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In late 2021, the omicron variant of SARS Coronavirus 2 (SARS-CoV-2) emerged

and replaced the previously dominant delta strain. Effectiveness of COVID-19

vaccines against omicron has been challenging to estimate in clinical studies or

is not available for all vaccines or populations of interest. T cell function can be

predictive of vaccine longevity and effectiveness against disease, likely in a

more robust way than antibody neutralization. In this mini review, we

summarize the evidence on T cell immunity against omicron including

effects of boosters, homologous versus heterologous regimens, hybrid

immunity, memory responses and vaccine product. Overall, T cell reactivity

in post-vaccine specimens is largely preserved against omicron, indicating that

vaccines utilizing the parental antigen continue to be protective against disease

caused by the omicron variant.
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Introduction

By March 2022, nine different Coronavirus disease-19 (COVID-19) vaccines were

authorized by WHO for clinical use. All current vaccine platforms utilize antigens

derived from the parental SARS-CoV-2 virus that dominated initial pandemic waves (1).

SARS-CoV-2 has demonstrated a potential for rapid mutations and numerous variants

have evolved, starting approximately one year after its discovery (2). WHO classified

variants of interest and concern (VoC) reflecting their biological and clinical relevance,

including immune evasion (3). The first VoC, alpha, presented features of increased

transmission, but vaccine effectiveness was sustained (4–6). Beta showed substantial
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immune escape in vitro and ability to spread in countries with

high seroprevalence, but remained restricted to subregional

outbreaks (7–9). When delta emerged in late 2020, it replaced

other variants globally (10) due to its transmission advantage

rather than an association with impaired vaccine effectiveness (4,

11–13). In November 2021, omicron raised strong concerns

because of numerous amino acid mutations in the spike protein

(14) and rapidly replaced delta in most countries and is now

globally dominant (15). Omicron is significantly more

transmissible compared to delta, and primary vaccine regimen

and non-omicron infections appear to show considerably

reduced effectiveness against omicron infection and

symptomatic disease (16, 17).

Numerous studies based on virus neutralization assays,

where the ability of immune sera to inhibit virus entry into

cells is directly measured as correlate of vaccine effectiveness (18,

19), demonstrated a large drop in neutralizing titers against

Omicron (10×->30×) compared to previous variants such as

Beta (2×-10×) and delta (2×-4×). Furthermore, a high

proportion of vaccinees had no detectable neutralizing

antibodies against omicron (20–24). This effect was especially

pronounced for inactivated and vector-based vaccines (20, 21,

24–26) and motivated global booster campaigns.

While neutralizing antibody titers strongly correlate with

protection from infection, including symptomatic infection, the

correlation is weaker for protection against severe disease and

death, especially for immune-escaping variants (27–30). Robust

T cell responses are associated with milder COVID-19 and they

have been found to contribute to protective responses elicited by

vaccination (31–35). CD8 T cell responses have been found to be

an important contributor to protection against severe COVID-

19, especially in the context of suboptimal antibody responses

(31, 34, 36–38), while CD4 T cells are essential for protective

antibody responses and an indispensable supporter of CD8 T

cell maturation and proliferation (39).

Some SARS-CoV-2 specific T cells may persist long after

antigenic clearance (40–42). Long-term T-cell immunity has

been reported following infection and vaccination (29, 41, 43,

44). Notably, SARS-CoV-1 reactive T cells could be detected 17

years after infection (45).

In contrast to neutralizing antibody epitopes, epitopes for T

cell recognition are distributed beyond the RBD domain of the

spike protein and were found in multiple viral proteins. Hence,

specific spike mutations in SARS-CoV-2 variants may not allow

immune escape from T cell responses (46–49). Although early

studies of SARS-CoV-2 VoCs have shown that the majority of

CD4 and CD8 T cell responses are well preserved (50–53), the

extent of T cell cross-reactivity to omicron remains unclear.

Hence, understanding the generation and maintenance of robust

and cross-reactive SARS-CoV-2-specific T cell responses is

important to evaluate vaccine efficacy against SARS-

CoV2 variants.
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Studying cellular immunity in clinical specimens is

technically and logistically more complex than measuring

antibody responses because it requires intact cells. Cellular

assays should be ideally performed directly after sample

acquisition, or samples require rapid cryo-preservation, and

Human Leukocyte Antigen (HLA) restriction modulates

individual antigenic responses. Assays based on in vitro

restimulation with antigens, such as ELISpots, Interferon

Gamma Release Assays (IGRA) or Intracellular cytokine

staining (ICS) and flow cytometry require viable cells, and

complex processing over several hours or days (54). Typically,

the stimulation is performed with peptide pools spanning the

antigen of interest (usually the full-length spike protein, but the

principle can be applied to any protein or part thereof). Cytokine

release upon activation of T cells that recognize peptides present

in the pool is measured, where Interferon gamma is the most

common cytokine and is frequently used to identify antigen-

specific responding cells. Both ICS and ELISpot allow the

quantification of antigen specific T cells, where ICS allows

assessment of a higher number cytokines in the same cell and

it is more widely used. Tetramer staining of cells allows

identification of antigen-specific cells in absence of in vitro

restimulation but can only identify defined antigenic peptides

in the context of presenting HLA molecules, and thus requires

haplotyping. In this mini-review we will summarize the existing

evidence on T cell specific immunity against the omicron VoC

and its possible impact on vaccine effectiveness.
CD4 and CD8 T cell reactivity
against SARS-CoV-2 omicron

We reviewed studies comparing CD4 and/or CD8 T cell

reactivity to omicron and parental-strain SARS-CoV-2

published before March 31st, 2022, to understand the effects of

omicron on vaccine performance. Studies reviewed here

followed similar methodology and reported data on omicron-

specific CD4 and CD8 T cell response. A summary of all studies

included is provided as Supplementary Table 1. The term

‘reactivity’ describes the potential of T cells to become

activated upon stimulation with an antigen of interest. The

ratio of T cells activated by omicron vs parental antigen are

presented as ‘percent relative reactivity’ (can be >100%), as the

main denominator of T cell cross-reactivity against omicron.

Unless otherwise stated, primary vaccination indicates two

doses of vaccine, except one dose for Janssen–Ad26.CoV2.S;

booster indicates one additional dose. Figure 1 displays all

currently available study results that directly assessed CD4 and

CD8 omicron-specific T cell responses compared to the parental

antigen and that are discussed in this review. Non peer reviewed

studies are included to this review and are differentiated from

peer reviewed studies as squares in Figure 1.
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Primary series vaccination

Generally, T-cell recognition of Omicron antigens decreased

modestly, if at all. Studies comparing omicron to parental-strain

specific CD4 and/or CD8 T cell reactivity by ICS or AIM mostly

showed largely preserved (>80%) cross-reactivity against

omicron for both CD4 and CD8 T cells (55–59), although

subject heterogeneity in responses was more pronounced for

the CD8 subset (55–57, 60).

T cell cross-reactivity to omicron one month after primary

immunization with Ad26.CoV2.S or Pfizer/BioNTech–

BNT162b2 was maintained to a similar extent as after up to 6

months post immunization with two doses of mRNA vaccines

(55, 56). A broader study that combined data from primary

BNT162b2, Ad26.CoV2.S, Moderna–mRNA-1273 and

AstraZeneca–Vaxzevria vaccination reported no major

differences between Omicron and parental at early or late time
Frontiers in Immunology 03
points (60). Although Choi et al. did not report the time post

primary immunization with BNT162b2, T cell cross-reactivity

was similar (58). However, another study found approximately

20% of vaccinees displayed a two-fold or greater reduction in

overall functional T cell reactivity (61).
Booster vaccination

Boosted subjects generally had high functional T cell

responses for both CD4 and CD8 and for both homologous

and heterologous boost schedules, but a few subjects still showed

considerably reduced (approximately 9%) functional T cell

reactivity against omicron, and differences were found between

studies in direction and magnitude of the booster effect relative

to the primary series (61).

Three studies found reduced cross-reactivity to omicron in

CD4 T cell responses after a boost compared to primary series.

Within these studies, T cell cross-reactivity against omicron was

found to be 70% to 87% for all vaccines and regimen tested but

post-boost cross-reactivity was approximately 5 – 15% lower

compared to post-prime measurements (55, 62, 63). Notably,

this effect does not depict an overall reduction in T cell responses

against omicron but rather a more pronounced boosting of

overall responses against the parental spike compared to the

omicron spike resulting in reduced ratios for cross-recognition.

Contrasting results from two other studies show that CD4 T

cell reactivity assessed 6 months after primary vaccination was

similar to that after both a boost (59) and GeurtsvanKessel et al.

found in mRNA boosted subjects that CD4 and CD8 T cells were

strongly cross-reactive to omicron and greatly exceeded T cell

reactivity against the parental strain (60). Of note, in these

studies T cell reactivity was measured ≥6 months after the

primary vaccine regimen and compared to samples acquired

one month post-boost. Since our understanding about waning

(or maturing) T cell cross-reactivity to SARS-CoV-2 VoCs is

limited, it is difficult to assess if these comparisons are ideal.

Only a single study assessed CD4 T cell immunity of booster

immunization with an inactivated vaccine (Sinovac–

CoronaVac), which found the relative response against

omicron retained to 83%, but did not compare to primary

vaccination (64). However, another study that assessed

primary vaccination with CoronaVac in children found the

CD4 T cell response against omicron was increased (163%)

compared to stimulation with a parental peptide pool (65).

Studies of the booster effect on omicron-specific CD8 T

cell responses also showed varying results. One study

observed no differences (91% and 93% in boosted subjects

vs 83% post primary series) (62), whereas another observed

booster doses increased omicron-specific relative CD8 T cell

responses from 85% after primary vaccination to 118% after

homologous boost and from 94% to 119% after heterologous

boost (59).
FIGURE 1

Overview of study results on omicron-specific T cell reactivity
compared to the parental strain of SARS-CoV-2. Study results from
13 studies assessing omicron-specific T cell reactivity available by
March 31st, 2022, are shown as fold-change compared to parental-
specific T cell activation. Non peer-reviewed pre-prints are shown
as squares. A) Data on primary vaccine regimen and B) data on
booster regimen. Every data point represents a single study. Data
points from the same study are depicted with the same color. Data
are either presented within the manuscript or abstracted from high-
resolution figures or raw data provided with the manuscript.
“Primary regimen (any vaccine)” and “Boost regimen (any vaccine)
show all data points from studies on primary or boost vaccine
cohorts, respectively (dark grey bars), excluding hybrid immunity
shown in a separate bar (shaded bars). Data are not stratified for
sampling intervals and peak-immunity as well as waned immunity
data sets are included. Bars indicate the median fold-change in T
cell cross-reactivity to omicron, compared to the parental strain.
N.d, no data.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.944713
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jacobsen et al. 10.3389/fimmu.2022.944713
Vaccine products

Comparing different vaccines between studies is not

recommended given the heterogeneity between studies for the

same vaccine as shown in the previous section above. But some

evidence was found to suggest that cross-reactive T cell

responses to omicron may differ by vaccine. In one study

evaluating four different vaccine cohorts, sample sizes were

small but CD4 T cell cross-reactivity to omicron was

significantly reduced after primary Vaxzevria immunization

(58%) compared to the Ad26.CoV2.S (117%), mRNA-1273

(94%), and BNT162b2 (94%) (60). CD8 T cell cross-reactivity

was reduced for both Vaxzevria (18%) and BNT162b2 (57%)

compared to Ad26.CoV2.S (156%) and mRNA-1273 (180%)

(60). However, these data should be considered with caution

because of small group sizes and technical limitations such as

low sensitivity leading to weak responses.
Convalescence

Two studies found that convalescent subjects showed similar

T cell reactivity to vaccinated subjects (55, 61), and another

study found lower T cell reactivity among convalescent subjects

(57). Keeton et al. compared convalescent subjects to those

primed or boosted and found similar relative omicron-specific

responses for both CD4 (77% vs 70-86%) and CD8 (75% vs 76-

83%) relative to parental peptides. Naranbhai et al. compared

effector T cell reactivity using IFN-g ELISpot assays between

convalescent and vaccinated subjects, which was preserved in

most individuals in both groups. Yet, both groups had

approximately 20% of subjects with at least 50% reduction in

overall functional T cell reactivity. Gao et al. found higher

relative omicron-specific T cell reactivity in vaccinated subjects

(91% and 92% for CD4 and CD8 T cells, respectively) than

convalescent subjects (84% and 70%, respectively).
Hybrid immunity

“Hybrid immunity” describes vaccinated subjects who have

had one or more SARS-CoV-2 infections either before or after

vaccination regardless of whether a primary vaccine regimen or

booster was completed. These subjects generally showed similar

results to vaccinated-only subjects when assessing spike and

omicron specific responses. A study comparing vaccinated to

hybrid immune subjects found effector T cell reactivity against

omicron was preserved in most individuals in both cohorts, and

both also had approximately 20% of subjects with a pronounced

reduction in overall functional T cell reactivity against omicron

(61). One pre-print study found comparable reductions in T cell
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reactivity against omicron between hybrid immune subjects and

homologous primary vaccinated subjects; both showed a small

but significant reduction in CD4 (84%) and CD8 (83%) T cell

reactivity against omicron (62). The timing of COVID-19

infection relative to vaccination was also explored (data from

single-dose to heterologous booster were combined); subjects

immunized after infection retained 82% CD4 T cell reactivity to

omicron as compared to 85% among subjects infected after

vaccination, and for CD8 T cell reactivity was 89% when infected

before versus 94% after vaccination (62).
T cell memory

One study found CD4 memory T cell responses against

omicron were retained against omicron in three different

immune cohorts (primary series vaccinees: 91%, hybrid

immune subjects: 100%, and boosted hybrid immune subjects:

114%), but CD8 T cell memory responses were markedly

reduced in all (44%, 62% and 83%, respectively) (61). In

another study, T cell reactivity eight months post

immunization was largely conserved against omicron

compared to parental strain for both BNT162b2 (CD4: 91%;

CD8: 86%) and Ad26.CoV2.S (CD4: 84%; CD8: 82%) (66).

Additionally, CD4 and CD8 populations after Ad26.CoV2.S

vaccination were fully cross-reactive to omicron-specific

peptide pools, which was seen in both long-term memory cells

(central memory) and recently activated effector cells (66).
The immunocompromised host

Few data are available for immunocompromised subjects. In

anti-CD20-treated multiple sclerosis patients who received two

or three doses of mRNA vaccines, omicron-specific cross-

reactivity was lower than in healthy cohorts (67). However, the

cross-reactivity of CD4 and CD8 T cells was not largely

diminished after primary vaccination (CD4 T cell responses

were 62% and CD8 were 79%). While the booster dose

drastically enhanced overall T cell responses against both the

parental strain and omicron, cross-reactivity post-booster dose

(CD4: 72%; CD8: 71%) was similar to post-primary

cross-reactivity.
Discussion

The development of novel vaccines requires robust

predictors of vaccine induced immunity and effectiveness that

comprehensively addresses both humoral (B cell mediated) and

cellular (T cell mediated) immunity. Robust protective responses

are therefore a result of T cell and B cell responses that
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complement each other. Antibody responses are crucial to

mediate neutralization and antibody-dependent cellular

functions against viruses and most important for clearance of

extracellular pathogens. While strong humoral responses are

indicators of protection from infection and transmission, T cells

mediate or “help” such antibody responses (CD4 T helper cells)

as well as protect from severe disease by clearing all infected cells

(CD8 cytotoxic T cells) (68, 69).

Antibody titers decline rapidly, and novel variants escape

recognition, but vaccine effectiveness against severe disease and

death by SARS-CoV-2 is maintained. Current SARS-CoV-2

vaccines have shown good and stable cellular responses for

CD4 and CD8 T cells (66). Cellular immunity plays an

important role in vaccine-mediated protection against disease

and may inform the development and the optimization of

vaccines against SARS-CoV-2 variants. It is therefore

important to understand how T cell responses can provide

protection against development of disease when new SARS-

CoV-2 variants arise.

Our review of initial studies found that both CD4 and CD8

T cell cross-reactivity against omicron is largely preserved, to

about 80% when compared to reactivity against the vaccine

seed strain, contrasting sharply with the pronounced losses of

neutralizing activity, but consistent with previous studies on

earlier SARS-CoV-2 VoCs (49, 51, 53). This possibly reflects a

comparably low evolutionary advantage for the virus to escape

T cell recognition. One possibility is that T cells may play only

a minor role in SARS-CoV-2 control, thus reducing the

selection pressure for mutations of T cell epitopes. A more

plausible explanation is that T cell epitopes are recognized in

the context of the immensely heterogeneous HLA molecules.

Hence, mutations of T cell epitopes provide an advantage to the

virus only among the fraction of the people that share the same

HLA. T cell responses against Influenza A virus mostly confer

protection against severe disease. Escape from CD8 T cell

responses go along with a high fitness cost for the virus,

however, single mutations may provide only a small selective

advantage, in particular in populations with multiple HLA

alleles (70). Therefore, T cell escape mutations take very long to

get established in a virus population and thus it would take

much longer for a virus to evolve vaccine induced T

cell immunity.

T cell immune escape has been well documented in chronic

virus infections, such as HIV or HCV, where T cell escape

provides a benefit to the virus in a single host, but it is less likely

in the scenario of acute v infections that require continuous

transmission to new hosts.

This review focused on cross-reactivity to understand the

role of vaccination in eliciting protective immune responses

against omicron. Currently, there are insufficient studies to

compare the cross-reactivity of different vaccines. We did not

review vaccination effects on overall cellular responses, and it
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should not be assumed that all vaccine regimens would

perform equally. Indeed, studies found that booster doses

seem to be strong inducers of T cell responses. Most data

were for primary vaccination with BNT162b2 and present a

homogenous picture of well-conserved CD4 and CD8 T cell

reactivity against omicron. Although limited data were

available for Ad26.CoV2.S for which results were similar. For

most other vaccine regimens and immunological scenarios

such as hybrid immunity, only one or two studies were

available at this point.

Nevertheless, broad cross-reactivity of T cell immunity

against omicron is indicative of preserved vaccine effectiveness

against severe disease (19, 29, 34, 35), underlining the

importance of cellular immunity on vaccine performance.

Indeed, first reports show that vaccine effectiveness seems

largely preserved against hospitalization due to omicron (4,

71, 72).

Importantly, several studies found that while CD4 T cell

cross-reactivity against omicron is usually homogenously

conserved among subjects, CD8 T cell cross-reactivity

appears to be significantly reduced in subsets of individuals

within the same cohort. A possible explanation for reduced T

cell reactivity in some subjects was provided by a detailed

analysis that mapped binding affinities of all parental and

omicron spike peptides (8 – 11mers) to 150 HLA-A, -B and

-C alleles; approximately 7% of omicron epitopes with

sequences different from parental were predicted to result in

reduced binding to one or more HLA alleles, and subsequently

decreased epitope presentation (61). This decrease in epitope

presentation may provide a possible explanation for reduced T

cell reactivity in the population harboring such HLA alleles.

However, in another study, no specific HLA alleles significantly

correlating to omicron recognition could be identified by

applying similar tools to detect possible HLA associations in

omicron non-responders (56). Nevertheless, further decline of

the cross-reactivity of T cell responses to other VoCs could

translate into lower protection from severe disease over time. It

is important to continue to monitor the duration and cross-

reactivity of T cell responses induced by different vaccine

platforms, to determine if a T-cell inducing vaccination/

booster would be beneficial to make both cellular and

humoral responses long-lasting and eliminate the need for

regular vaccination (68). In particular, combination of different

vaccination strategies may elicit strong tissue-resident T cell

responses in the mucosa, as well as mucosal antibodies, that

could confer long-lasting protection from immune-evasive

VoCs (73), also highlighting the importance of mucosal

responses to protect from respiratory viral pathogens (74).

In summary, T cell immunity to omicron is highly conserved

in all vaccinees, and cross-reactivity is comparable among all

cohorts tested. Yet, while cross-variant T-cell reactivity is mostly

unaffected, overall strength of the response may vary and can be
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significantly enhanced by hybrid immunity or booster doses. T-

cell immunity to SARS-CoV-2 remains only partially

understood but is a dynamic and rapidly evolving research

field. Novel insights in cellular immunity may provide crucial

insight to improve vaccine performance against the omicron

VoC and its rapidly evolving subvariants.
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