues for each oncogenic signaling pathway used in the

analysis in the Supplementary Data File 2.
In silico flow cytometry

As described previously, the immune cell composition of

GBM tissues in our study patients was identified using

CIBERSORT (https://cibersort.stanford.edu), which is a

computational program to decipher the immune cell-type

fractions based on a validated leukocyte gene signature matrix

containing 547 genes and 22 human immune cel l

subpopulations (4, 6). We entered the gene expression profiles

of GBM tissues from TCGA into CIBERSORT for analysis, and
frontiersin.org
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the algorithm was run using the LM22 signature matrix at 100

permutations. There is a positive correlation between elevated

CD8+ T cell counts in the tumor microenvironment and a good

prognosis in cancer (7). In addition, because CD8+ T cells are

considered major drivers of antitumor immunity, we included

CD8+ T cells in our examination of the relationship between

gene expression and the degree of antitumor immunity in the

GBM microenvironment in this study (8).
Data extraction from the GDSC and
COSMIC databases

We performed drug screening using datasets from the GDSC

and COSMIC databases, which are large-scale cancer cell line

and drug response databases containing data from 1,796 cancer

cell lines and 565 compounds, respectively (9, 10). We examined

the gene expression in 49 GBM cell lines (A172, AM-38, Becker,

CAS-1, CCF-STTG1, D-247MG, D-263MG, D-336MG, D-

392MG, D-423MG, D-502MG, D-542MG, D-566MG,

DBTRG-05MG, DK-MG, GAMG, GB-1, GI-1, GMS-10, H4,

KALS-1, KINGS-1, KNS-42, KNS-81-FD, KS-1, LN-18, LN-229,

LN-405, LNZTA3WT4, M059J, MOG-G-CCM, MOG-G-UVW,

NMC-G1, no-10, no-11, SF126, SF268, SF295, SF539, SK-MG-1,

SNB75, SW1088, SW1783, T98G, U-118-MG, U-87-MG, U251,

YH-13, YKG-1). The responses of 49 GBM cell lines to 316 drugs

were measured and reported as the natural log half-maximal

inhibitory concentration [ln(IC50)] value. A drug was defined as

being effective when a negative correlation was observed

between gene expression and the ln(IC50) values in 49 GBM

cell lines with a p value < 0.05 (11, 12).
Statistical analysis

Pearson’s correlation coefficients and significance levels (p-

values) were estimated to examine the associations between the

mRNA expression of the above-mentioned 12 genes from the 10

oncogenic signaling pathways and between the gene expression

of these 12 genes and CD8+ T cell fractions using R with

clustering technique (R code: corrplot, M, order = “hclust”,

p.mat = p_mat, sig.level = 0.01, method = “square”). In addition,

Pearson’s correlation analysis was also performed to identify the

correlation between gene expression and ln(IC50) values for

various antitumor agents in 49 GBM cell lines.

We estimated overall survival (OS) and progression-free

survival (PFS) using Kaplan–Meier analysis for all genes

related to each oncogenic signaling pathway based on the gene

expression tertiles (tertile 1 = low expression; tertile 2 =

moderate expression; tertile 3 = high expression) (4). First, we

identified all genes for each oncogenic signaling pathway that

were significantly related to OS and PFS of the Kaplan–Meier

analysis. We then performed multivariate Cox regression
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associated with OS and PFS in GBM patients.

Linear regression analysis using R was performed to visualize

associations between age and gene expressions of 12 selected

genes and gene expression and ln(IC50) values for antitumor

agents in 49 GBM cell lines. Regression lines and a line

determined by locally weighted scatter plot smoothing

(LOWESS) were used to visualize the association between age

and expression of the 12 selected genes (13).

A p-value < 0.05 was considered statistically significant. All

statistical analyses were performed using R software version

4.1.2 and SPSS for Windows version 24.0 (IBM, Chicago, IL).
Results

Characteristics of patients

Altogether, 525 patients with GBM from TCGA database

were enrolled in the study. The mean patient age at diagnosis

was 57.7 years, and 39.0% of patients were female. A total of 435

(82.9%) patients had received radiation treatment, and 39.0% of

the patients received adjuvant chemotherapy and/or

immunotherapy. The mean CD8+ T cell fraction in GBM

tissues was 0.022; further detailed information is shown

in Table 1.
Identification of genes from the 10
oncogenic signaling pathways associated
with both OS and PFS in GBM patients

Table 2 shows all the genes, classified by each 10 oncogenic

signaling pathway, that were significantly associated with both

OS and PFS in Kaplan-Meier survival analysis with log-rank test.

When we performed multivariate Cox regression analysis, we

found 12 such independent genes from the 10 oncogenic

signaling pathways. The identified 12 significant genes were

(1): E2F transcription factor 2 (E2F2) (tertile 2 vs. tertile 1,

OS: hazard ratio (HR), 0.74; p = 0.032; PFS: HR, 0.75; p = 0.034)

from the cell cycle signaling pathway (2), C-terminal binding

protein 2 (CTBP2) (tertile 3 vs. tertile 1, OS: HR, 0.69; p = 0.010;

PFS: HR, 0.74; p = 0.032) from the Notch signaling pathway (3),

MAF bZIP transcription factor F (MAFF) (tertile 1 vs. tertile 3,

OS: HR, 0.74; p = 0.036; PFS: HR, 0.64; p = 0.002) from the Nrf2

signaling pathway (4), solute carrier family 2 member 3

(SLC2A3) (tertile 1 vs. tertile 3, OS: HR, 0.75; p = 0.037; PFS:

HR, 0.71; p = 0.012) from the Nrf2 signaling pathway (5),

evolutionarily conserved signaling intermediate in Toll

pathways (ECSIT) (tertile 2 vs. tertile 3, OS: HR, 1.69; p <

0.001; PFS: HR, 1.41; p = 0.016) from the PI3K signaling

pathway (6), heat shock protein 90 kDa beta member 1

(HSP90B1) (tertile 1 vs. tertile 3, OS: HR, 0.74; p < 0.034; PFS:
frontiersin.org
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HR, 0.57; p < 0.001) from the PI3K signaling pathway (7), tumor

necrosis factor receptor superfamily member 1A (TNFRSF1A)

(tertile 1 vs. tertile 3, OS: HR, 0.75; p < 0.041; PFS: HR, 0.63; p =

0.001) from the PI3K signaling pathway (8), p21 activated kinase

1 (PAK1) (tertile 1 vs. tertile 3, OS: HR, 0.60; p = 0.001; PFS: HR,

0.75; p = 0.044) from the RTK signaling pathway (9), inhibitor of

DNA binding 4 (ID4) (tertile 2 vs. tertile 1, OS: HR, 1.53; p =

0.002; PFS: HR, 1.41; p = 0.009) from the TGF-b signaling

pathway (10), damage-specific DNA-binding protein 2 (DDB2)

(tertile 1 vs. tertile 3, OS: HR, 0.73; p = 0.031; PFS: HR, 0.72; p =

0.024) from the P53 signaling pathway (11), mouse double

minute 2 homolog (MDM2) (tertile 1 vs. tertile 3, OS: HR,

0.68; p = 0.006; PFS: HR, 0.63; p = 0.001) from the p53 signaling

and cell cycle pathways, and (12) dickkopf-3 (DKK3) (tertile 1

vs. tertile 3, OS: HR, 0.73; p = 0.031; PFS: HR, 0.75; p = 0.044)

from the Wnt/b-catenin signaling pathway (Table 2). When we

examined the relationship between age and the expression of the

12 selected genes, we found that the expression of E2F2 and

CTBP2 decreased slightly with age in GBM patients

(Supplementary Figure 1). In contrast, the expression of

MAFF, SLC2A3, TNFRSF1A, DDB2, and DKK3 gradually

increased with age (Supplementary Figures 1, 2). However, as

shown above, when we adjusted all variables including age in the

multivariate analysis, the significant associations between the 12

selected genes and both OS and PFS were maintained in patients

with GBM. In addition, we identified the differences between the

radiation treatment population and the adjuvant chemotherapy
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and/or immunotherapy population on the basis of expression of

the 12 selected genes in patients with GBM (Supplementary

Table 1). There were significant differences in the expression of

MAFF and ECSIT in the adjuvant chemotherapy and/or

immunotherapy populations. Moreover, even when factors like

radiation treatment and chemotherapy were adjusted, MAFF

and ECSIT still showed significant correlations with both OS and

PFS in GBM patients. We also present the Kaplan-Meier survival

curves for OS and PFS in GBM patients according to the tertile

groups of gene expression of the 12 significant genes in Figure 1.

For 8 of the above-mentioned genes—MAFF, SLC2A3,

HSP90B1, TNFRSF1A, PAK1, DDB2, MDM2, and DKK3—

being in the first tertile of gene expression was an independent

predictor of better OS and PFS in GBM patients compared to the

third tertile. Thus, higher expression of the above 8 genes was

significantly associated with a higher risk of mortality and

disease progression than the lower expression of those genes.

In contrast, higher CTBP2 gene expression was significantly

associated with better OS and PFS in GBM patients. However,

E2F2 gene expression in the second tertile was associated with

better OS and PFS than the genes in the first tertile in GBM

patients. Moreover, the E2F2 expression in the second tertile of

gene expression was associated with better OS than the genes in

the highest tertile. In contrast, the second tertile of gene

expression of ECSIT was associated with poor OS and PFS

compared to those in the third tertile and poor OS compared to

those in the first tertile. ID4 expression in the second tertile was

also associated with poor OS and PFS compared to the genes

whose expression was in the first and third tertiles. Therefore,

moderate E2F2 gene expression and high or low ECSIT and ID4

gene expression was associated with a lower risk of mortality and

disease progression in patients with GBM (except for disease

progression at moderate E2F2 expression compared with high

E2F2 expression and low ECSIT expression) (Table 3).
Possible mechanisms of the 12 genes
affecting OS and PFS in GBM patients

Based on our study findings, we show schematic illustrations

of the possible roles of the 12 significant genes in GBM in

Figure 2. We also present a table summarizing our findings and

possible mechanisms of the 12 significant genes affecting OS and

PFS in GBM patients (Table 3).
Correlations between the expression of
the 12 genes and between the
expression of the 12 genes and CD8+
T cells in GBM tissues

When we estimated the correlations between the mRNA

expression of the 12 above-mentioned genes, we observed that
TABLE 1 Clinical characteristics of the study patients with GBM.

Characteristics Total

Number 525

Sex, female, n (%) 205 (39.0)

Age at diagnosis of GBM, mean ± SD, y 57.7 ± 14.6

Time duration between GBM diagnosis and death (days), mean ±
SD

508.9 ±
539.4

Time duration between GBM diagnosis and disease progression
(days), mean ± SD

307.0 ±
391.0

Karnofsky performance scale score, median (IQR) 80.0 (70.0–
80.0)

Missing data, n (%) 133 (25.3)

Radiation treatment, n (%)

Yes 435 (82.9)

No 70 (13.3)

Missing data 20 (3.8)

Adjuvant chemotherapy and/or immunotherapy, n (%)

Yes 205 (39.0)

No 2 (0.4)

Missing data 318 (60.6)

History of prior glioma, n (%) 15 (2.9)

Immune cells (CIBERSORT fraction), mean ± SD

CD8+ T cells 0.022 ±
0.039
GBM, glioblastoma multiforme; SD, standard deviation; IQR, interquartile range.
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TABLE 2 Multivariate Cox analyses of genes significantly associated with overall survival and progression-free survival in GBM patients related to
10 oncogenic signaling pathways.

Overall survival Progression-free survival

Log-rank test (Kaplan-Meier
analysis)

Multivariate Cox
regression
analysis*

Log-rank test (Kaplan-Meier
analysis

Multivariate Cox
regression
analysis*

Oncogenic signaling
pathways

p HR (95% CI) p p HR (95% CI) p

1. Cell cycle signaling (112 genes were analyzed)

CDC14A (tertile 3 vs. tertile
1)

0.009 0.90 (0.68–
1.18)

0.441 <0.001 0.67 (0.51–
0.88)

0.004

CDKN2A (tertile 3 vs. tertile
1)

0.002 0.79 (0.60–
1.04)

0.093 0.015 0.78 (0.59–
1.02)

0.072

E2F2 (tertile 2 vs. tertile 1) 0.034 0.74 (0.56–
0.97)

0.032 0.026 0.75 (0.57–
0.98)

0.034

(tertile 2 vs. tertile 3) 0.034 0.75 (0.57–
0.98)

0.036 0.026 0.84 (0.64–
1.10)

0.200

MAD2L1 (tertile 3 vs. tertile
1)

0.020 0.75 (0.57–
0.99)

0.043 0.037 0.89 (0.68–
1.17)

0.407

MDM2 (tertile 1 vs. tertile
3)

<0.001 0.68 (0.52–
0.90)

0.006 <0.001 0.63 (0.48–
0.83)

0.001

SMC3 (tertile 3 vs. tertile 1) 0.013 0.72 (0.55–
0.95)

0.021 0.011 0.83 (0.63–
1.09)

0.172

ZBTB17 (tertile 2 vs. tertile
1)

0.021 0.69 (0.53–
0.91)

0.007 0.013 0.79 (0.61–
1.03)

0.083

2. Hippo signaling (29 genes were analyzed)

AMOT (tertile 3 vs. tertile 1) 0.016 0.80 (0.61–
1.05)

0.106 0.048 0.81 (0.62–
1.06)

0.122

DLG5 (tertile 3 vs. tertile 1) 0.006 0.67 (0.51–
0.89)

0.005 0.019 0.86 (0.66–
1.13)

0.283

TIAL1 (tertile 3 vs. tertile 1) 0.008 0.72 (0.55–
0.95)

0.021 0.026 0.87 (0.67–
1.13)

0.300

WWTR1 (tertile 1 vs. tertile
3)

0.003 0.87 (0.66–
1.15)

0.336 0.006 0.69 (0.52–
0.91)

0.009

3. Myc signaling (23 genes were analyzed)

CDKN2A (tertile 3 vs. tertile
1)

0.002 0.79 (0.60–
1.04)

0.093 0.015 0.78 (0.59–
1.02)

0.072

ZBTB17 (tertile 2 vs. tertile
1)

0.021 0.69 (0.53–
0.91)

0.007 0.013 0.79 (0.61–
1.03)

0.083

4. Notch signaling (36 genes were analyzed)

CTBP2 (tertile 3 vs. tertile
1)

0.004 0.69 (0.52–
0.92)

0.010 <0.001 0.74 (0.56–
0.98)

0.032

DLL3 (tertile 3 vs. tertile 1) 0.004 0.84 (0.64–
1.09)

0.189 0.003 0.73 (0.56–
0.96)

0.022

5. Oxidative stress response/Nrf2 (106 genes were analyzed)

ABCC3 (tertile 1 vs. tertile 3) 0.025 0.81 (0.62–
1.06)

0.126 0.012 0.70 (0.53–
0.92)

0.009

GSTA4 (tertile 3 vs. tertile 1) 0.010 0.75 (0.57–
0.98)

0.035 0.034 0.81 (0.61–
1.06)

0.120

MAFF (tertile 1 vs. tertile 3) 0.010 0.74 (0.55–
0.98)

0.036 0.032 0.64 (0.49–
0.85)

0.002

NQO1 (tertile 1 vs. tertile 3) 0.003 0.87 (0.66–
1.15)

0.332 0.024 0.82 (0.62–
1.07)

0.146

SLC2A10 (tertile 1 vs. tertile
3)

0.031 0.97 (0.73–
1.28)

0.830 0.010 0.78 (0.59–
1.04)

0.091

(Continued)
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TABLE 2 Continued

Overall survival Progression-free survival

Log-rank test (Kaplan-Meier
analysis)

Multivariate Cox
regression
analysis*

Log-rank test (Kaplan-Meier
analysis

Multivariate Cox
regression
analysis*

SLC2A3 (tertile 1 vs. tertile
3)

0.001 0.75 (0.57–
0.98)

0.037 0.008 0.71 (0.54–
0.93)

0.012

SLC2A9 (tertile 1 vs. tertile
3)

0.014 0.80 (0.61–
1.06)

0.115 0.005 0.79 (0.60–
1.05)

0.100

SLC6A13 (tertile 3 vs. tertile
1)

0.011 0.91 (0.69–
1.21)

0.516 0.025 0.70 (0.53–
0.93)

0.012

SQSTM1 (tertile 1 vs. tertile
3)

0.028 0.83 (0.63–
1.09)

0.179 0.030 0.67 (0.51–
0.88)

0.004

6. PI3K signaling (97 genes were analyzed)

CSNK2B (tertile 3 vs. tertile
1)

0.010 0.70 (0.53–
0.93)

0.013 0.011 0.81 (0.62–
1.06)

0.121

CXCR4 (tertile 1 vs. tertile 3) 0.035 0.93 (0.71–
1.22)

0.600 0.042 0.71 (0.54–
0.95)

0.019

ECSIT (tertile 2 vs. tertile 3) 0.004 1.69 (1.28–
2.24)

<0.001 0.009 1.41 (1.07–
1.86)

0.016

(tertile 2 vs. tertile 1) 0.004 1.56 (1.19–
2.04)

0.001 0.009 1.07 (0.82–
1.40)

0.632

GNA14 (tertile 1 vs. tertile 3) 0.042 0.84 (0.64–
1.11)

0.214 0.014 0.96 (0.73–
1.25)

0.746

HSP90B1 (tertile 1 vs.
tertile 3)

0.005 0.74 (0.56–
0.98)

0.034 0.001 0.57 (0.43–
0.76)

<0.001

MAPK8 (tertile 3 vs. tertile
1)

0.002 0.78 (0.60–
1.03)

0.083 0.038 0.79 (0.60–
1.04)

0.087

MYD88 (tertile 1 vs. tertile 3) 0.003 0.85 (0.64–
1.12)

0.239 <0.001 0.67 (0.51–
0.89)

0.005

RAC1 (tertile 1 vs. tertile 3) 0.019 1.00 (0.75–
1.33)

0.996 0.003 0.72 (0.54–
0.95)

0.018

SLA (tertile 1 vs. tertile 3) 0.001 0.81 (0.62–
1.06)

0.124 0.001 0.71 (0.55–
0.92)

0.010

SQSTM1 (tertile 1 vs. tertile
3)

0.028 0.83 (0.63–
1.09)

0.179 0.030 0.67 (0.51–
0.88)

0.004

TNFRSF1A (tertile 1 vs.
tertile 3)

0.003 0.75 (0.57–
0.99)

0.041 <0.001 0.63 (0.48–
0.83)

0.001

VAV3 (tertile 1 vs. tertile 3) 0.028 0.78 (0.59–
1.03)

0.078 0.018 0.74 (0.56–
0.98)

0.038

7. RTK signaling (80 genes were analyzed)

EIF4EBP1 (tertile 3 vs. tertile
1)

0.009 0.82 (0.63–
1.09)

0.169 0.047 0.87 (0.67–
1.14)

0.311

MAP2K2 (tertile 3 vs. tertile
1)

0.007 0.78 (0.60–
1.03)

0.075 0.008 0.70 (0.54–
0.91)

0.008

MAPK8 (tertile 3 vs. tertile
1)

0.002 0.78 (0.60–
1.03)

0.083 0.038 0.79 (0.60–
1.04)

0.087

PAK1 (tertile 1 vs. tertile 3) 0.001 0.60 (0.45–
0.80)

0.001 0.011 0.75 (0.57–
0.99)

0.044

8. TGF-b signaling (79 genes were analyzed)

ACVR2B (tertile 3 vs. tertile
1)

0.022 0.85 (0.64–
1.13)

0.261 <0.001 0.68 (0.52–
0.90)

0.006

ID1 (tertile 3 vs. tertile 1) 0.049 0.77 (0.59–
1.02)

0.069 0.023 0.82 (0.62–
1.07)

0.140

ID4 (tertile 2 vs. tertile 1) 0.040 1.53 (1.17–
1.99)

0.002 0.006 1.41 (1.09–
1.82)

0.009

(Continued)
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the 12 genes are largely divided into three clusters according to

the significance of the correlation between the expression of

these genes (Figures 3A, B). Clusters 2 and 3 were again divided

into two sub-clusters based on the significance of the correlation

between the expression of the genes (Figures 3A, B). Sub-cluster

1 consists of PAK1, HSP90B1, DDB2, and SLC2A3; sub-cluster 2

consists of HSP90B1, DDB2, SLC2A3, MAFF, and TNFRSF1A;

sub-cluster 3 consists of CTBP2, ID4, and ECSIT; and sub-

cluster 4 consists of ID4, ECSIT, and DKK3. When we identified

the correlations between gene expression outside the clusters or

subclusters, we observed that E2F2 had negative correlations

with all genes of sub-clusters 2, 3, and 4 (Figure 3C). In addition,
Frontiers in Oncology 07
the expression of both MDM2 and DKK3 showed positive

correlations with DDB2 and SLC2A3 expression, while DKK3

expression also showed positive correlations with TNFRSF1A

and MAFF expression. Other correlations between the

expression of these genes are shown in Figure 3C. We then

estimated the correlations between the expression of the 12

genes and CD8+ T cell fractions. The expression of most of the

genes associated with poor prognosis in GBM such as PAK1,

DDB2, SLC2A3, TNFRSF1A, MAFF, and DKK3 showed

significant, negative correlations with CD8+ T immune cell

infiltrations in GBM tissues (Figures 3A, D). We also observed

positive correlations of CD8+ T-cell fractions with CTBP2 and
TABLE 2 Continued

Overall survival Progression-free survival

Log-rank test (Kaplan-Meier
analysis)

Multivariate Cox
regression
analysis*

Log-rank test (Kaplan-Meier
analysis

Multivariate Cox
regression
analysis*

(tertile 2 vs. tertile 3) 0.040 1.45 (1.10–
1.91)

0.009 0.006 1.55 (1.18–
2.04)

0.002

9. p53 signaling (59 genes were analyzed)

CDKN2A (tertile 3 vs. tertile
1)

0.002 0.79 (0.60–
1.04)

0.093 0.015 0.78 (0.59–
1.02)

0.072

DDB2 (tertile 1 vs. tertile 3) 0.001 0.73 (0.55–
0.97)

0.031 0.001 0.72 (0.54–
0.96)

0.024

FAS (tertile 1 vs. tertile 3) 0.042 0.97 (0.74–
1.28)

0.824 0.004 0.75 (0.57–
0.99)

0.043

IGFBP3 (tertile 1 vs. tertile 3) 0.001 0.76 (0.58–
1.01)

0.055 <0.001 0.63 (0.48–
0.83)

0.001

MDM2 (tertile 1 vs. tertile
3)

<0.001 0.68 (0.52–
0.90)

0.006 <0.001 0.63 (0.48–
0.83)

0.001

RPRM (tertile 3 vs. tertile 1) 0.024 0.77 (0.57–
1.03)

0.074 0.028 0.73 (0.55–
0.96)

0.024

SERPINE1 (tertile 1 vs. tertile
3)

0.006 0.83 (0.63–
1.09)

0.173 0.003 0.71 (0.54–
0.94)

0.016

STEAP3 (tertile 1 vs. tertile
3)

<0.001 0.83 (0.63–
1.10)

0.192 <0.001 0.59 (0.44–
0.77)

<0.001

TNFRSF10B (tertile 1 vs.
tertile 3)

0.005 0.76 (0.58–
1.01)

0.063 0.004 0.73 (0.55–
0.96)

0.026

10. Wnt/b-catenin signaling (31 genes were analyzed)

DKK3 (tertile 1 vs. tertile 3) <0.001 0.73 (0.55–
0.97)

0.031 0.02 0.75 (0.56–
0.99)

0.044
frontier
GBM, glioblastoma multiforme; HR, hazard ratio; CI, confidence interval; CDC14A, cell division cycle 14A; CDKN2A, cyclin-dependent kinase inhibitor 2A; E2F2, E2F transcription factor
2; MAD2L1, mitotic arrest-deficient 2 like 1; MDM2, mouse double minute 2 homolog; SMC3, structural maintenance of chromosomes 3; ZBTB17, zinc finger and BTB domain-containing
17; AMOT, angiomotin; DLG5, discs large MAGUK scaffold protein 5; TIAL1, TIA1 cytotoxic granule-associated RNA binding protein like 1; WWTR1, WW domain-containing
transcription regulator 1; CTBP2, C-terminal-binding protein 2; DLL3, delta-like canonical Notch ligand 3; Nrf2, nuclear factor erythroid 2-related factor 2; ABCC3, ATP binding cassette
subfamily C member 3; GSTA4, glutathione S-transferase alpha 4; MAFF, MAF bZIP transcription factor F; NQO1, NAD(P)H quinone oxidoreductase 1; SLC2A10, solute carrier family 2
member 10; SLC2A3, solute carrier family 2 member 3; SLC2A9, solute carrier family 2 member 9; SLC6A13, solute carrier family 6 member 13; SQSTM1, sequestosome 1; PI3K,
phosphatidylinositol 3-kinase; CSNK2B, casein kinase 2 beta; CXCR4, C-X-C motif chemokine receptor 4; ECSIT, evolutionarily conserved signaling intermediate in Toll pathways;
GNA14, guanine nucleotide-binding protein subunit alpha-14; HSP90B1, heat shock protein 90 kDa beta member 1; MAPK8, mitogen-activated protein kinase 8; MYD88, myeloid
differentiation primary response 88; RAC1, Ras-related C3 botulinum toxin substrate 1; SLA, Src-like adaptor; TNFRSF1A, tumor necrosis factor receptor superfamily member 1A; VAV3,
Vav guanine nucleotide exchange factor 3; RTK, receptor tyrosine kinase; EIF4EBP1, eukaryotic translation initiation factor 4E-binding protein 1; MAP2K2, mitogen-activated protein
kinase kinase 2; PAK1, p21 (RAC1) activated kinase 1; TGF, transforming growth factor beta 1; ACVR2B, activin A receptor type 2B; ID1, inhibitor of DNA binding 1; ID4, inhibitor of
DNA binding 4; DDB2, damage-specific DNA-binding protein 2; FAS, Fas cell surface death receptor; IGFBP3, insulin-like growth factor-binding protein 3; RPRM, reprimo, TP53-
dependent G2 arrest mediator homolog; SERPINE1, serpin family E member 1; STEAP3, STEAP3 metalloreductase; TNFRSF10B, tumor necrosis factor receptor superfamily member 10B;
DKK3, dickkopf-3.
Tertile 1, 2, and 3 indicate low gene expression, moderate gene expression, and high gene expression, respectively.
The rows containing genes showing p < 0.05 in both overall survival and progression-free survival of multivariate Cox regression analyses are shown in bold.`
*Adjusted for sex, age, Karnofsky performance scale, radiation treatment, chemotherapy or immunotherapy, history of prior glioma.
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E2F2 expression, which were associated with a better prognosis

in GBM at high and moderate levels of expression,

respectively (Figure 3D).
Identification of antitumor agents for the
suppression of genes related to poor
prognosis in GBM patients

We evaluated the correlations and significance levels between

gene expression and ln(IC50) values for 316 antitumor drugs in 49

GBM cell lines. A negative correlation between gene expression

and the ln(IC50) value for an antitumor agent indicates that the

antitumor agent effectively inhibits the expression of the

corresponding gene. Therefore, we identified antitumor agents

effective against the genes related to poor prognosis in GBM,

showing negative correlations between gene expression and ln

(IC50) values with p-values less than 0.05 (Table 4). Antitumor

agents that effectively inhibited the expression of at least two

identified significant genes in GBM cell lines were nutlin-3a,

cabozantinib, fedratinib, NVP-BHG712, and MIM1 (Figure 4).

Nutlin-3a effectively inhibited DDB2, TNFRSF1A, and MDM2

expression. In addition, cabozantinib, fedratinib, and NVP-
Frontiers in Oncology 08
BHG712 also effectively inhibited both TNFRSF1A and MDM2

expression, while MIM1 effectively blocked PAK1 and HSP90B1

expression (Figure 4).
Discussion

We recently used TCGA data to report that DKK3, a

component of the Wnt/b-catenin signaling pathway, is

associated with higher mortality, disease progression, and

chemoresistance in patients with GBM (4). To expand the

scope of our study, we identified genes whose expression was

significantly associated with mortality and disease progression in

GBM patients in TCGA from all genes belonging to well-known

10 canonical oncogenic pathways, including Wnt/b-catenin
signaling (3). We then observed that there were 12 genes

whose expression was significantly related to both mortality

and disease progression in patients with GBM. These 12 genes

were E2F2 (cell cycle signaling pathway), CTBP2 (Notch

signaling), MAFF (Nrf2 signaling), SLC2A3 (Nrf2 signaling),

ECSIT (PI3K signaling), HSP90B1 (PI3K signaling), TNFRSF1A

(PI3K signaling), PAK1 (RTK signaling), ID4 (TGF-b signaling),
DDB2 (p53 signaling), MDM2 (p53 and cell cycle signaling), and
A B
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FIGURE 1

Overall survival (OS) and progression-free survival (PFS) rates according to 12 genes significantly associated with mortality and disease
progression in GBM patients. GBM, glioblastoma.
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DKK3 (Wnt/b-catenin signaling). To the best of our knowledge,

this study is the first to identify these 12 genes belonging to 10

oncogenic pathways that significantly affect both mortality and

disease progression in GBM patients.

Considering the role of these 12 genes in cancer, we briefly

suggest possible mechanisms affecting the prognosis of GBM as

follows (1). E2F2 is known as the center of the balance between

cell proliferation and apoptosis (14). As shown in Figure 3C of

our study, E2F2 was negatively correlated with all 10 significant
Frontiers in Oncology 09
genes in subcluster 2-4 (except for PAK1 and MDM2).

Therefore, we hypothesized that E2F2 may be a control tower

regulating tumor aggressiveness in GBM. However, the

activation of deregulated E2F leading to both growth-

promoting pathways or tumor suppressor pathways can result

in oncogenic changes (14). In addition, if the level of free E2F is

below the threshold, E2F activates only growth-related target

genes. When the level of E2F exceeds the threshold, E2F activates

not only growth-related targets but also pro-apoptotic targets
TABLE 3 Detailed information of the 12 genes from the 10 oncogenic signaling pathways, which are significantly associated with overall survival
and progression-free survival in patients with GBM.

Gene
symbol

Oncogenic
signaling
pathways

Gene
expression

levels showing
better OS and

PFS in
patients with

GBM

Summary of possible mechanisms of the 12 significant genes affecting OS and
PFS in GBM patients

References

E2F2 Cell cycle
signaling

Moderate
expression (except
when compared
with high
expression in PFS)

E2F2 is the center of the balance between cell proliferation and cell cycle arrest or apoptosis.
Activation of deregulated E2F leading to both growth-promoting pathways or tumor suppressor
pathways can result in oncogenic changes. If the amount of free E2F is below the threshold, E2F
activates only growth-related target genes. However, when the amount of E2F exceeds the threshold,
E2F activates not only growth-related targets but also pro-apoptotic targets.

(14, 15)

CTBP2 Notch
signaling

High CTBP2 is a nuclear transcriptional co-repressor. CTBP2 represses Wnt target genes, including b-
catenin, thus leading to tumor suppression.

(16, 17)

MAFF Nrf2 signaling Low Higher expression of MAFF promotes its binding to Nrf2, leading to increased expression of
subsequent antioxidant enzymes. When stress conditions persist, MAFF and the Nrf2 complex
activate ARE, leading to cell proliferation and tumorigenesis.

(18, 19)

SLC2A3 Low SLC2A3 encodes the GLUT3. Because of excessively high glucose consumption of tumor cells,
aberrant GLUT family expression, including GLUT3, is known to associate with poor prognosis in
various cancers, including brain tumors.

(20–22)

ECSIT PI3K signaling High or low
(except for low
expression in PFS)

A TRAF6-ECSIT complex is crucial for the generation of mROS via Toll-like receptors. ECSIT also
regulates the production of mROS.

(23)

HSP90B1 Low Protein complex, containing PTN, SPARC, SPARCL1, and HSP90B, facilitates the migration of
glioma cells.

(24, 25)

TNFRSF1A Low TNFRSF1A encodes the TNFa receptor. TNFa and IL6 induce sustained NF-kB activity, aberrant
activation of STAT3, and increased expression of pro-oncogenic proteins. The cross-talk between
NF-kB and STAT3 induces tumor progression and facilitates cancer stemness in gliomas.

(26, 27)

PAK1 RTK signaling Low PAK1 functions as a node for multiple signaling pathways. PAK1 overexpression is associated with
activation of PI3K/AKT/mTOR and facilitates cross-talk between the Ras effector pathways and the
Wnt signaling pathway associated with tumor progression, migration, and angiogenesis.

(28, 29)

ID4 TGF-b
signaling

High or low ID4 can act as a tumor suppressor and an oncogene in different tumor types. ID4 may act as a
metastatic suppressor and inhibits the aggressive invasive behavior of GBM. At the same time,
however, ID4 also promotes angiogenesis in GBM.

(30–33)

DDB2 p53 signaling Low DDB2 is known as a sensor of DNA damage that plays a critical role in DNA repair system.
However, in cancer cell, DDB2 may also promotes repair of cancer DNA lesions induced by
radiation or chemotherapy, leading to chemo/radioresistance.

(34–36)

MDM2 p53 signaling,
cell cycle

Low The transcription factor p53 plays critical roles in the suppression of tumor development. MDM2 is
the primary negative regulatory factor of the p53 protein.

(37)

DKK3 Wnt/b-catenin
signaling

Low DKK3 may modulate cancer cell malignant potentials by activating AKT thorough the binding of
DKK3 to RTK or Wnt receptors and by intracellular protein-protein interactions of DKK3b.

(4, 38)
fr
GBM, glioblastoma multiforme; OS, overall survival; PFS, progression-free survival; E2F2, E2F transcription factor 2; CTBP2, C-terminal-binding protein 2; MAFF, MAF bZIP transcription
factor F; Nrf2, nuclear factor erythroid 2-related factor 2; ARE, antioxidant response element; SLC2A3, solute carrier family 2 member 3; GLUT3, glucose transporter, type 3; PI3K,
phosphatidylinositol 3-kinase; TRAF6, tumor necrosis factor receptor associated factor 6; ECSIT, evolutionarily conserved signaling intermediate in Toll pathways; mROS, mitochondrial
reactive oxygen species; HSP90B1, heat shock protein 90 kDa beta member 1; PTN, pleiotrophin; SPARC, secreted protein acidic and cysteine rich; SPARCL1, SPARC like 1; TNFRSF1A,
tumor necrosis factor receptor superfamily member 1A; TNF, tumor necrosis factor; IL, interleukin; NF-kB, nuclear factor-kappa B; STAT3, signal transducer and activator of transcription;
PAK1, p21 activated kinase 1; AKT, protein kinase B; mTOR, mammalian target of rapamycin; RTK, receptor tyrosine kinase; ID4, inhibitor of DNA binding 4; TGF-b, transforming
growth factor beta; DDB2, damage-specific DNA-binding protein 2; MDM2, mouse double minute 2 homolog; DKK3, dickkopf-3.
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FIGURE 2

Schematic illustrations of possible roles of the 12 significant genes in GBM. GBM, glioblastoma. (A) E2F2 is the center of the balance between
cell proliferation and cell cycle arrest or apoptosis; (B) CTBP2 is a nuclear transcriptional co-repressor. CTBP2 represses Wnt target genes
leading to tumor suppression; (C) Higher expression of MAFF promotes its binding to Nrf2. When stress conditions persist, MAFF and the Nrf2
complex activate ARE, leading to tumorigenesis; (D) SLC2A3 encodes the GLUT3. Because of excessively high glucose consumption of tumor
cells, aberrant GLUT3 expression is known to associate with poor prognosis in brain tumors; (E) A TRAF6-ECSIT complex is crucial for the
generation of mROS. ECSIT also regulates the production of mROS; (F) Protein complex, containing PTN, SPARC, SPARCL1, and HSP90B,
facilitates the migration of glioma cells; (G) TNFRSF1A encodes the TNFa receptor. TNFa and IL6 induce sustained NF-kB activity, aberrant
activation of STAT3, and increased expression of pro-oncogenic proteins; (H) PAK1 functions as a node for multiple signaling pathways. PAK1
overexpression is associated with activation of PI3K/AKT/mTOR and facilitates cross-talk between the Ras effector pathways and the Wnt
signaling pathway associated with tumor progression, migration, and angiogenesis; (I) ID4 can act as a tumor suppressor and an oncogene in
different tumor types. ID4 may act as a migration suppressor of GBM. At the same time, however, ID4 also promotes angiogenesis in GBM.
(J) DDB2 plays a critical role in DNA repair system. However, in cancer cell, DDB2 may also promotes repair of cancer DNA lesions induced by
radiation or chemotherapy, leading to chemo/radioresistance. (K) MDM2 is the primary negative regulatory factor of the p53 protein; (L) DKK3
may modulate cancer cell malignant potentials by activating AKT thorough the binding of DKK3 to RTK or Wnt receptors and by intracellular
protein-protein interactions of DKK3b. GBM, glioblastoma multiforme; E2F2, E2F transcription factor 2; CTBP2, C-terminal-binding protein 2;
MAFF, MAF bZIP transcription factor F; Nrf2, nuclear factor erythroid 2-related factor 2; ARE, antioxidant response element; SLC2A3, solute
carrier family 2 member 3; GLUT3, glucose transporter, type 3; TRAF6, tumor necrosis factor receptor associated factor 6; ECSIT, evolutionarily
conserved signaling intermediate in Toll pathways; mROS, mitochondrial reactive oxygen species; PTN, pleiotrophin; SPARC, secreted protein
acidic and cysteine rich; SPARCL1, SPARC like 1; HSP90B1, heat shock protein 90 kDa beta member 1; TNFRSF1A, tumor necrosis factor
receptor superfamily member 1A; TNF, tumor necrosis factor; IL, interleukin; NF-kB, nuclear factor-kappa B; STAT3, signal transducer and
activator of transcription; PAK1, p21 activated kinase 1; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; mTOR, mammalian target of
rapamycin; ID4, inhibitor of DNA binding 4; DDB2, damage-specific DNA-binding protein 2; MDM2, mouse double minute 2 homolog; DKK3,
dickkopf-3; RTK, receptor tyrosine kinase.
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(14, 15). Therefore, we hypothesized that E2F2 must be

maintained at appropriate levels to properly regulate cell

proliferation and apoptosis. Any pathological increase or

decrease in the E2F2 levels can adversely affect the prognosis

of GBM (2). CTBP2 is known as a nuclear transcriptional co-

repressor, repressingWnt target genes and thus leading to tumor

suppression (16, 17). According to Figures 3C, D CTBP2

expression is negatively correlated with MDM2 expression,

which is the primary negative regulatory factor of p53, but is

positively associated with CD8+ T-cell fractions. Therefore, we

believe that high CTBP2 expression is associated with a better

prognosis in GBM (3). MAFF binds to Nrf2 and leads to the

increased expression of subsequent antioxidant enzymes. When

stress conditions persist, MAFF and the Nrf2 complex activate

the antioxidant response element (ARE), leading to cell

proliferation and tumorigenesis (18, 19) (4). SLC2A3 encodes

the glucose transporter 3 (GLUT3) (20). Because of the

excessively high glucose consumption of brain tumor cells,

GLUT3 is associated with a poor prognosis in GBM (20–22)

(5). ECSIT forms a complex with TRAF6 in mitochondria to

generate mitochondrial reactive oxygen species (mROS).
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However, ECSIT also inhibits mROS in mitochondria (23).

Therefore, ECSIT performs two seemingly contradictory roles

in mitochondria. Although the exact mechanism is unknown,

according to our results, the prognosis of GBM was better when

ECSIT expression was increased or decreased than moderate

level (6). It is known that the protein complex of HSP90B with

PTN, SPARC, and SPARCL1 facilitates the migration of glioma

cells (7, 24, 25). TNFRSF1A encodes the TNFa receptor (39).

TNFa and IL6 induce sustained NF-kB activity and aberrant

activation of STAT3. The cross-talk between NF-kB and STAT3

induces tumor progression and facilitates cancer stemness in

gliomas (8, 26, 27). PAK1 functions as a node for multiple

signaling pathways. PAK1 overexpression is associated with the

activation of the PI3K/AKT/mTOR signaling pathway (28). In

addition, PAK1 facilitates the cross-talk between the Ras effector

pathways and the Wnt signaling pathway that are associated

with tumor progression, migration, and angiogenesis (29).

Therefore, we believe that the increase of interactions of PAK1

with multiple oncogenic signaling pathways adversely affects the

prognosis of patients with GBM in this study (9). ID4 has a

paradoxical role in cancer. ID4 may act as a metastatic
A B

DC

FIGURE 3

Correlation plots between 12 significant genes and between 12 significant genes and CD8+ T-cell fractions. Schematic illustrations of
correlations between the 12 significant genes and between the 12 significant genes and CD8+ T-cell fractions. (A) Pearson correlation
coefficients and significance levels were calculated between the 12 significant genes and between the 12 significant genes and CD8+ T-cell
fractions. The color-coordinated legend indicates the value and sign of Pearson’s correlation coefficient. The number in the box indicates
Pearson’s correlation coefficient. Moreover, an x in the box indicates a p value ≥ 0.001; (B) the 12 significant genes are largely classified into
three clusters according to the significance of the correlation between mutual genes. Clusters 2 and 3 were again divided into two sub-clusters;
(C) correlations between gene expression outside the clusters or subclusters; (D) correlations between the expression of the 12 significant
genes and CD8+ T cell fractions.
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TABLE 4 Identification of antitumor agents for the genes significantly associated with poor prognosis in GBM.

Gene
symbol

Antitumor agents Pearson’s correlation coefficient between gene expression and ln(IC50) values for
antitumor agents in 49 GBM cell lines

p

MAFF Serdemetan -0.431 0.002

Pictilisib -0.405 0.005

Allitinib (AST-1306) -0.340 0.017

Devimistat (CPI-613) -0.332 0.020

Gefitinib -0.324 0.023

AZD6482 -0.322 0.024

IMD-0354 -0.314 0.028

BX795 -0.308 0.032

LGK974 -0.296 0.039

PFI-3 -0.313 0.044

KIN001-042 -0.289 0.044

AZD8055 -0.294 0.045

Pictilisib -0.293 0.045

JQ12 -0.289 0.047

Wnt-C59 -0.282 0.049

SLC2A3 Not available in the GDSC and COSMIC databases

HSP90B1 LDN-193189 -0.391 0.005

Olaparib -0.375 0.009

Bleomycin -0.356 0.012

Mcl-1 inhibitor molecule 1
(MIM1)

-0.349 0.014

5Z-7-Oxozeaenol -0.346 0.015

Bosutinib -0.329 0.021

Avagacestat -0.325 0.023

BAX activator, molecule 7
(BAM7)

-0.322 0.024

ICL1100013 -0.324 0.025

Cytarabine -0.309 0.031

Refametinib -0.304 0.038

Piperlongumine -0.296 0.039

Afatinib -0.288 0.045

PD184352 (CI-1040) -0.286 0.046

TNFRSF1A Ponatinib -0.484 <0.001

Foretinib -0.448 0.001

NVP-BHG712 -0.367 0.009

Nutlin-3a -0.345 0.015

Pazopanib -0.345 0.020

Cabozantinib -0.323 0.024

Fedratinib -0.314 0.028

TPCA-1 -0.282 0.049

PAK1 LCL161 -0.470 0.001

Mcl-1 inhibitor molecule 1
(MIM1)

-0.423 0.002

ZG-10 -0.516 0.006

AT7867 -0.386 0.006

GSK429286A -0.377 0.008

CD532 -0.369 0.009

XMD8-92 -0.484 0.012

Flavopiridol -0.325 0.023

(Continued)
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suppressor and inhibit the aggressive invasive behavior of GBM

(30, 31). At the same time, however, ID4 also promotes

angiogenesis in GBM (32, 33). We believe that this paradoxical

role of ID4 might be associated with a better prognosis in GBM

patients when ID4 expression was high or low than moderate level

in our study (10). DDB2 is known as a sensor of DNA damage

that plays a critical role in the DNA repair system. However,

DDB2 is reported to have dual functions in cancer, sometimes

with tumor suppressive properties and sometimes functioning as

an oncogene (34). In cancer cells, DDB2 may also promote the

repair of cancer DNA lesions induced by radiation or

chemotherapy leading to chemo/radioresistance (34–36) (11).

The transcription factor p53 plays critical roles in the

suppression of tumor development, and MDM2 is the primary

negative regulatory factor of p53 (37). Therefore, we believe that

MDM2was significantly associated with a poor prognosis in GBM

patients in this study (12). DKK3 may be associated with GBM

aggressiveness by activating AKT through the binding of DKK3 to

RTK or Wnt receptors and by intracellular protein-protein

interactions of DKK3b (4, 38). According to Figure 3C, DKK3

expression was positively correlated with the expression of genes

associated with a poor prognosis in GBM such as DDB2, SLC2A3,

TNFRSF1A, and MAFF. We recently reported that DKK3

expression is associated with GBM immunosuppression (4). In
Frontiers in Oncology 13
this study, we also observed that the expression of six of the genes

significantly associated with a poor prognosis of GBM, showed

negative correlations with CD8+ T-cell fractions in GBM tissue

(Figure 3D). The immunosuppressive tumor microenvironment

of GBM is known to lead to a poor prognosis in patients with

GBM (40). It is noteworthy that most of the genes associated with

a poor prognosis of GBM in this study, were also related to

immunosuppressive conditions in GBM.

We used GDSC data to investigate drug sensitivity in 49

GBM cell lines according to the several genes significantly

associated with a poor prognosis in GBM. Although, there

were many antitumor agents inhibiting the expression of these

genes, nutlin-3a, cabozantinib, fedratinib, NVP-BHG712, and

Mcl-1 inhibitor molecule 1 (MIM1) effectively and concurrently

inhibited the expression of at least two significant genes in GBM

cell lines. Nutlin-3a, cabozantinib, fedratinib, and NVP-BHG712

effectively blocked the expression of both TNFRSF1A and

MDM2 in GBM cell lines. To our knowledge, nutlin-3a and

cabozantinib have been reported to be effective against GBM, but

there have been no reports of the efficacy of fedratinib and NVP-

BHG712 against GBM (41, 42). Meanwhile, MIM1 effectively

blocked HSP90B1 and PAK1 expression in GBM cell lines.

Previously, MIM1 was reported to induce apoptosis and

sensitize GBM cells to alkylating agents (43). Unfortunately,
TABLE 4 Continued

Gene
symbol

Antitumor agents Pearson’s correlation coefficient between gene expression and ln(IC50) values for
antitumor agents in 49 GBM cell lines

p

WZ-1-84 -0.475 0.025

GSK269962A -0.452 0.027

AGI-6780 -0.305 0.033

Panobinostat -0.302 0.035

QL-VIII-58 -0.389 0.045

Procaspase-Activating
Compound 1 (PAC-1)

-0.299 0.046

Trichostatin A -0.286 0.047

Z-VAD-FMK -0.285 0.050

DDB2 Nutlin-3a -0.427 0.002

MDM2 Nutlin-3a -0.590 <0.001

JW-7-24-1 -0.396 0.005

Fedratinib -0.366 0.010

JNJ-38877605 -0.312 0.029

Quizartinib -0.311 0.030

Cabozantinib -0.308 0.031

NVP-BHG712 -0.302 0.035

MPS-1-IN-1 -0.300 0.036

XMD14-99 -0.286 0.046

DKK3 Tipifarnib -0.389 0.007

Navitoclax -0.338 0.018
frontiers
GBM, glioblastoma multiforme; ln(IC50), natural log of the half-maximal inhibitory concentration; CTBP2, C-terminal-binding protein 2; MAFF, MAF bZIP transcription factor F;
SLC2A3, solute carrier family 2 member 3; HSP90B1, heat shock protein 90 kDa beta member 1; TNFRSF1A, tumor necrosis factor receptor superfamily member 1A; PAK1, p21-activated
kinase 1; DDB2, damage-specific DNA-binding protein 2; MDM2, mouse double minute 2 homolog; DKK3, dickkopf-3.
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we were not able to identify drugs that inhibit SLC2A3

expression because there was no information on SLC2A3

expression in 49 GBM cell lines in the GDSC and COSMIC

databases. We also expect to develop antitumor agents that

simultaneously block the expression of more genes related to

the poor prognosis of GBM.
Frontiers in Oncology 14
Our study has some limitations. First, as this study is

retrospective in nature and based on TCGA data, further

prospective studies are needed to validate the results. However,

because we used TCGA public data, researchers can check and

verify our results. Second, there were no experimental analyses to

investigate the relationships between the 12 above-mentioned genes
A B

D E F

G IH
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C

FIGURE 4

Genomics of Drug Sensitivity in Cancer (GDSC) database analysis and an illustration showing actions of antitumor agents on several significant
genes associated with poor prognosis in GBM patients. Linear regression analysis shows associations between gene expression and the natural
log of the half-maximal inhibitory concentration [ln(IC50)] values for antitumor agents in 49 GBM cell lines (blue, low gene expression; red, high
gene expression).
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and GBM cells, and further in vitro and/or in vivo studies are

necessary. Third, missing data and gene sets associated with 10

oncogenic signaling pathways that were not available in TCGA data

may affect the results of statistical analysis in the study. Last, the

relationships between significant genes and mortality and disease

progression classified by GBM molecular subtypes were

not analyzed.

In conclusion, despite these limitations, we used a large-

scale, open database to identify 12 genes whose expression was

significantly related to mortality and disease progression of

GBM among genes belonging to 10 well-known oncogenic

canonical pathways. We present the possible mechanisms by

which these 12 genes affect both mortality and disease

progression of GBM. We also identified that most of these

genes were related to immunosuppressive conditions in GBM.

Nutlin-3a, cabozantinib, fedratinib, NVP-BHG712, and MIM1

effectively and concurrently inhibited the expression of at least

two of these genes in GBM cell lines. We believe that our

findings will contribute to improve the understanding of the

mechanisms underlying GBM pathophysiology and help

develop treatments for patients with GBM in the future.
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