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Abstract 

Computer-aided research on the relationship between molecular structures of natural compounds (NC) and their 
biological activities have been carried out extensively because the molecular structures of new drug candidates are 
usually analogous to or derived from the molecular structures of NC. In order to express the relationship physically 
realistically using a computer, it is essential to have a molecular descriptor set that can adequately represent the char-
acteristics of the molecular structures belonging to the NC’s chemical space. Although several topological descriptors 
have been developed to describe the physical, chemical, and biological properties of organic molecules, especially 
synthetic compounds, and have been widely used for drug discovery researches, these descriptors have limitations 
in expressing NC-specific molecular structures. To overcome this, we developed a novel molecular fingerprint, called 
Natural Compound Molecular Fingerprints (NC-MFP), for explaining NC structures related to biological activities 
and for applying the same for the natural product (NP)-based drug development. NC-MFP was developed to reflect 
the structural characteristics of NCs and the commonly used NP classification system. NC-MFP is a scaffold-based 
molecular fingerprint method comprising scaffolds, scaffold-fragment connection points (SFCP), and fragments. The 
scaffolds of the NC-MFP have a hierarchical structure. In this study, we introduce 16 structural classes of NPs in the 
Dictionary of Natural Product database (DNP), and the hierarchical scaffolds of each class were calculated using the 
Bemis and Murko (BM) method. The scaffold library in NC-MFP comprises 676 scaffolds. To compare how well the NC-
MFP represents the structural features of NCs compared to the molecular fingerprints that have been widely used for 
organic molecular representation, two kinds of binary classification tasks were performed. Task I is a binary classifica-
tion of the NCs in commercially available library DB into a NC or synthetic compound. Task II is classifying whether NCs 
with inhibitory activity in seven biological target proteins are active or inactive. Two tasks were developed with some 
molecular fingerprints, including NC-MFP, using the 1-nearest neighbor (1-NN) method. The performance of task I 
showed that NC-MFP is a practical molecular fingerprint to classify NC structures from the data set compared with 
other molecular fingerprints. Performance of task II with NC-MFP outperformed compared with other molecular fin-
gerprints, suggesting that the NC-MFP is useful to explain NC structures related to biological activities. In conclusion, 
NC-MFP is a robust molecular fingerprint in classifying NC structures and explaining the biological activities of NC 
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Introduction
Natural compounds (NC), which are chemical com-
pounds produced by living organisms, have been a sig-
nificant source of traditional medicine [1]. Usually, plant 
extracts or herb remedies have been prescribed to treat 
various afflictions in most countries [2]. Since the known 
NCs have a wide range of biological activities with struc-
tural diversity compared to synthetic compounds, they 
have been recognized as a valuable resource for pharma-
ceuticals [3–5].

Since many metabolic pathways are shared among 
various life forms, thus, life forms may share metabo-
lites with the same or similar molecular structure. Also, 
NC structures are usually analogous to metabolite [6]. 
For this reason, NCs are capable of exhibiting vari-
ous types of physiological activities and thus become 
an essential source of precursors for new drug develop-
ment [7]. According to the US Food and Drug Adminis-
tration (FDA), NCs accounted for 6%, derivatives of NCs 
accounted for 26%, and mimetics of NCs accounts for 
32% of the approved small molecule drugs between 1981 
and 2014 [8].

In new drug development, virtual screening is a com-
putational method to find compounds that are likely to 
exhibit physiological activity in a short time and at low 
cost using various in silico simulation methods [9]. Since 
compounds with similar structures may show similar 
biological activities, an appropriate representation of 
chemical similarity among compounds is a crucial ele-
ment for providing high predictability in virtual screen-
ing [10, 11]. In chemical structural space described with 
molecular descriptors as variable axes, the structural 
similarity among compounds can be expressed as the dis-
tance among compounds in the space.

The molecular fingerprint is a way to describe a molec-
ular structure that can convert a molecular structure into 
a bit string [11, 12]. Since molecular fingerprint encodes 
the structure of a molecule, it is a useful method to 
describe the structural similarity among the molecules 
as a molecular descriptor. Generally, there are two ways 
of describing a molecular structure with fingerprint; one 
is substructure key-based fingerprints, and the other is 
topological path-based fingerprints [13].

The substructure key-based fingerprints represent sub-
structure features of the compound based on the list of 
structural keys. Molecular ACCess Systems keys fingerprint 

(MACCS) [14] and PubChem Fingerprints (PubChemFP) 
[15] are the most commonly used methods substructure 
key-based fingerprint. MACCS has both 166-bit keyset and 
960-bit keyset based on 2D molecular descriptors. These 
bit keysets were structural keys constructed using SMART 
patterns and optimized for substructure searching. The 
166-bit keyset is the most commonly used and is covered 
with chemical features related to drug discovery in virtual 
screening [14]. PubChemFP has generated a binary sub-
structure fingerprint for compound structures. It encoded 
881 structural key types that correspond to the substruc-
tures for a fragment of all compounds in the PubChem 
database, which are used by PubChem for similarity neigh-
bor and similarity searching [16].

The topological path-based fingerprints represent all 
the possible connectivity paths defined by a specific fin-
gerprint via an input compound. AtomPairs2DFinger-
print (APFP) [17, 18] is defined in terms of the atomic 
environment of and shortest path separations between 
all pairs of atoms in the topological representation of a 
compound structure [17]. It encodes 780 atom pairs at 
various topological distances [18]. GraphOnlyFingerprint 
(GraphFP) [19] is a specialized version of the molecu-
lar fingerprint in the chemistry development kit (CDK), 
which encodes the 1024 path of a fragment in the com-
pound structure and does not take bond order informa-
tion into account [19].

Most of the molecular fingerprints have been devel-
oped to describe molecular structures associated with 
biological activities based on synthetic compounds. 
These fingerprints are not usually appropriate for appli-
cation to NC because the chemical spaces of the biologi-
cally active compounds from synthetic and NP do not 
overlap significantly. Distinctive structural characteristics 
of NCs as compared to synthetic compounds include a 
low number of nitrogen atoms, a high number of oxygen 
atoms, and complex fused ring systems that provide rigid 
structure and many chiral centers [7, 20–22]. Moreo-
ver, since the conventional molecular fingerprints have 
a small size of fingerprint features, most of the features 
are included in complex structures like that of the NCs. 
Hence, it is challenging to represent precise NC struc-
tures by conventional molecular fingerprints. Therefore, 
the novel molecular fingerprint optimized NC structure 
is necessary to describe the NC structure correctly and to 
explain the biological activities of the NC structure.

structures. Therefore, we suggest NC-MFP as a potent molecular descriptor of the virtual screening of NC for natural 
product-based drug development.

Keywords: Natural product (NP), Natural compound (NC), Dictionary of Natural Product database (DNP), Natural 
product-based drug development, Molecular descriptor, Virtual screening
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In this paper, we propose a novel molecular fingerprint 
called “Natural Compound Molecular Fingerprint (NC-
MFP).” The NC-MFP represents the structural features of 
the NCs to explain the biological activity of NC. To fully 
reflect the structural features and diversity of NCs on the 
development of the NC-MFP, the NC structures clas-
sification system of 16 classes developed by the Diction-
ary of Natural Product database (DNP) was introduced. 
The NC-MFP converts structural features of an NC into 
the bit strings (10,016 bits) with the molecular scaffold, 
the scaffold-fragment connection points (SFCP), and the 
molecular fragments of the NC. To comparing the per-
formance of the NC-MFP with other molecular finger-
prints, two binary classifications tasks were performed.

Methods
Concept of NC‑MFP
The structural diversity of compounds synthesized in the 
course of drug development over the past few decades 
has been constrained by the structural characteristics of 
pharmacophores against target proteins and the structure 
of compounds with biological activities [22]. NCs, on the 
contrary, may have high structural diversity as they par-
ticipate in various biological functions, such as agonists 
or antagonists for enzyme and receptors, signal transduc-
tion, protein–protein interaction inhibition, and protein–
DNA binding inhibition [23]. In general, since various 
features of NC structures are related to their biological 
activities, it is crucial to develop molecular descriptors 
that can describe the optimal relationship between NC 
structures and biological activities. Therefore, the first 
step in developing a molecular fingerprint for a group of 
NCs involves obtaining information on the structural fea-
tures of the NCs.

To getting the structural features of NCs, the classifica-
tion system in the DNP introduced. DNP is a structur-
ally well-classified natural compound database (NCDB) 
wherein the NCs are categorized into 16 structural 
classes, according to the representative molecular struc-
tures of each group and are classified into sub-groups in 
each of 16 structural classes [24].

For the representation of structural features of NCs, 
Scaffolds, Scaffold-Fragment Connection Points (SFCPs), 
and Fragments were used as the component set that 
constitutes NC-MFP (Fig. 1). A Scaffold is a part of the 
chemical structure that is commonly shared between the 
molecules. Since a specific scaffold can be found among 
molecules with similar structure or biological activity, 
Scaffolds provide relevant information to represent NC 
structures and describe their biological activities [3–5].

SFCPs are the atomic positions on a scaffold where 
the fragments are connected to the scaffold. Since the 
changes in the binding position of a functional group in 

a molecule change its biological activity, SFCPs may play 
an important role as descriptors in describing the biolog-
ical activity of NCs.

Fragment refers to a molecular fragment that contains 
a functional group or groups that are chemically bonded 
to scaffolds. The biological activity of a molecule varies 
when a fragment is replaced by another fragment or a 
combination of fragments on the scaffold.

Since the components, Scaffolds, SFCPs, and Frag-
ments of the NC-MFP are topologically well defined, 
the NC structures can be represented by bit strings 
(10,016 bits) (Fig.  1). Since the components of the NC-
MFP are the same as those used in Ligand Based Drug 
Design (LBDD), and SFCPs and Fragments are used to 
change the biological activity of a reference compound in 
LBDD. Therefore, the NC-MFP is suitable for describing 
the relationship between the biological activities and the 
molecular structures of NCs.

Molecular scaffolds in NC‑MFP
Molecular scaffolds are generally used to describe the 
common core structures of the molecules [25]. The NCs 
in DNP are classified into 16 structural classes using the 
characteristic scaffolds of each group [24]. In medicinal 
chemistry, a molecular scaffold is used to represent the 
core structure of a group of active compounds. Since the 
compounds with the same scaffold may influence a par-
ticular metabolic pathway, the molecular scaffolds can 
effectively contribute to the prediction of biological activ-
ities [26].

The scaffold of molecule groups is defined as a com-
mon sub-graph of the graphs of the molecule groups. 
Representatively, Maximum Common Substructure 
(MCS), Matched Molecular Pairs (MMP), and Bemis and 
Murko (BM) are the commonly used methods to pro-
duce molecular scaffolds [27–31]. The scaffold, as per 
the MMP method, is defined as the common part among 
molecules that have different molecular fragments at the 
same single specific site [28, 29]. MCS method defines a 
scaffold as the maximum common edge subgraph of the 
graphs of molecule groups [30]. Unlike the MMP and 
MCS methods, the scaffolds produced by the BM method 
reveal a hierarchical structure [31].

Since this study aimed at developing a molecular fin-
gerprint, NC-MFP, that can express the structure of 
natural products based on the classification system of 
the DNP, the BM method was used to produce the hier-
archical scaffold tree that matched well with the DNP 
classification system. Using the BM method, a molecu-
lar scaffold is produced from a molecular structure by 
removing the functional groups, while keeping all the 
rings and the linkers between the rings. The exocyclic 
double bonds and terminal double bonds are regarded 
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as part of the molecular scaffold. The pruning procedure 
iteratively generates the molecular scaffolds until only a 
single ring remains [26]. A level is assigned to each scaf-
fold with its node position at the molecular scaffold-
based hierarchical tree. Figure  2 shows the assignment 
of the level of the scaffolds in the hierarchical tree. The 
smallest scaffold contains a single ring and is assigned the 
scaffold level of 0. Since the smallest scaffolds contain a 
single ring, the NC-MFP can be used only for the com-
pound with at least one ring in a compound. The genera-
tion of scaffolds in NC-MFP was implemented in Pipeline 
Pilot (2017 version) [32].

In DNP, all the NCs are classified into 16 classes, and 
for each class, a group of structurally representative com-
pounds is presented. NC-MFP constructs a multilayer 
hierarchical scaffold tree for each DNP class by applying 
the BM scaffold procedure with the representative molec-
ular structures of each class. Therefore, each class of the 
DNP consists of a scaffold library with a hierarchical tree 
structure. Each scaffold in the library is assigned a level.

In other words, the scaffold library (SL) of class i of the 
DNP, SLi is represented as,

where sij,k represents the kth scaffold at scaffold level j 
of the DNP class i.

Selection of the optimum NC‑MFP scaffold level that gives 
maximum discrimination
The molecular scaffolds were generated using the molec-
ular structures of the representative compounds from 
each group in the DNP and were assigned a scaffold level 
from 0 to 3. To select the scaffold levels with maximum 
discrimination among the compounds belonging to dif-
ferent classes in the DNP, DB coverage and the accuracy 
of classification of the scaffolds were calculated at each 
scaffold level from 0 to 3 by using the Pipeline Pilot 
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Fig. 1 The schematic diagram for the NC-MFP concept is illustrated. The schematic diagram to explain the underlying idea of the hierarchical 
structure of the NC-MFP is illustrated, a query natural compound is described as a Scaffold (blue), Scaffold-Fragment Connection Points (yellow), and 
Fragments (green). The NC-MFP of the query natural compound is produced as bit strings with the Scaffold (blue), Scaffold-Fragment Connection 
Points (yellow), and Fragments (green)
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2017 [32]. The DB coverage of a certain scaffold level is 
defined as the fraction of assigning a NC in Natural Com-
pound Databases (NCDBs) to any of the 16 classes of 
the DNP using the scaffolds of a certain level by struc-
ture matching (Fig. 3). The accuracy of classification of a 
certain scaffold level is defined as the fraction of correct 

assignment of an NC to 1 of 16 classes in DNP, where the 
NC originally belongs (Fig. 4). 

To construct an integrated NCDB, we collected all 
the compounds from several NC databases, KNApSAcK 
[33], InterBioScreen (IBScreen) [34], Naturally occurring 
Plant-based Anticancerous Compound-Activity-Target 

Fig. 2 The hierarchical tree of the molecular scaffolds. Based on the Bemis and Murko (BM) scaffold method, functional group of compounds 
removed. And then the ring systems in the molecular scaffolds are iteratively removed until an only single ring remains. In the hierarchical tree, each 
node means the molecular scaffolds and assigns a level based on the node position in the tree

Fig. 3 The DB coverage calculation. The DB coverage of molecular scaffolds was calculated according to scaffold levels of from 0 to 3 by using the 
NCDBs
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Database (NPACT) [35], Specs [36], Traditional Chinese 
Medicine (TCM) [37], and Natural Product Activity and 
Species Source Database (NPASS DB) [38]. Then, the 
collected compounds were filtered by the criteria that a 
compound contains at least one ring. The final NCDB 

consists of 41,082 NCs from KNApSAcK, 56,942 NCs 
from IBScreen, 1,335 NCs from NPACT, 844 NCs from 
Specs, 33,902 NCs from TCM, and 24,815 NCs from 
NPASS, with the total number of NCs in the NCDBs cal-
culated to be 158,920 (Additional file 1).

Fig. 4 The heat map of the accuracy of classification according to the scaffold levels. The heat map shows that the assignment to NC structures of 
DNP into 16 classes in DNP by using scaffold library of levels of from 0 to 3. The value is the proportion of the accuracy in classification and ranges 
from 0 to 1. The best value is closing to 1. The abbreviation of 16 classes is in Table 2

Fig. 5 Workflow to generate the NC-MFP. The NC-MFP algorithm consists of six steps. Preprocessing step prepares input query compound 
for NC-MFP calculation. Scaffold matching step is to find related scaffold from query compounds. Fragment list generation step is to generate 
fragments by remove scaffold from the input query compound. Scaffold-fragment connection point (SFCP) assigning step is to identify the location 
on the fragment in the scaffold. Fragment identifying step is to find the fragment information of query compound structure from all fragment list. 
Fingerprint representation step describes the feature of NC-MFP by a bit string
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NC‑MFP generation
The procedure for generating the NC-MFP of a natural 
compound consists of six steps: I. Preprocessing step, II. 
Scaffold matching step, III. Fragment list generation step, 
IV. Scaffold-fragment connection point (SFCP) assigning 
step, V. Fragment identifying step and, VI. Fingerprint 
representation step.

The overall procedure to generate the NC-MFP is 
described in Fig. 5. At step I, missing hydrogen atoms are 
added to a query compound, and then, atomic indices are 
assigned to all the atoms of the compound. Also, molecu-
lar properties, such as molecular weight and molecular 
formula are calculated (Fig. 6). In step II, a scaffold from 
the scaffold libraries is selected using the substructure 
filter that uses an exact matching between scaffold and 
query compound structure (Fig. 7). Step III involves the 
generation of all fragments by removing the matched 
scaffold from the query compound. Among all the frag-
ments, duplicated fragments are removed. And then, the 
molecular weight of each fragment is calculated, which 
is stored to the fragment list by adding a fragment index 
in order of molecular weight (Fig. 8). In step IV, the scaf-
fold-fragment connection point (SFCP) on the scaffold is 
identified as the atomic index assigned to each fragment 

from the query compound (Fig. 9). In step V, fragments 
generated from the input query compound are identi-
fied by comparing the same with the fragment list. In this 
process, fragments are converted to canonical SMILES 
for identification with a fragment of input query com-
pound from the fragment list (Fig. 10). Lastly, in step VI, 
the fingerprint is represented by the bit string, which is 
generated based on the scaffold, SFCP, and fragment 
(Fig. 11).

Fig. 6 Preprocessing step in NC-MFP algorithm

Fig. 7 Scaffold matching step in NC-MFP algorithm

Fig. 8 Fragment list generation step in NC-MFP algorithm

Fig. 9 Scaffold-fragment connection point (SFCP) assigning step in 
NC-MFP algorithm

Fig. 10 Fragment identifying step in NC-MFP algorithm
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The NC-MFP algorithm was implemented in Pipeline 
Pilot (2017 version) [32] (Additional file 2).

Introduction of popular molecular fingerprints 
for comparison
To objectively judge the performance of the developed 
NC-MFP method, widely used molecular fingerprints 
were introduced to compare classification performance 
among various methods.

Molecular ACCess System keys Fingerprint (MACCS) 
[14], PubChem Fingerprint (PubChemFP) [16], Atom-
Pairs2D Fingerprint (APFP) [17, 18], and Graph Only 
Fingerprint (GraphFP) [19] have been widely used for 
developing in silico biological activity prediction models 
by Quantitative Structure–Activity Relationship (QSAR) 
method as the molecular descriptor. They have been 
broadly applied to synthetic organic compounds and 
show excellent performance.

The PaDEL-descriptor program was used to calculate 
molecular fingerprints [39].

k‑Nearest Neighbors algorithm
Since the k-Nearest Neighbors algorithm (k-NN) is the 
instance-based algorithm, wherein the performance of 
binary classification is solely dependent on the molecu-
lar descriptor [40], it was used for binary classification 
to test molecular fingerprint discrimination potential. 
The k-NN algorithm assigns a data point to a particu-
lar class according to the class of k number of nearest 
neighbor(s) [41, 42]. To search the nearest neighbors, the 
Tanimoto coefficient [43] was measured with a bit string 
of the molecular fingerprint. The number of nearest 
neighbor (k) was assigned the value of 1. Since 1-NN has 
been used as a reference method to evaluate molecular 
fingerprints in the previous study [42], the performance 
of classification tasks using 1-NN was used to compare 
NC-MFP and other molecular fingerprints. Furthermore, 
since the 1-NN method only assigned to the class of a 

single nearest neighbor, it is possible to test the maxi-
mized capability of molecular fingerprint as a molecular 
descriptor in a binary classification task. RapidMiner 
Studio 9.2 was used to calculate a binary classification by 
using the k-NN model [44].

Y‑randomization
The Y-randomization test was performed to validate the 
uniqueness of the model in tasks [45]. The process of the 
Y-randomization test is as follows. First, endpoint values 
were randomly shuffled, and then model training pro-
cesses were repeated on the reshuffled data. Matthews 
Correlation Coefficient (MCC) [46] and Accuracy (ACC) 
[47] were calculated from random models developed in 
each round of Y-randomization. Z-scores were calculated 
as,

MCCori or ACCori are MCC or ACC of the original 
model that were trained with correct biological activ-
ity (IC50) values, respectively. MCCmean

rand  or ACCmean
rand  

and σMCC
rand  and σACC

rand  are mean and standard deviation of 
MCC or ACC values from random models, respectively. 
If the Z-score of the model is higher than 3, then the 
model with original data is unique and statistically sig-
nificant against those developed with random data.

Binary classification tasks for comparing the performance 
among some popular molecular fingerprints
In order to compare the discriminating performance of 
the NC-MFP with those of some popular molecular fin-
gerprint methods, such as MACCS, PubChemFP, APFP, 
and GraphFP, two kinds of binary classification tasks 
were performed; task (I) classification of compounds in 
commercial library DB into NC or synthetic compound, 
and task (II) classification of whether a compound is bio-
logically active or inactive for a specific target protein 
(Fig. 12). The 1-Nearest Neighbors algorithm (1-NN) was 
used for the binary classifications.

For task I, a data set containing both NCs and syn-
thetic compounds, with 1000 compounds for each class, 
was constructed from InterBioScreen (IBScreen) [34] 
database by random selection (Additional file 3). In task 
I, the accuracy of molecular fingerprints in the classifica-
tion corresponded to the correctly classified fraction into 
the NC group or synthetic compound group (Additional 
file  4). Some classification research of NC structures in 
the compounds has been performed, such as task I [48].

(2)ZMCC =
MCCori −MCCmean

rand

σ
MCC
rand

(3)ZACC =
ACCori − ACCmean

rand

σ
ACC
rand

Fig. 11 Fingerprint representation step in NC-MFP algorithm
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For task II, seven target proteins and the biologically 
active and inactive NCs for each target protein were col-
lected from Natural Product Activity and Species Source 
Database (NPASS DB) [38] as a data set. (Table  1) If 
experimentally obtained biological activity (IC50) of a 
compound was less than 10  µmol, then the compound 
was considered active compound; otherwise, it was 

deemed inactive compound. The selection of the target 
proteins from NPASS DB required that the target protein 
had data for more than 75 experimental inhibitory activi-
ties. The criteria for the number of compounds (75) was 
determined by a trade-off between the number of avail-
able target proteins in NPASS and the minimum num-
ber of inhibitory activity data required for training and 

Fig. 12 Two types of binary classification tasks

Table 1 The number of active and inactive compounds for each target protein are summarized

Seven target proteins were selected from NPASS  DBa together with active and inactive compounds for each target protein
a From Natural Product Activity & Species Source Database (NPASS DB), seven biological activities along with related protein targets were selected
b Target ID code of the NPASS DB with which one can access protein information (“NPASS Target ID”)
c The number of active natural compounds with ring structures obtained with the experimental inhibitory assay (“No. of active compounds”)
d The number of inactive natural compounds with ring structures obtained with the experimental inhibitory assay (“No. of inactive compounds”)
e The total number of natural compounds with ring structures used for the model development (“No. of total compounds with ring structures”)
f The total number of natural compounds without ring structures (“No. of total compounds without ring structures”)

Biological activity NPASSb Target ID No. of active 
 compoundsc

No. 
of inactive 
 compoundsd

No. of total 
compounds with ring 
 structurese

No. of total compounds 
without ring  structuresf

Protein-tyrosine phosphatase 1B inhibitors NPT178 81 171 252 3

Acetylcholinesterase inhibitors NPT204 54 108 162 4

Aldose reductase inhibitors NPT68 57 68 125 3

Beta-secretase 1 inhibitors NPT740 35 73 108 1

Cyclooxygenase-2 inhibitors NPT31 31 62 93 1

Butyrylcholinesterase inhibitors NPT439 28 53 81 1

Cyclooxygenase-1 inhibitors NPT324 27 49 76 0
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validation of the binary classification task. Seven target 
proteins satisfied the criteria of more than 75 experimen-
tal validations, and 897 NCs corresponded to the seven 
target proteins (Additional file 5). In task II, the perfor-
mance among the molecular fingerprints was compared 
as the accuracy of correctly classify a NC into an active 
NC or inactive NC (Additional file 6).

In each of the tasks, 80% of the data set was used for 
training data. The remaining 20% of the data set was used 
for external validation data. In task I, the training and 
external validation data were randomly selected ten times 
from the data set. Each data for task II was randomly 
selected ten times from the data set in each of the tar-
get proteins. (Fig. 12) The training of the two tasks was 
performed ten times by tenfold cross-validation, and the 
external validation was performed ten times. The per-
formance of the molecular fingerprints was evaluated to 
the average of the ten external validation results from the 
two tasks.

Results and discussion
Generation of NC‑MFP scaffold library
As described by Eq. 1, the NC-MFP scaffold library con-
sists of libraries with 16 classes, and each class consists 
of a scaffold library of level 0, level 1, level 2, and level 
3, respectively, with the DNP consisting of representative 
compounds for each class. The scaffold library for level 0, 
level 1, level 2, and level 3 was generated with the molec-
ular structures of the representative compounds of each 
class using the BM method described in Fig. 2. In Table 2, 
the 16 classes of the DNP are listed with the number of 
the representative compounds (Additional file  7). The 
number of scaffolds at each level of each class are sum-
marized. The structural diversity of scaffolds increases 
according to the increase in the number of representative 
compounds of the class.

Optimization of NC‑MFP scaffold level of NC‑MFP
With the scaffold libraries summarized in Table  2, the 
DB coverage and the accuracy of classification of the 

Table 2 The classes of the Dictionary of Natural Products (DNP) and scaffold levels are listed

DNP are listed with its’ designated name. The number of representative compounds of each class are listed. The number of scaffolds at level 0, 1, 2, and 3 are 
summarized
a From Dictionary of Natural Product database (DNP), 16 classes were introduced
b The number of representative natural compounds in each group of the DNP (“No. of NC representative group in DNP”)
c The number of scaffold level 0. (“No. of scaffolds (Lv0)”)
d The number of scaffold level 1. (“No. of scaffolds (Lv1)”)
e The number of scaffold level 2. (“No. of scaffolds (Lv2)”)
f The number of scaffold level 3. (“No. of scaffolds (Lv3)”)

No Classa Class 
designation

No. 
of representative 
 compoundsb

No. 
of scaffolds 
(Lv0)c

No. 
of scaffolds 
(Lv1)d

No. 
of scaffolds 
(Lv2)e

No. 
of scaffolds 
(Lv3)f

1 Aliphatic natural products ANP 31 16 10 4 3

2 Alkaloids Alk 303 107 177 218 190

3 Aminoacids and peptides Ape 13 9 9 7 5

4 Benzofuranoids Bfu 11 5 6 6 3

5 Benzopyranoids Bpy 15 7 8 4 4

6 Carbohydrates Car 30 10 13 14 10

7 Flavonoids Fla 19 8 8 10 2

8 Lignans Lig 20 9 10 9 1

9 Oxygen heterocycles Oxy 12 8 7 3 1

10 Polycyclic aromatic natural products PANP 13 6 8 8 3

11 Polyketides Pke 12 10 9 11 8

12 Polypyrroles Ppy 6 6 6 6 6

13 Simple aromatic natural products SANP 18 9 10 7 0

14 Steroids Ste 17 5 5 5 6

15 Tannins Tan 21 8 8 9 6

16 Terpenoids Ter 141 34 33 28 14

Total 682 257 327 349 262
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scaffolds were calculated at each scaffold level from 0 to 
3. To select the optimum scaffold level of NC-MFP, which 
has maximum discrimination power for NC structures, 
we analyzed the DB coverage and the accuracy of classifi-
cation results. The DB coverage was calculated as per the 
procedure described in Fig. 3, and the results are summa-
rized in Table 3.

The coverage of a database Y using level m scaffolds 
was calculated as,

where i represents the ith class of the DNP, nY  is the 
number of compounds in database Y, and nm,i

matched,Y  is 
the number of matched compounds with level m scaffold 
in ith class. If an NC in database Y belongs to more than 
two classes of the DNP, then the NC is considered being 
included in one class only and removes from another 
class. Table 3 summarizes DB coverage with level m, Xm

Y  . 
The average X0

Y  is 99.96% and the average of X1
Y  , X2

Y  , and 
X3
Y  were 78.07%, 42.09%, and 15.73%, respectively. As 

the level of scaffold set increases, the coverage decreases 
rapidly. In order to apply NC-MFP to any of NCs with at 
least one ring in a molecule, the ideal coverage should 
close to 100% at the scaffold set in NC-MFP. If the molec-
ular structure of all known NCs is used to produce the 
scaffold set at each level and for each class, then the cov-
erage would be close to 100%, but in this case, a large 
number of scaffolds would be selected and unsuitable 
for characterizing each natural product class. However, 
the coverage would be increased if more representative 

(4)Xm
Y =

16
∑

i=0

Xm,i
Y

(5)Xm,i
Y =

nm,i
matched,Y

nY

compounds were introduced to each class of DNP in 
addition to the representative compounds listed in DNP. 
It seems that the representative compounds listed for 
each class from the description of NP structures in DNP 
are were not enough for covering NCs discovered to date.

Figure 4 describes the classification procedure to check 
whether the representative compounds in DNP cor-
rectly classify to the class which the compound originally 
belongs to and calculate the accuracy of the classification 
of the scaffold levels. The accuracy of classification was 
obtained with the scaffolds at different scaffold levels of 
level 0, level 1, level 2, and level 3. The results are shown 
as heat maps in Fig. 4. The heat map matrix is asymmet-
ric and the element and proportion, of the heat map at 
level m, Pm

i,j , is calculated as

where noi  and nmi  are the number of the compounds in 
class i and the number of compounds which are cor-
rectly assigned to class i in level m, respectively. nmi→j is 
the number of compounds assigned to class j which origi-
nally belonged to class i. The ideal heat map, therefore, 
has all the Pm

i,i are 1 (blue) and all the Pm
i,j are 0 (red). Level 

0 and level 1 scaffold library showed poor classification 
ability, whereas level 2 and level 3 scaffold library showed 
much better classification than level 0 and level 1 scaffold 
library; however, the classification was not satisfactory.

The first objective of this study was to determine the 
optimal scaffold level for the NC-MFP by comprehen-
sively analyzing the results of the DB coverage and accu-
racy of classification. The second objective was to find a 
way to increase the coverage and the accuracy of classifi-
cation for the NCs in NCDBs based on this analysis.

Since we introduced the DNP’s NC classification sys-
tem with 16 classes, and the representative compounds of 
each class for developing NC-MFP using the BM method, 
the DB coverage of NCs and the accuracy of classifica-
tion depended entirely on the contents of the DNP. Cur-
rently, DNP content and the optimum scaffold level was 
assigned 2, as a result of careful consideration with both 
the DB coverage and accuracy in the classification listed 
in Table 3 and Fig. 4. Scaffold level 2 and level 3 showed 
similar accuracy in classification, whereas scaffold level 
2 showed much bigger DB coverage (Table 3), than that 
of scaffold level 3. The coverage of scaffold level 2 was 
too low for practical applications. This disadvantage can 
be overcome to some extent by using level 1 scaffolds to 
complement level 2 scaffolds. Hence, scaffold levels 1 and 

(6)For diagonal element → Pm
i,i =

nmi
noi

(7)For off diagonal element → Pm
i,j =

nmi→j

noi

Table 3 The result of DB coverage

The natural compound databases (NCDBs) coverage defined by Eqs. (2) and (3) 
are summarized at different scaffold levels

“NCDBs” means Natural Compound Databases. “Avg. performance” means the 
average value of performance

The DB coverage of the molecular scaffolds [ Xm

Y
 , (%)]

NCDBs (Y) Level 0 ( X0

Y
) Level 1 ( X1

Y
) Level 2 ( X2

Y
) Level 3 ( X3

Y
)

KNApSAcK 99.95 75.70 43.08 12.79

IBScreen 99.96 79.49 22.07 3.43

NPACT 100.00 80.67 54.31 18.13

Specs 99.88 85.78 64.69 33.29

TCM 99.98 74.39 34.99 13.38

NPASS 99.97 72.24 37.52 13.10

Avg. perfor-
mance

99.96 78.05 42.77 15.69
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2 were determined and collected as scaffold libraries in 
NC-MFP. The selected scaffold libraries (676 scaffolds) 
generated from the DNP are summarized (Additional 
file 8).

The only way to increase both DB coverage and accu-
racy in classification in the NC-MFP was by supple-
menting the DNP contents. To increase structural 
discrimination between classes in DNP, (i) new repre-
sentative compounds that positively contribute to the 
discrimination should be added to each class or (ii) the 
compounds that negatively contributed to the discrimi-
nation between classes should be removed. It was reason-
able to add or remove representative compounds of each 
class in the DNP for increasing structural discrimina-
tion. By repeating the process of adding a representative 
compound that could play a role in removing the miss 
assigned compound represented by the off-diagonal ele-
ment in the heat map to the original position of the diag-
onal element, one can achieve the optimum scaffold set 
for each class, and hence, can increase the DB coverage 
and accuracy in classification.

Performance evaluation of molecular fingerprints 
by binary classification task I
In order to perform the binary classification task I, 1000 
natural and 1000 synthetic compounds were selected 
from InterBioScreen (IBScreen) DB. To compare the 
ability of classification of NC structures in the NC-MFP 
with other molecular fingerprints, the binary classifica-
tion task I of each fingerprint was trained with 1-Nearest 
Neighbors (1-NN) algorithm.

The average sensitivity and specificity of ten external 
validation data set were calculated to compare the per-
formance among the molecular fingerprints. The perfor-
mance results in task I of the molecular fingerprints are 
summarized in Table  4 (Additional file  9). The Y-ran-
domization was used in the validation of models in the 
binary classification task I (Additional file 10).

The sensitivity, the probability of accurately classify 
NC into NC, of the NC-MFP was obtained as 92.65%. 
The MACCS was obtained as 84.60%, which showed 
the second-best sensitivity. The lowest sensitivity was 
obtained with APFP at 76.55%. Unlike sensitivity, the 
specificity, the probability of accurately classify synthetic 
compounds into synthetic compounds, of the NC-MFP 
classification model was 56.50%, the lowest value among 
all fingerprints. In contrast, the models of the other fin-
gerprints exhibited specificity larger than 70%.

NC-MFP consists of molecular scaffolds generated 
from the representative NCs of the classes of DNP com-
pared to the aforementioned molecular fingerprints 
developed without distinguishing between synthetic and 
NC. Hence, the NC-MFP contains many distinct scaf-
folds suitable for expressing the characteristic structural 
fragments of natural products. Therefore, NC-MFP gives 
a better average sensitivity than the other molecular fin-
gerprints. A large percentage of synthetic compounds 
share scaffolds with NC because many of the synthetic 
compounds have been synthesized via the modification 
of the molecular scaffolds or molecular structures of NC 
[49]. Since NC-MFP was developed based on the scaffolds 
of NCs, the specificity, the probability of classifying a syn-
thetic compound as a synthetic compound, was observed 

Table 4 Binary classification result of task  Ia

a The result of performance about the binary classification task I. The external validation data set was randomly selected 10 times by a proportion of 20% from the 
data set. “NC-MFP” stands for Natural Compound Molecular Fingerprints and “APFP” for AtomPairs2DFingerprint and “GraphFP” for GraphOnlyFingerprint. “MACCS” 
reports Molecular Access System keys fingerprints and “PubChemFP” stands for PubChem fingerprint
b The performance index consist of Sensitivity and specificity. “TP” stands for True positive and “FN” stands for False negative and “TN” standards for True negative and 
“FP” standard for False negative
c The sensitivity is the proportion of positive class that was correctly identified
d The specificity is the proportion of negative class that was correctly identified

Performance of each molecular fingerprint obtained by averaging ten external validation  tasksa,b

Molecular fingerprint Natural compound classification Synthetic compound classification

Avg. TP Avg. FN Avg.  Sensitivityc (%) Avg. TN Avg. FP Avg. 
 Specificityd 
(%)

NC-MFP 183 14 92.65 113 87 56.50

MACCS 169 30 84.60 146 53 73.35

PubChem
FP

165 34 82.60 154 46 77.00

GraphFP 161 38 80.75 143 56 71.80

APFP 153 46 76.55 141 58 70.70
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to be lower than that of the molecular fingerprints devel-
oped with the molecular structure of synthetic com-
pounds. Although NC-MFP shows low specificity, its 
ability to recognize NC as NC was observed to be better 
than the tested molecular fingerprints in this study.

In summary, NC-MFP has a disadvantage in terms of 
the ability to classify synthetic compounds as synthetic 
compounds from the data set. However, the high aver-
age sensitivity of NC-MFP suggests that the capability 
of the classification of NC structures from the data set is 
superior to the others. Since NC-MFP has the best aver-
age sensitivity in comparison with other molecular fin-
gerprints, NC-MFP is a superior molecular fingerprint 
to classify structural differences or properties of NCs. 
Therefore, NC-MFP is a suitable molecular fingerprint 
for natural product research.

Performance evaluation of molecular fingerprints using 
binary classification task II
Task I examined the ability of each fingerprint to distin-
guish between natural and synthetic compounds by ana-
lyzing the sensitivity and specificity of the classification 
model developed with each fingerprint. According to the 
analysis, NC-MFP showed the highest sensitivity and 
lowest specificity among the fingerprints introduced for 
the test.

The binary classification task II consisted of classify-
ing whether the 897 NCs with biological activities against 
seven target proteins with inhibitory activity belonged 
to active or inactive class. Binary classification task II 
was carried out to evaluate the ability of molecular fin-
gerprints to classify the NCs with biological activities 
as active or inactive. The performance of classification 
task II was measured with average accuracy (ACC) [47], 
F1-score [47, 50], and the Matthews Correlation Coeffi-
cient (MCC) [46] of ten external validation data sets for 
each target protein. Three evaluation indices have been 
generally used as standard methods of evaluation of 
binary classification [47]. The results of the performance 
of task II are reported in Table 5 (Additional file 11). To 
validate models of task II, Y-randomization was used 
(Additional file 12).

The average accuracy of overall molecular fingerprints 
ranged from 66.60 to 83.40%. For NPT 324, NC-MFP 
showed the best average accuracy at 88.33% among the 
seven classification tasks. MACCS observed second-best 
average accuracy at 79.45%, while APFP showed the low-
est average accuracy at 73.89%. The average accuracy of 
seven classification tasks with the NC-MFP were 78.98%, 
73.42%, 83.20%, 87.20%, 84.76%, 87.89%, and 88.33% 
in NPT 178, 204, 68, 740, 31, 439, and 324 respectively. 

NC-MFP showed high average accuracy in seven classifi-
cation tasks and other molecular fingerprints.

The average F1-score was observed between 65.20 
and 84.83%. For NPT 324, the average F1-score with 
NC-MFP was 89.42% as compared to other molecu-
lar fingerprints. MACCS showed a second-best aver-
age F1-score at 82.93%, and the difference between 
NC-MFP and MACCS was 6.49%. Each of the average 
F1-score from the seven classification tasks with the NC-
MFP showed 80.65%, 76.42%, 83.51%, 88.64%, 86.37%, 
88.82%, and 89.42% for NPT 178, 204, 68, 740, 31, 439, 
and 324, respectively. The overall F1-score of NC-MFP 
was observed to be more than 76%, and it outperformed 
all the other molecular fingerprints in each of the seven 
classification tasks.

The MCC values of overall molecular fingerprints 
ranged from 0.37 to 0.72 for seven classification tasks. 
Each of the average MCC for the seven classification 
tasks with NC-MFP showed values of 0.57, 0.49, 0.76, 
0.83, 0.78, 0.88, and 0.76 for NPT 178, 204, 68, 740, 31, 
439, and 324, respectively. For NPT 439, the average 
MCC with NC-MFP showed the best average at 0.88 
compared with the other molecular fingerprints. Except 
for NPT 178 and 204, more than 0.75 overall average 
MCC of seven classification tasks with NC-MFP showed 
an overall excellent performance. Although the MCC 
value of NC-MFP was lower than 0.7 in NPT 178 and 
204, NC-MFP outperformed the other molecular finger-
prints. In comparison with the other molecular finger-
prints, NC-MFP showed high average MCC for each of 
the seven classification tasks than the other molecular 
fingerprints.

NC-MFP showed the best performance in comparison 
with other molecular fingerprints in the overall perfor-
mance of task II. The best performance of NC-MFP is 
construed as meaning that the classification of NCs with 
inhibitory activities on seven target proteins is entirely 
accurate. Moreover, it also suggests that the structural 
features of the NC-MFP correlate with biological activi-
ties and explain them well.

Comparison between NC‑MFP and other molecular 
fingerprints
Based on the result of two binary classification tasks, 
the overall performance of MACCS and PubChemFP 
was noted to be relatively lower than NC-MFP. Since 
MACCS and PubChemFP focused on structures of syn-
thetic compounds; therefore, it is difficult to classify the 
structural differences among NCs. Besides, structural 
features of MACCS and PubChemFP show a small size. 
Since the structural features of small size can be included 
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in complex NC structures, it is challenging to represent 
the precise NC structure. APFP and GraphFP mainly 
focus on chemical connectivity information of synthetic 
compounds. Since the NC structures have complicated 
fused ring system and complex fragments compared to 
the synthetic compounds, it may not be a good approach 
to apply to NC structures.

However, since the NC-MFP was composed of struc-
tural features derived from NCs and structural features, 
it could correlate with biological activities, and NC-
MFP showed the best performance when applied to NC 
structures compared with other molecular fingerprints 
relatively.

In summary, this study provides the novel molecular 
fingerprint optimized to NC structures. We show that 
the NC-MFP is a more competent molecular fingerprint 
to describe NC structure and to explain the correlation 
between NC structures and biological activities on target 
proteins when compared with other molecular finger-
prints. Furthermore, since high accuracy is of significant 
interest in the industrial sector, NC-MFP can be a pow-
erful tool to screen NC structures for determining new 
candidate drug structures with high accuracy. Moreover, 
it can be used as a valid tool as a molecular descriptor 
for NP-based new drug development. Also, it is expected 
to be an appropriate molecular descriptor for virtual 
screening of NP-based new drug development.

Conclusion
In this study, we introduced NC-MFP based on the struc-
tural characteristics of NCs. NC-MFP is a scaffold-based 
molecular fingerprint that utilizes the DNP’s classifica-
tion system of 16 classes. The scaffold of NC-MFP was 
generated from representative compounds of each class 
in DNP using the BM method. Since NC-MFP depends 
on the contents of the DNP, it is difficult to cover the 
molecular structures of all the known NCs. By repeating 
the process of adding or removing representative com-
pounds that can contribute to the discrimination of each 
class in DNP, the DB coverage of NC-MFP could reach 
close to 100%.

Two types of binary classifications tasks were per-
formed with 1-NN to evaluate the performance of NC-
MFP compared to other molecular fingerprints. NC-MFP 
showed the best performance as a result of two binary 
classification tasks. We show that NC-MFP is a robust 
molecular fingerprint in classifying NC structures and 
explaining biological activities on target proteins. There-
fore, we conclude that the NC-MFP is specially designed 
for NC structures and is a new molecular fingerprint for 
virtual screening of NC structures. Furthermore, since 
the NC-MFP is a descriptor for virtual screening of NC 
structures with biological activities, it would be applied 

as a competent method for developing new drugs based 
on NC structures.
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