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Therapeutic monoclonal antibodies (mAbs) are a new generation of protein-based medicines
that are usually expensive and thus represent a target for counterfeiters. In the present study, a
method based onRaman spectroscopy that combined extreme point sort transformationwith
a long short-term memory (LSTM) network algorithm was presented for the identification of
therapeutic mAbs. A total of 15 therapeutic mAbswere used in this study. An in-house Raman
spectrum dataset for model training was created with 1,350 spectra. The characteristic region
of the Raman spectrum was reduced in dimension and then transformed through an extreme
point sort transformation into a sequence array, which was fitted for the LSTM network. The
characteristic array was extracted from the sequence array using awell-trained LSTM network
and then compared with standard spectra for identification. To demonstrate whether the
present algorithm was better, ThermoFisher OMNIC 8.3 software (Thermo Fisher Scientific
Inc., U.S.) with twomatchingmodeswas selected for comparison. Finally, the presentmethod
was successfully applied to identify 30 samples, including 15 therapeutic mAbs and 15 other
injections. The characteristic region was selected from 100 to 1800 cm−1 of the full spectrum.
The optimized dimensional values were set from 35 to 53, and the threshold value range was
from0.97 to 0.99 for 15 therapeuticmAbs. The results of the robustness test indicated that the
present method had good robustness against spectral peak drift, random noise and
fluorescence interference from the measurement. The areas under the curve (AUC) values
of the present method that were analysed on the full spectrum and analysed on the
characteristic region by the OMNIC 8.3 software’s built-in method were 1.000, 0.678, and
0.613, respectively. The similarity scores for 15 therapeuticmAbs usingOMNIC8.3 software in
all groups compared with that of the relative present algorithm group had extremely
remarkable differences (p < 0.001). The results suggested that the extreme point sort
transformation combined with the LSTM network algorithm enabled the characteristic
extraction of the therapeutic mAb Raman spectrum. The present method is a proposed
solution to rapidly identify therapeutic mAbs.
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INTRODUCTION

Biologics, especially therapeutic monoclonal antibodies
(mAbs), have been progressively utilized in clinics over the
last decade and have been established as a major therapeutic
modality to treat severe human diseases (Singh et al., 2018; Li
et al., 2020). To date, approximately 80 antibody-based
biopharmaceutical products have been approved for
therapeutic use worldwide in 2019, and 42 therapeutic
mAbs have been marketed in China (Castelli et al., 2019).
Over 100 mAbs are in development, and new therapeutic
mAbs are marketed every year (Ettah and Ashton, 2018;
Castelli et al., 2019). Meanwhile, the number of
counterfeits is increasing. Therapeutic mAb products are
commonly colourless injections or white freeze-dried
powder, which are easy to make counterfeit (Loethen et al.,
2015). Therapeutic mAbs are considered an attractive target
for counterfeiters for another important reason: they are very
expensive (Degardin et al., 2017). Therefore, strict control of
therapeutic mAb products is required to fight against the
counterfeit of mAbs (Frosch et al., 2019). Velpandian et al. did
a protein analysis using Bradford assay and SDS-PAGE to
confirm the presence of bevacizumab in 16 samples including
six suspected and 10 others. The results suggested that the
counterfeit bevacizumab can be preliminarily identified by
simple methods (Velpandian et al., 2016). These simple
methods can only differentiate the therapeutic mAbs from
the protein-free counterfeits. Legrand et al. reported a strategy
based on the concomitant use of capillary zone
electrophoresis analysis (CZE-UV), size exclusion
chromatography coupled to multi-angle light scattering
(SEC-MALS) and liquid chromatography hyphenated to
tandem mass spectrometry (LC-MS/MS) which enables the
structural identification of mAbs in addition to
comprehensive characterization and quantification in
samples in potentially counterfeit samples (Legrand et al.,
2022). Although the concomitant use of several analysis
methods can provide an accurate result, it is complicated
and takes a long time.

Various rapid analysis methods based on spectrum and
chromatography can allow quick identification and quality
assurance in pharmacies, medical facilities, pharmaceutical
warehouses, etc., (Igne et al., 2015; Hattori et al., 2018;
Tobias et al., 2021). These analysis methods usually take a
few minutes to give a result, which will enhance public safety.
In particular, Raman spectroscopy is fast and easy to operate
and provides molecular fingerprints by detecting unique
vibrations from atomic bonds within a molecular structure
(McAvan et al., 2020). A Raman spectrum usually contains
functional groups and an overall chemical arrangement that
could be used for molecular structure analysis (Lanzarotta
et al., 2020). As a result, the Raman technique has been widely
employed in the pharmaceutical industry and in the random
inspection of small molecule drugs (Lawson and Rodriguez,
2016). Several applications have been reported for mAb

analysis. A Raman spectroscopy-based nutrient control
strategy was developed to enable dual control of lactate and
glucose levels for a fed-batch CHO cell culture process for mAb
production, which could benefit both cell metabolism and
mAb product quality (T et al., 2021). Yilmaz and his
colleagues demonstrated the possibility of subclass-
independent quantitative mAb prediction by Raman
spectroscopy in real time (Yilmaz et al., 2020). The
applicability of Raman spectroscopy to detect
posttranslational modifications (PTMs) and degradation
seen in mAbs in the manufacturing process has been
investigated (McAvan et al., 2020). The reports highlighted
Raman spectroscopy as a technique to suit the application of
mAb analysis, as it is information-rich, minimally invasive,
insensitive to water background and requires little to no
sample preparation (Jones et al., 2019).

A long short-term memory (LSTM) network is a novel
recurrent neural network (RNN) architecture in conjunction
with an appropriate gradient-based learning algorithm (Yu
et al., 2021). Unlike RNN networks, the LSTM network has a
hidden inner state that enables applying the previous sequence
input to a later calculation and avoids gradient disappearance
through a gating unit system. Efficient processing of sequences
of data and effective propagation of information along the
sequence are commonly observed in LSTM networks.
Therefore, LSTM networks have been successfully applied to
process time-series and position-series data, for example,
stemming from speech or video and natural language
sentences. Some studies are currently attempting to use
LSTM networks to analyse Raman spectra. Yu et al.
presented Raman spectroscopy combined with an LSTM
network to predict eight strains isolated from the marine
organism Urechis unicinctus and compared them with a
method using a normal convolutional neural network
(CNN) (Yu et al., 2021). The proposed LSTM methods
achieved average isolation-level accuracies greater than 94%,
which is higher than that of the normal CNN network. Wang
and his colleagues presented a rapid method to screen hepatitis
B patients using serum Raman spectroscopy combined with
LSTM networks. In a previous report, principal component
analysis (PCA) was selected to extract key features of spectral
data for dimensional reduction of the multidimensional
spectrum, followed by training of the LSTM network.
Meanwhile, a fully connected layer (FCL) was used for the
classification of HBV (Wang et al., 2020).

Spectral characteristic extraction is very important in the
signal preprocessing step (Fukuhara et al., 2019; Galeev et al.,
2019; Ling et al., 2020). Original spectral data usually contain
many invalid data points, which will cause a serious
performance loss and low accuracy rate. Without
preprocessing characteristic extraction, model training will
be difficult. FCL is usually used as a classifier at the
terminal of the model. However, artificial neural networks
are nonlinear fitting models, and adding an FCL classifier may
cause overfitting in some cases, especially in small-sample-size
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training. In the present study, we introduce a novel Raman
spectrum detection approach with LSTM networks for
therapeutic mAb identification. First, fast Fourier
transformation (FFT) and inverse fast Fourier
transformation (IFFT) are performed on the spectral
characteristic region to remove spectral noise and reduce
dimensions. Extreme point sort transformation is a critical
step to convert the spectrum into a sequence array that
involves the peak absolute positions and their relative
intensities. The sequence array can be considered a
number-labelled sentence, which fits the LSTM network.
LSTM networks are well trained and then employed to
extract the characteristics of the sequence array deeply into
a characteristic array. The extracted characteristic array will be
compared with the characteristic arrays extracted from
standard spectra using the same method to obtain a
similarity score. The sample will be identified as a
therapeutic mAb class where the similarity score is higher
than the threshold value of the therapeutic mAb class.

METHODS

Therapeutic Monoclonal Antibodies
A total of 15 therapeutic mAbs from seven manufacturers,
including adalimumab, bevacizumab, ranibizumab, tocilizumab,
evolocumab, secukinumab, rituximab, trastuzumab, pertuzumab,
denosumab, ixekizumab, ustekinumab, guselkumab, emicizumab,
and etanercept, were selected for the study. Eleven effect targets and
four protein formats of mAbs were involved when choosing
therapeutic mAbs. Information on the 15 therapeutic mAbs is
shown in Supplementary Table S1. They were labelled from 0 to
14 for artificial intelligence identification.

Raman Analysis
As shown in Figure 1A, approximate 250 μL of therapeutic mAb
injections were loaded into a 96-well quartzose plate for Raman
scanning. Sufficient injection fluid had to be added to make the
fluid level flush with the rim of the tiny cup. ThermoFisher

FIGURE 1 | The workflow of Raman-based therapeutic mAb identification and the procedures of Raman spectrum transformation combined with LSTM network
modelling. (A) The therapeutic mAb sample was loaded into a quartzose 96-well plate. Raman analysis was performed to obtain the Raman spectrum of the sample. The
Raman spectrum was exported into the CSV file and then input into the LSTM network model for identification. (B) The characteristic region of the Raman spectrum was
extracted from the original spectrum. The noises of the characteristic region were removed, and the dimension was reduced with FFT and IFFT filtering. The
positions of the extreme points were picked up and then sorted by the intensity of each point to create an array. The array was padded up to N digits with zero to satisfy
the requirement of the input layer of the LSTM network model. The LSTM layer sequentially connected to the FCL formed the hidden layers of the model. The similarity of
the sample spectrum and the standard spectrum was calculated by comparing their outputs from the FCL. The sample was identified as the therapeutic mAb, and the
similarity value was higher than the threshold. mAb, monoclonal antibody; LSTM, long short-term memory; CSV, comma separated value; FFT, fast Fourier
transformation; IFFT, inverse fast Fourier transformation; FCL, fully connected layer.
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Scientific DXR confocal Raman microscopy (Thermo Fisher
Scientific Inc., U.S.) was employed for analysis, which was
equipped with a 20× objective, a 532 nm laser and a 532 nm
filter. A full spectral range of 57–3,417 cm−1 was set to acquire the
Raman spectrum. Data acquisition was performed using
ThermoFisher OMIC 8.3 software (Thermo Fisher Scientific
Inc., U.S.) with a 10 mW laser power, 10 s exposure time, and
20 scans. For each therapeutic mAb, 18 samples in three batches
were randomly selected to collect spectra. Raman spectra were
acquired from five random points on each sample. Finally, a total
of 1,350 Raman spectra were obtained to build a Raman spectrum
database for 15 therapeutic mAbs.

Dataset Preparation
Spectra were exported as comma-separated values (CSV) files
using ThermoFisher OMIC 8.3 software. The CSV file contained
the Raman shift values and the numeric value of the intensity for
every single point of the Raman spectrum. These numeric values
of both Raman shift and intensity in CSV files were read by
Python v3.8.5 and then inserted into a MySQL v5.7.20 (MySQL
AB, Sweden) database table to create an in-house dataset with
some basic information, such as mAb name, specifications, and
date of analysis. Numeric labels of data from 0 to 14 were assigned
to each mAb. Before data processing, all numeric value data with
labels were exported from the database into a text file to obtain
high loading performance.

Data Transformation
Here, we present an extreme point sort transform for the array of
Raman spectra, which transforms array-type spectrum data into a
list of sequence numbers. First, the characteristic part of the
mAbs, ranging from 100–1,800 cm−1 in the Raman spectrum, was
captured. Then, noise removal and dimensionality reduction
were performed on the characteristic region using FFT and
IFFT. The FFT formula is shown as follows:

X(k) � ∑N−1
n�0 x(n)e−j(

2π
N)nk (k � 0, 1, . . . ,M − 1) (1)

where k is the consecutive integers from 0 to M−1, n is the
sequence number of the time-domain signal array, and M is the
total number of array elements.

After FFT processing, the low-frequency range was picked to
perform IFFT to obtain a noise removed and a low-dimensional
spectrum. The IFFT formula is shown as follows:

x(n) � 1
N

∑N−1
n�0 X(k)ej(

2π
N)nk(n � 0, 1, . . . , N − 1) (2)

where n is the consecutive integers from 0 to N−1, k is the
sequence number of the frequency-domain signal array, and N is
the total number of the low-frequency range array elements.

The positions of extreme points of the spectrum were
extracted using the Scipy library. The first extreme point was
removed and then sorted by their intensities in descending order.
The extreme point array was padded up toN digitals with zero to
match the input dimension of the model.

Data visualization after each processing step was performed
using the Matplotlib library. The data labels were converted into
one-hot labels using the Keras library. The dataset containing all
numeric values and labels was split randomly into a training
dataset and validation dataset with a split ratio of 0.8, which
means that 80% of the data were used for model training and the
other 20% were used for model validation. The test dataset was
created using 20 additional Raman spectra of each therapeutic
mAb. These spectra were never used before as a test set.

Long Short-Term Memory Modelling
As shown in Figure 2, the training process was marked within a
light blue full line box, and the predicting process was marked
within a green dashed line box. The well-trained models were
employed for spectral characteristic extraction to obtain a
characteristic array, which was compared to the characteristic
arrays of standard spectra for final identification.

All training and predictions were carried out on a SuperMicro
7049GR GPU server equipped with Dual Intel(R) Xeon(R) Gold
6,149 CPUs, 128 Gb of DDR4 RAM and Quad Nvidia RTX
3090 24 Gb graphics cards. The operating system was the 64-
bit CentOS Linux system v7.5. TensorFlow v2.0.0 was employed
to train and validate the LSTM network models.

As shown in Supplementary Table S2, the LSTM network
model contains one embedding layer, one bidirectional LSTM
layer, one FCL, one dropout layer and one output layer to form
the output prediction. The dimension of the LSTM layer is 64.
The numbers of nodes in the FCL and output layer were 32 and
15, respectively. The activation function of the FCL and output
layer were the rectified linear unit (ReLU) function and Softmax
function, respectively. The softmax function defined in Eq. 3 was
applied in the last layer to produce the prediction probability over
the 15 output classes (Hsieh et al., 2020).

f(s)i � esi

∑C
j�1e

sj
(3)

where si are the scores inferred by the net for each class in C.
The categorical cross-entropy was selected as the loss function,

which was defined in Eq. 4. The goal of the network is to
minimize CE.

CE � −log esp

∑C
j e

sj
(4)

where sp is the score for the positive class.
Adam is selected as the optimizer. The learning rate was set as

0.001, and the number of epochs was set as one to five.

Similarity Scoring
Characteristics of the Raman spectrum were extracted as a
characteristic array using extreme point sort transformation
and the LSTM network model. The characteristic array of the
sample spectrum was compared with that of standard spectra to
obtain the cosine similarity score using the Sklearn library. The
threshold value of the cosine similarity score was set as the lowest
score, which was calculated by comparing each standard
spectrum to the remaining standard spectra. The sample
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spectrum was identified when the cosine similarity score was
higher than the threshold value.

Production of Simulative Spectra
Spectral peak drift, random noise and fluorescence interference
were considered to test the robustness of the method. Elements in
the spectral intensity array were integrally shifted to the left or
right with 1–20 digitals to simulate spectral peak drift of
1–20 cm−1. The blank positions produced while shifting were
filled with the adjacent value. For simulated random noise on the
spectrum, every single element in the spectral intensity array was
multiplied by a random percentage. The range of the random
percentage is 60–100% or 100–140%. For simulated fluorescence
interference, a positive half-sine part wave overlapped in the
0–1800 cm−1 range of the original spectrum. The sine wave
amplitude was set as 60–140% of the maximum peak intensity.
The signal frequency and sampling frequency were both set as 1.
The sine wavelength was set as a random integer in the range of
3,600–7,200. The reverse arrangement of the elements in 0–1800
digital positions was picked up as a positive half-sine part to
create the simulative spectrum.

Evaluation of Prediction
The loss, precision, accuracy and recall were used to evaluate the
model since they are commonly used in most cases for

evaluations. The loss values were calculated using the
categorical cross-entropy formula described above. The
precision, accuracy and recall were calculated as follows:

Precision � tp

tp + fp
(5)

Accuracy � tp + tn

tp + tn + fp + fn
(6)

Recall � tp

tp + fn
(7)

where tp is true positives, fp is false-positives, tn is true
negatives, and fn is false negatives.

A confusion matrix was established to investigate the
classification performance. Each column of the matrix stands
for a predicted label, while each row represents a true label. The
receiver operating characteristic (ROC) curve was drawn with the
true positive rate and false-positive rate.

Tests of the prediction performance for the present method
and ThermoFisher OMNIC 8.3 software built-in method
(analysed on full spectrum and characteristic region,
respectively) were performed using a total of 300 Raman
spectra (20 Raman spectra for each therapeutic mAb) test set
with labels. The ThermoFisher OMNIC 8.3 software built-in
method was used to match the spectrum with the user’s

FIGURE 2 | Schematic view of the training process and prediction process. The training process is marked with a light blue full line box, and the prediction process
is marked with a green dashed line box.
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standard spectrum library. The match parameter of the analysis
region was set as the full spectrum or a range of 100–1800 cm−1

for full spectrum analysis or characteristic region analysis,
respectively.

Sample Identification
A total of 30 samples, including 15 therapeutic mAb injections,
three biochemical drug and biological product injections, and 12
chemical drug injections, were selected for the identification test
using the present method. A sample is identified when the
similarity score is higher than the threshold value of the
standard spectrum. If the similarity score was lower than every
threshold value, it was identified as “not matched”.

RESULTS

Identification Approach
As shown in Figure 1, an optimized Raman identification
approach for therapeutic mAbs was proposed. Approximately
250 μL of sample was loaded on a quartzose 96-well plate,
followed by Raman analysis to obtain the spectrum. The
spectral data were exported into a CSV file with 3,417 data
points for data analysis.

Characteristic Region Acquirement
Fifteen typical spectra of therapeutic mAbs are shown in Figure 3.
By comparing each spectrum manually, a range of
100–1800 cm−1 was selected as the characteristic region, which
is information-rich.

Data Transformation
The data visualizations of the extreme point sort transformation
of three therapeutic antibodies are shown in Figure 4, which
provides insights into the operating mode of the novel data
transformation and the conversion process of spectral features.

As shown in Figure 4, the original Raman spectrum had a full
scan range of 57–3,417 cm−1. After interception, a characteristic
region with a range of 100–1800 cm−1 was drawn as a new
subspectrum (Figure 4, Line 4). The target dimensional value
for each therapeutic mAb is listed in Table 1, which was used for
spectral dimensionality reduction. The filtered spectrum and the
extreme points demonstrated that approximately 10 extreme
points in each filtered spectrum could be extracted as a
sequence array. The elements of the extreme point positions
were sorted by their corresponding intensity. Finally, the sorted
array was padded with zero to the digitals of the target
dimensional value for input of the LSTM network (Figure 4,
Line 7).

Model Training
A total of 15 models were trained for the extraction of spectral
characteristics. The primary parameters and training results of
the optimized model for the identification of therapeutic mAbs
are listed in Table 1. The optimized target dimensional values
were set from 35 to 53. The epoch for training had a range of one
to five. The accuracy and validation accuracy of the 15 models
ranged from 0.8644 to 0.9975 and 0.9796 and 0.9983, respectively.
The optimized threshold values ranged from 0.97 to 0.99.

Robustness Test
To test the robustness of the algorithm, a total of 36,000
simulated spectra were created manually. The average
accuracy results (n = 20) are shown in Figure 5A. Fourteen
of fifteen therapeutic mAb simulated spectra with an offset of
wavenumbers under ±5 cm−1 could be identified using the
present method to achieve an accuracy over 95%. The
simulated spectra of therapeutic mAbs labelled 0, 1, 2, and 6
were correctly identified, while the offsets of the wavenumber
were under ±10 cm−1. As shown in Figure 5B, all simulated
spectra with a random incremental range of 10% or −10%
intensity could be identified and achieved an accuracy over

FIGURE 3 | Typical Raman spectra of the 15 therapeutic mAbs. The characteristic region of the Raman spectrum is marked with a red dashed line box.
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FIGURE 4 | Visualization examples of the original Raman spectra, characteristic region of Raman spectra, characteristic region converted by extreme point
transformation, sorted, and padded array of adalimumab, bevacizumab and ranibizumab.

TABLE 1 | The primary parameters and training results of the optimized model for the identification of therapeutic monoclonal antibodies.

Label Dimensional value Epoch Loss Accuracy Validation loss Validation accuracy Threshold

0 40 3 0.0297 0.9975 0.0104 0.9975 0.99
1 47 5 0.0239 0.9929 0.0168 0.9948 0.99
2 49 1 0.3597 0.8839 0.0364 0.9869 0.99
3 42 5 0.0396 0.9875 0.0185 0.9915 0.99
4 48 3 0.0316 0.9909 0.0063 0.9983 0.99
5 46 1 0.4435 0.8605 0.0805 0.9694 0.98
6 41 2 0.0726 0.9774 0.0286 0.9906 0.99
7 35 1 0.4377 0.8644 0.0585 0.9796 0.99
8 42 3 0.0556 0.9821 0.0291 0.9888 0.97
9 53 3 0.0451 0.9853 0.00204 0.9908 0.99
10 39 2 0.0902 0.9729 0.0379 0.9856 0.99
11 47 3 0.0394 0.988 0.0096 0.9973 0.99
12 47 1 0.3216 0.9027 0.0371 0.9877 0.97
13 40 1 0.3225 0.9041 0.0203 0.9903 0.99
14 35 1 0.4184 0.8676 0.0658 0.9794 0.99
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95%. The simulated spectra of therapeutic mAbs labelled two
could be correctly identified, while the random incremental
range of intensity was in the range of ±40%. As shown in

Figure 5C, all simulated spectra with a 10% or −10%
increment of the maximum peak intensity could be identified
and achieved an accuracy over 95%. The results indicated that

FIGURE 5 | Robustness test of the present algorithm on 15 therapeutic mAbs. (A) The classification effect of the present algorithm against simulated spectral peak
drift (n = 20); (B) The classification effect of the present algorithm against simulated spectral noise (n = 20); (C) The classification effect of the presented method against
simulated spectral florescence interference (n = 20).
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the present algorithm had good robustness against spectral peak
drift, random noise and fluorescence interference.

Model Evaluation
Figure 6 shows the ROC curves of the prediction results,
confusion matrixes and similarity scores. As shown in
Figure 6A, the areas under the curve (AUC) values of the
present algorithm, OMNIC 8.3 software built-in algorithm
analysed on the full spectrum and analysed on the
characteristic region were 1.000, 0.678 and 0.613, respectively.
In the confusion matrix, the diagonal shows the percent of correct
prediction records for each therapeutic mAb, and the off-
diagonals show the percent of misclassifications for each
therapeutic mAb (Figure 6B). The similarity scores of
classification for 15 therapeutic mAbs using the present
algorithm were 100. The similarity scores for 15 therapeutic

mAbs using OMNIC 8.3 (analysed on the full spectrum) were
81.40 ± 1.40, 86.13 ± 0.17, 97.27 ± 0.04, 17.85 ± 1.84, 82.70 ± 0.22,
91.07 ± 0.32, 86.59 ± 0.21, 98.59 ± 0.02, 0, 93.93 ± 0.08, 56.36 ±
2.13, 90.74 ± 0.17, 84.65 ± 0.19, 96.83 ± 0.04 and 81.41 ± 0.98. The
similarity scores for 15 therapeutic mAbs using OMNIC 8.3
(analysed in the characteristic region) were 92.76 ± 0.11,
89.58 ± 0.13, 97.68 ± 0.04, 54.07 ± 2.27, 86.49 ± 0.18, 93.20 ±
0.26, 89.33 ± 0.14, 98.83 ± 0.02, 86.63 ± 0.17, 95.32 ± 0.06, 90.10 ±
0.15, 91.47 ± 0.16, 88.71 ± 0.14, 97.36 ± 0.03 and 89.37 + 0.16. All
groups compared with the relative present algorithm group had
extremely remarkable differences (p < 0.001). The results
suggested a high classification performance for the present
algorithm. These results suggested that the extreme point sort
transformation combined with the LSTM network algorithm has
an excellent classification performance for Raman-based
therapeutic mAb identification.

FIGURE 6 | Predicted results of the 15 therapeutic mAbs using the presented method, OMNIC 8.3 software (analysed on the full spectrum) and OMNIC 8.3
software (analysed on the characteristic region). (A) Receiver operating characteristic curves of the present algorithm, OMNIC 8.3 software build-in algorithm (analysed
on full spectrum) and OMNIC 8.3 software build-in algorithm (analysed on characteristic region); (B) Confusion matrixes of the presented method, OMNIC 8.3 software
build-in algorithm (analysed on full spectrum) and OMNIC 8.3 software build-in algorithm (analysed on characteristic region) are plotted based on the matching
extent between the predicted labels and true labels; (C) The matching scores are calculated by model prediction using test samples (n = 20). **p < 0.01.
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Sample Identification
A total of 30 samples, including 15 therapeutic mAb injections
and 15 other injections, were tested using the present method. As
shown in Table 2, 15 therapeutic mAbs were correctly identified,
and 15 non-antibody samples were identified as “not matched”.

DISCUSSION

Raman spectroscopy has been increasingly studied for protein
sample analysis, which could indeed offer the possibility of
detecting protein bands and chemicals with few preparations
and little cost for a few seconds to a few minutes of measurement
(Li et al., 2012; Neugebauer et al., 2015; Degardin et al., 2017;
Zhang et al., 2019). The injection of therapeutic mAb usually
contains antibody proteins and pharmaceutical excipients (Singh
et al., 2018; Grilo and Mantalaris, 2019). They are both important
components of the injection. The characteristic responses of
complex components could be obtained as a spectrum using
Raman spectroscopy (Wang et al., 2018). The antibody proteins
and pharmaceutical excipients equally contribute to the
spectrum. Therefore, it is possible to screen therapeutic mAbs
utilizing Raman spectroscopy. However, most Raman peaks of
therapeutic mAbs have lower intensities than those of chemical
drugs. As a result, the therapeutic mAb spectra could not be

identified using the previous algorithm, which is suitable for
chemical drugs.

For the analysis method, LSTM networks achieve a better
classification effect than other methods (Fan et al., 2019). A
bidirectional long short-term memory (Bi-LSTM) network is the
process of making any neural network have sequence information
in both directions backwards (future to past) or forwards (past to
future) (Neishabouri et al., 2021). Bidirectional input flows in two
directions, making a Bi-LSTM network preserve the future and
past information. In a previous study, 1,200 data points of the
Raman spectrum were directly input into the LSTM network,
which caused 800 epochs of training (Yu et al., 2021). Excessive
training epochs will lead to overfitting of the model. Like sample
pretreatment in the field of chemical analysis, preprocessing of
spectral data plays an important role in data analysis. In the
present study, we provide an extreme point sort transformation to
convert the characteristic region of the Raman spectrum to a
sequence array. The spectral peak positions and relative
intensities, two critical spectral characteristics, were involved
in the array. This is an efficient transformation that even the
Raman analysis under the influence, and only a few effects would
be observed at the identification stage.

FCLs and the softmax function are commonly used in
classification models. FCLs are added at the end of the
sequence model to make the model end-to-end trainable. The

TABLE 2 | Application of the presented method to identify 30 injections, including 15 monoclonal antibodies and 15 other injections.

Sample ID Category Sample Prediction Similarity score Matched

1 Therapeutic antibody Adalimumab Adalimumab 0.999 Yes
2 Bevacizumab Bevacizumab 0.998 Yes
3 Ranibizumab Ranibizumab 0.998 Yes
4 Tocilizumab Tocilizumab 0.999 Yes
5 Iloeuvumab Iloeuvumab 0.997 Yes
6 Scuciumab Scuciumab 0.990 Yes
7 Rituximab Rituximab 0.992 Yes
8 Trastuzumab Trastuzumab 0.999 Yes
9 Pertuzumab Pertuzumab 0.988 Yes
10 Denosumab Denosumab 0.996 Yes
11 Ixekizumab Ixekizumab 0.999 Yes
12 Ustekinumab Ustekinumab 0.997 Yes
13 Guselkumab Guselkumab 0.986 Yes
14 Almezumab Almezumab 0.998 Yes
15 Etanercept Etanercept 0.999 Yes

16 Biochemical drug and biological product Human immunoglobulin for intravenous injection NM — —

17 Tetanus immunoglobulin injection NM — —

18 Atosiban acetate injection NM — —

19 Chemical drug Potassium and magnesium aspartate injection NM — —

20 Compound aminobarbital injection NM — —

21 Dopamine hydrochloride injection NM — —

22 Lidocaine hydrochloride injection NM — —

23 Tramadol hydrochloride injection NM — —

24 Aminotoluene acid injection NM — —

25 Epinephrine hydrochloride injection NM — —

26 Bupivacaine hydrochloride injection NM — —

27 Potassium chloride injection NM — —

28 Sodium chloride injection NM — —

29 Invert sugar injection NM — —

30 Sterile water for injection NM — —

NM: not matched.
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FCLs learn a function between the high-level features given as an
output from the previous layers. The softmax function
transforms any input values into values between 0 and 1 so
that they can be interpreted as probabilities. However,
inappropriate parameters of FLCs may lead to overfitting of
the model, which will enable counterfeit drugs to be identified as
genuine. The result is not accepted in the application of
counterfeit drug identification. Therefore, the FLC was only
employed in the training process for the fitting model. Then, the
model extracted the characteristics from sample spectra
followed by calculating the similarity score with standard
spectra to classify samples with the threshold value. This step
reduces the false-positive rate to avoid identifying the
counterfeit drug as genuine.

In summary, we propose a novel extreme port sort
transformation combined with an LSTM network algorithm to
identify 15 therapeutic mAbs with Raman spectra. The extreme
port sort transformation converted the characteristic region of the
Raman spectrum into a sequence array containing the original
spectral peaks and intensity profile. The characteristic array was
extracted from the sequence array by the LSTM network model.
The final identification was based on the comparison of the
characteristic array. The algorithm was successfully applied in
therapeutic mAb identification using an independent test dataset.
The algorithm was compared with ThermoFisher OMNIC
8.3 build-in spectrum matching algorithms, and the results
indicated that the present algorithm provides a better
classification performance.
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