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Abstract: There are several conditions that lead to female infertility, where traditional or conventional
treatments have limited efficacy. In these challenging scenarios, stem cell (SC) therapies have been
investigated as alternative treatment strategies. Human umbilical cord (hUC) mesenchymal stem cells
(hUC-MSC), along with their secreted paracrine factors, extracts, and biomolecules, have emerged
as promising therapeutic alternatives in regenerative medicine, due to their remarkable potential
to promote anti-inflammatory and regenerative processes more efficiently than other autologous
treatments. Similarly, hUC blood derivatives, such as platelet-rich plasma (PRP), or isolated plasma
elements, such as growth factors, have also demonstrated potential. This literature review aims
to summarize the recent therapeutic advances based on hUC-MSCs, hUC blood, and/or other
plasma derivatives (e.g., extracellular vesicles, hUC-PRP, and growth factors) in the context of female
reproductive medicine. We present an in-depth analysis of the principal molecules mediating tissue
regeneration, compiling the application of these therapies in preclinical and clinical studies, within
the context of the human reproductive tract. Despite the recent advances in bioengineering strategies
that sustain delivery and amplify the scope of the therapeutic benefits, further clinical trials are
required prior to the wide implementation of these alternative therapies in reproductive medicine.

Keywords: umbilical cord; female reproduction; umbilical cord mesenchymal stem cells; stem cell
therapy; platelet-rich plasma; exosomes; growth factors; ovary; endometrium

1. Introduction

Infertility is a disease of the male or female reproductive system, defined by the World
Health Organization as the failure to achieve a pregnancy, after at least 12 months of
regular unprotected sexual intercourse [1]. Specifically, female infertility can be caused by
various disorders of the reproductive system, including premature ovarian insufficiency
(POI), polycystic ovary syndrome (PCOS), endometriosis, Asherman’s syndrome (AS), or
endometrial atrophy (EA), among others.

Several preclinical studies and clinical trials have been conducted to evaluate the use
of stem cells (SCs), and/or their derivatives, as an alternative strategy for treating different
reproductive disorders that lead to infertility [2–4]. Stem cells are undifferentiated cells,
with the potential to perpetuate self-renewal, for a long period of time. They can divide
into identical SCs (via symmetrical division), or, under certain physiologic or experimental
stimulus, give rise to differentiated (mature) cells with particular functions (via asymmetric
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division or tissue-specific differentiation processes) [5]. Several studies have focused on
mesenchymal stem cells (MSCs) for experimental approaches to treat infertility [6–16].
In this context, there are various sources of human MSCs used in therapeutic approaches
for regenerative medicine, such as the bone marrow, adipose tissue, menstrual blood,
salivary glands, dental pulp, amniotic fluid, placental tissue, and umbilical cord (UC), the
latter being the focus of this review [17,18].

Until the 1990s, the human UC and its blood derivatives were considered medical
waste. However, the collection of human UC-MSCs (hUC-MSC) is considered non-invasive,
and thus not encumbered with ethical problems. Remarkably, hUC-MSCs have some
exceptional characteristics, including rapid self-renewal, low oncogenicity, and poor im-
munogenicity (due to their low expression of the major histocompatibility complex (MHC)
class I and class II proteins), making them an important source of SCs for allogeneic
transplantation therapy without immune rejection [19,20]. Moreover, the cell source is
heterologous, its procurement is non-invasive and is not associated with any comorbidity
for the patient. Considering these features, hUC-MSCs are preferentially used over other
sources of MSCs, for auto- and allo-transplantation. Finally, different methods have been
developed to isolate hUC-MSCs (i.e., such as from Wharton’s jelly, arteries or veins) [20–23].
To date, cell therapy based on hUC-MSCs has been applied in a multitude of medical
disciplines, for regenerative and immunomodulatory purposes [20,24–29], with gynecology
being no exception [30–40]. Nevertheless, many concerns remain regarding their use and
long-term safety, and most of the treatments developed thus far are still considered invasive
and experimental [41,42].

In this regard, new strategies have been investigated. In particular, the synthesis and
secretion of chemokines, growth factors (GFs), blood-extracts, biomolecules, and hormones
by hUC-MSCs affects the adjacent cells through paracrine signaling. These components play
important roles in angiogenesis, anti-inflammation, immunomodulation, anti-apoptosis,
and anti-fibrosis, thereby contributing to the regeneration of injured tissues [43]. For exam-
ple, microvesicles and exosomes are extracellular vesicles (EVs) that carry membrane and
cytoplasmic constituents of intracellular origin, and can transfer proteins, messenger RNAs,
microRNAs, and bioactive lipids to target cells (with specific surface receptors) to affect
their phenotype and function [44,45]. Based on this premise, some groups have explored us-
ing hUC-MSC-derived conditioned media, and hUC-MSC-secreted vesicles, rather than the
hUC-MSCs directly, to examine the indirect therapeutic effects on damaged tissues [43,46].
Notably, the microvesicles and exosomes released from MSCs exerted a protective effect on
reproductive tissues, and rescued ovarian function, in vitro and in vivo [47–49].

Overall, hUC offers a plethora of valuable byproducts for regenerative medicine,
including whole hUC blood and its derivatives (i.e., serum, plasma, endothelial progen-
itor cells, MSCs, and hematopoietic cells). Although hUC blood is mainly used to treat
blood disorders via hematopoietic SC transplantation, hUC-MSCs have garnered the most
attention for therapeutic purposes [50,51]. Recently, platelet-rich plasma (PRP), a blood-
derived product that can be prepared commercially and contains five to ten times the
density of platelets than normal blood [52], has also emerged as a promising regenera-
tive mediator. Interestingly, studies analyzing human umbilical cord platelet-rich plasma
(hUC-PRP) reported that it produced a higher concentration of GFs, chemokines, and
cytokines than adult peripheral blood PRP, and contributed to tissue regeneration through
enhancement of vascular endothelial growth factor (VEGF) and platelet-derived growth
factor (PDGF) [53–56]. So far, hUC-PRP has shown promising preclinical results, for epider-
molysis bullosa [57,58], oral mucositis [59], and foot ulcers associated with diabetes [60],
and reversing chemotherapy-induced ovarian damage [61].

Overall, UC blood offers numerous biological agents/products with high regenerative
and immunomodulatory potential. This bibliographic review aims to compile the most
relevant studies in the context of female reproduction, highlighting the advances and the
emerging therapeutic strategies.
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2. Human Umbilical Cord: Composition and Potential Mechanisms of Action
2.1. The Cellular Components

The hUC blood contains different cell types, including hUC-derived unrestricted so-
matic SCs, embryonic-like SCs, multipotent progenitor cells, and endothelial progenitor
cells [62]. However, the most studied are the hUC-MSCs, which exert potent immunosup-
pressive and anti-inflammatory effects, as demonstrated with cell-based therapies for heart
injury [63,64], retinitis pigmentosa [65], type II diabetes [66], and female pathologies [67,68],
among others.

All these cellular components, particularly hUC-MSCs, utilize three processes during
cell therapy (Figure 1A): (i) homing (the process of migrating to and settling in the damaged
tissue), (ii) secretion of GFs and EVs, and (iii) immunomodulation. Briefly, hUC-MSCs
colonize the injury site, and participate in cell proliferation and angiogenesis, through the
release of paracrine factors (e.g., cytokines, GFs, and EVs), while simultaneously modu-
lating the immune system to control inflammation and promote tissue regeneration [62].
To elucidate the complexities of these processes, each one is described in detail below, to
elaborate on relevant cell functions and/or hUC blood factors.
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Figure 1. The hUC blood composition. This illustration depicts the roles of the (A) cellular and (B)
acellular components, in tissue regeneration processes. EVs, extracellular vesicles; GF, growth factors;
hUC, human umbilical cord; hUC-MSCs, human umbilical cord mesenchymal stem cells; hUCP,
human umbilical cord plasma; hUCS, human umbilical cord serum; and NK cells, natural killer cells.

2.1.1. The Homing Process

When tissue integrity is compromised, the surrounding cells release inflammatory
molecules and chemokines, producing a concentration gradient of ligands that recruits
innate immune cells, via a phenomenon known as chemotaxis. Stem cells are attracted
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in response to this chemical stimulus and migrate directly to the site of damage to initi-
ate specific regenerative functions. This homing effect is made possible by the adhesive
junctions between SCs and the vascular endothelium at the target tissue. Specifically, the
cell-rolling interactions are mediated by the homing receptors expressed on the SCs and
their cognate endothelial co-receptors. The activation of integrins anchor the engrafted
cells for extravasation [62,69]. To achieve this cell mobilization, MSCs express the most
common immune-cell-homing chemokine receptors, including C-X-C chemokine recep-
tor type 4 (CXCR4) and C-C chemokine receptor (CCR), which interact with the potent
chemoattractants that are upregulated at the injury site, such as stromal-cell-derived factor
1 (SDF1) and monocyte-chemotactic protein 3 (MCP3) [70,71].

2.1.2. Secretion of Paracrine Factors

After homing, SCs secrete cytokines, biomolecules, trophic and growth factors. These
molecules impact target cells by modulating inflammation/apoptosis, triggering progenitor
cell proliferation, and stimulating tissue repair to provide favorable conditions for cell
survival. Indeed, GFs and EVs are regarded as the two main components implicated in SC
paracrine signaling [62].

Growth Factors

Hundreds of GFs (including VEGF, nerve growth factor (NGF), endothelial growth
factor (EGF), fibroblast growth factor (FGF), hepatocyte growth factor (HGF), and trans-
forming growth factor beta (TGFβ)) and cytokines (such as interleukins (ILs), granulocyte
colony-stimulating factor (G-CSF), and granulocyte–macrophage colony-stimulating factor
(GM-CSF)) are secreted by hUC-MSCs, after fusion of secretory granules with the plasma
membrane, to immediately begin coordinating local tissue regeneration [72,73] (Table 1).
These factors interact with membrane receptors on adjacent recipient cells [62], to mediate
angiogenesis (in particular VEGF), cell chemotaxis (mainly driven by specific chemokines),
anti-apoptotic effects (particularly G-CSF and NGF), proliferation and immunomodula-
tion [74]. Interestingly, adult bone marrow MSCs and hUC-MSCs have comparable cytokine
expression profiles, which translate into similar biological potential [75].

The paracrine action of the hUC-MSCs has previously been described in various
pathologies, such as renal injury [76–78], brain damage [79,80], cardiac injury [64,81], and
female reproductive pathologies. For example, G-CSF has shown protective effects in ovar-
ian damage by activating the PI3K/AKT pathway to promote cell survival and proliferation
of primordial follicles and granulosa cells [82,83]. Notably, this signaling pathway is co-
activated by NGF, which, in turn, signals through the tropomyosin receptor kinase A (TrkA)
receptor, contributing to these downstream cellular responses [84]. Alternatively, TGFβ
binds to its cognate receptors on the oocyte surface and inhibits follicular cell apoptosis
in ovarian failure [85]. Taken together, these findings suggest that each GF modulates a
particular molecular pathway, contributing to a complex network of cell processes, that
ultimately produce a tailored response in the target tissue. Remarkably, many of these
factors appear to act synergistically [84], which partially justifies the difficulty of elucidating
the individual roles of each GF secreted by hUC-MSCs.

Extracellular Vesicles

The therapeutic benefits produced by the EVs derived from hUC-MSCs depend on
their mechanism of action and the pathophysiology of each disease. For example, in rats
with acute kidney injury, treatment with EVs downregulated pathways activated by p38
mitogen-activated protein kinase (MAPK), which consequently decreased the caspase 3
protein expression and favored renal cell survival. In this context, EVs also promoted cell
proliferation, through activation of the extracellular-signal-regulated kinase (ERK) 1/2
pathway, reducing creatinine levels, kidney tubule necrosis, apoptosis, and oxidative stress
in vivo [86]. Meanwhile, treating liver fibrosis (characterized by the excessive production
and deposit of collagen resulting from tissue repair process) with EVs reverted the con-
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version of hepatocytes to fibroblasts (that occurs through the epithelial-to-mesenchymal
transition (EMT)), both in vitro and in vivo. Specifically, the molecules carried by the EVs
induced downregulation of TGFβ, which inhibited SMAD family member 2 (Smad2) phos-
phorylation, that is essential for the transcription of genes responsible for the EMT [87].
Interestingly, female disorders such as intrauterine adhesions [88] or PCOS [89] also ben-
efited from EV treatment both in vivo and in vitro. In both these cases, the therapeutic
effect of the EVs was directed by the post-transcriptional modifications produced by the
micro-RNAs, that induced M2 macrophage polarization and inhibited the expression of
pro-inflammatory molecules [88,89].

While small non-coding RNAs are usually transported by EVs, they can also be se-
creted directly by the hUC-MSCs to modulate other signaling cascades [90–94]. Indeed, the
upregulation of miR-455-5p and miR-330-5p in hUC-MSCs has been associated with differ-
ent mechanisms that attenuate endometrial injury and promote repair of murine damaged
endometrium. In particular, miR-455-5p regulates the suppressor of cytokine signaling 3
(SOCS3)-mediated Janus kinase (JAK)/signal transducer and activator of transcription 3
(STAT3) signaling pathway [90], whereas miR-330-5p stabilizes mitochondrial metabolism
through pyruvate dehydrogenase kinase 2 (PDK2) signaling [93].

2.1.3. Immunomodulation

Since the hUC-MSCs scarcely express MHC class II proteins and co-stimulatory
molecules, they are considered immunoprivileged cells [29]. These cells can suppress
the immune system by inhibiting the physiological functions of T-, B-, and natural killer
(NK) cells (e.g., cell proliferation, production of GFs, and cytotoxicity), through cell–cell con-
tact, and the secretion of paracrine factors. Specifically, during adaptive immune responses,
hUC-MSCs restrained the activation and proliferation of cluster of differentiation (CD)
4 (CD4)+, CD8+, CD2+, and CD3+ T-cells subpopulations, while stimulating regulatory
T-cells [95]. In addition, hUC-MSCs significantly suppressed the proliferation, differentia-
tion, and immunoglobulin secretion of B-cells, in vitro, by modulating the MAPK signaling
pathway [96]. Regarding the innate immune response, hUC-MSCs suppressed NK cells
by secreting prostaglandin-E2 [97], and converted monocytes and dendritic cells to an im-
mature state [29]. Although hUC-MSC-mediated immunosuppression has been described
in many studies [29,95,96,98,99], its complexities merit further investigation. Furthermore,
the hUC-MSCs’ immune modulating effects will notably depend on the ratio of hUC-MSCs
and immune cells (especially B-cells), immune cell activation state and maturation stage.
In this regard, the microenvironment is crucial for determining the immunomodulatory
effects of the hUC-MSCs [96].

Notably, recent studies proposed using the factors secreted by hUC-SCs, rather than
cell transplantation, for regenerative medicine [100–103]. The secreted GFs are referred to
as the secretome of the hUC-SCs, can be isolated from culture media, and induce biological
effects similar to SC therapy. The advantages of using this conditioned culture medium
include that it can be manufactured more easily, is acellular, immunotolerated, and does not
promote tumorigenesis [104]. On the other hand, several authors have isolated EVs by ul-
tracentrifugation [105] and studied the specific effects of SC-derived EVs [81,87,89,106–110],
including the re-epithelialization of cutaneous wounds [111], muscle regeneration [112],
and modulation of immune system [113], among others. Nevertheless, it is still necessary
to compare the efficacy and potency of conditioned media and EV-based therapies with SC
transplantation, in controlled clinical trials.

2.2. The Acellular Fractions

The postulate that tissue repair by hUC-MSCs is mediated via paracrine signaling
suggests that the GFs and cytokines these cells produce are sufficient to activate their
exceptional regeneration abilities and provides an alternative approach for using hUC
blood derivatives in regenerative medicine.
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In this context, recent studies have focused on using the acellular fractions of the hUC
blood, namely the human umbilical cord serum (hUCS) and plasma (hUCP) (Figure 1B).
Since their GFs and cytokines produced comparable anti-inflammatory, angiogenic, and
anti-apoptotic effects, the main difference between both biofluids is the absence (hUCS) or
presence (hUCP) of clotting factors [114,115]. In addition, since hUCS and hUCP resemble
the ‘culture medium’ of hUC blood cells, it is possible that they contain some GFs secreted
by hUC-MSCs, and therefore partly contribute to tissue regeneration processes [104].

2.2.1. Human Umbilical Cord Serum

The hUCS is the non-cellular supernatant obtained when whole hUC blood clots, and
is rich in cytokines and GFs with relevant biological properties, such as many ILs, G-CSF,
GM-CSF, FGF, NGF, tumor necrosis factor beta, and VEGF, among others [114,115] (Table 1).
Compared to hUCP, the hUCS is distinguished by a higher concentration of VEGF, which
has been associated with pronounced angiogenic and anti-apoptotic effects, via PI3K/AKT
and MAPK signaling pathways. However, the elevated secretory activity of the hUC blood
cells, contributing to the composition of the hUCS during clotting, may also lead to this
concentration difference [115].

The hUCS has been utilized as a substitute for fetal bovine serum, due to its equal or
even greater culture potential with lower immunogenicity [114]. In fact, many studies have
demonstrated its versatility for expanding cultures of different cell types, ranging from
multipotent mesenchymal stromal cells [116] to epithelial cells [117,118] and oocytes for
assisted reproductive techniques [119]. Furthermore, hUCS has shown remarkable efficacy
in experimental and clinical settings, particularly in ocular injury [120–124]. In these cases,
it provided neuroprotective action on the optic nerve, by significantly decreasing the
presence of pro-inflammatory cytokines [125].

2.2.2. Human Umbilical Cord Plasma

In contrast to hUCS, isolating hUCP requires the addition of an anticoagulant to
prevent the platelet-mediated clotting process. hUCP is also enriched with powerful
stimulators of regeneration and resident progenitor cells, however its concentration of
pro-inflammatory cytokines is minimal [115]. Following centrifugation, the platelet content
of hUCP can be concentrated up to 4–5 times to obtain hUC-PRP. Once activated, platelets
change shape and release the contents of their alpha granules into their surroundings to
chemoattract host cells that repair the tissue injury [126,127]. Next, platelets secrete specific
proteins (e.g., PDGF, TGFβ, VEGF, and EGF) that initiate intracellular signaling cascades
which produce specific cell responses (Table 1). Target cells include fibroblasts, bone
marrow-derived SCs, and pre-osteoblasts (respectively, representing long-term healing,
bone regeneration, and bone remodeling) along with immune cells (i.e., macrophages,
which, in response to hUC-PRP, have decreased inflammation in numerous diseases [128]).
Remarkably, while adult human PRP has been used extensively in many therapeutic
areas [129–136], clinical application of hUC-PRP remains experimental [137–139].
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Table 1. Main growth factors secreted by hUC-MSCs and found in the acellular components of hUC
blood. For each growth factor, this table lists the most prominent signaling pathways, biological
functions, and therapeutic applications reported in the literature in reproductive medicine and other
medical fields.

Type of Factor Signaling
Pathways Biological Functions Therapeutic Applications References

VEGF
PI3K/AKT

Ras/MAPKs
Src/FAK

3 Angiogenesis;
3 Vessel permeability;
3 Cell proliferation;
3 Cell motility;
3 Immune cell chemotaxis.

Reproductive medicine: EA,
IUA, POI
Other fields:
Neurodegenerative diseases,
chronic diabetic wounds,
neuropathic pain

[54,110,139,140]

NGF

PI3K/AKT
Ras/MAPKs

PLC-
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PI3K/AKT 
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 Mitosis and chemotaxis of mesenchymal-
origin cells; 

 Activation of macrophages; 
 Angiogenesis and blood vessel repair. 

Reproductive medicine: IUA 
Other fields: Chronic diabetic 
wounds, acute kidney injury, 
liver fibrosis, lung diseases 

[159–163] 

TGFβ 

Canonical: 
SMAD 

Non-canonical: 
PI3K/AKT 

Ras/MAPKs 

 Collagen synthesis; 
 Angiogenesis; 
 Cell chemotaxis; 
 Cell growth; 
 Inhibition of osteoclast formation and bone 

resorption; 
 Promotion of wound healing; 
 Inhibition of apoptosis; 
 Remodeling of the ECM.  

Reproductive medicine: IUA, 
POI, breast cancer 
Other fields: Atopic dermatitis, 
liver fibrosis, renal fibrosis, lung 
injury, wounds 

[87,164–168] 

ILs  
PI3K/AKT 

Ras/MAPKs 
JAK/STATs 

 Chemotaxis; 
 Cell proliferation; 
 Angiogenesis; 
 Immune modulation. 

Reproductive medicine: IUA, 
POI, ovarian carcinoma 
Other fields: Autoimmune 
encephalitis, neuropathic pain, 

[139,144,169–173] 

JNK

3 Growth and survival of
sensory nerves;

3 Inhibition of apoptosis;
3 Cell proliferation.

Reproductive medicine: POI
Other fields: Brain and nerve
injury, myocardial infarction,
diabetic cystopathy

[84,141–144]

EGF
PI3K/AKT

Ras/MAPKs
JAK/STATs

3 Mitosis, differentiation,
and chemotaxis in
epithelial and
mesenchymal cells;

3 Secretion of cytokines.

Reproductive medicine: IUA,
POI
Other fields: Dry eye
syndrome, atopic dermatitis

[124,145]

FGF PI3K/AKT
Ras/MAPKs

3 Proliferation, growth, and
differentiation of
mesenchymal cells,
chondrocytes, and
osteoblasts;

3 Angiogenesis.

Reproductive medicine: EA,
IUA, vaginal reconstruction
Other fields: Autoimmune
encephalitis, chronic diabetic
wounds, amyotrophic
sclerosis, osteoarthritis

[144,146–148]

HGF
PI3K/AKT

Ras/MAPKs
JAK/STATs

3 Regulation of cell
migration;

3 Cell growth;
3 Fibrosis inhibition;
3 Regulation of wound

healing;
3 Immune modulation.

Reproductive medicine: POI
Other fields: Parkinson’s
disease, cardiopathies, liver
fibrosis

[149–152]

G-CSF
PI3K/AKT

Ras/MAPKs
JAK/STATs

3 Cell survival and
proliferation;

3 Enhancement of mature
neutrophil function.

Reproductive medicine: POI,
recurrent implantation
failure
Other fields:
Neurodegenerative diseases,
acute liver failure, brain
injury

[54,83,153–155]
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Table 1. Cont.

Type of Factor Signaling
Pathways Biological Functions Therapeutic Applications References

GM-CSF
PI3K/AKT

Ras/MAPKs
JAK/STATs

3 Activation of
macrophages;

3 Differentiation of immune
cells;

3 Cell survival and
proliferation.

Reproductive medicine: POI
Other fields: Lung injury [156–158]

PDGF (*)

PI3K/AKT
JAK/STATs

Ras/MAPKs
PLC-
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Reproductive medicine: POI 
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injury, myocardial infarction, 
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[84,141–144] 

EGF 
PI3K/AKT 

Ras/MAPKs 
JAK/STATs 

 Mitosis, differentiation, and chemotaxis in 
epithelial and mesenchymal cells; 

 Secretion of cytokines. 

Reproductive medicine: IUA, POI 
Other fields: Dry eye syndrome, 
atopic dermatitis 

[124,145] 

FGF 
PI3K/AKT 

Ras/MAPKs 

 Proliferation, growth, and differentiation of 
mesenchymal cells, chondrocytes, and 
osteoblasts; 

 Angiogenesis. 

Reproductive medicine: EA, IUA, 
vaginal reconstruction 
Other fields: Autoimmune 
encephalitis, chronic diabetic 
wounds, amyotrophic sclerosis, 
osteoarthritis 

[144,146–148] 

HGF 
PI3K/AKT 

Ras/MAPKs 
JAK/STATs 

 Regulation of cell migration; 
 Cell growth; 
 Fibrosis inhibition; 
 Regulation of wound healing; 
 Immune modulation. 

Reproductive medicine: POI 
Other fields: Parkinson’s disease, 
cardiopathies, liver fibrosis 

[149–152] 

G-CSF 
PI3K/AKT 

Ras/MAPKs 
JAK/STATs 

 Cell survival and proliferation; 
 Enhancement of mature neutrophil function. 

Reproductive medicine: POI, 
recurrent implantation failure 
Other fields: Neurodegenerative 
diseases, acute liver failure, brain 
injury 

[54,83,153–155] 
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 Cell survival and proliferation. 

Reproductive medicine: POI 
Other fields: Lung injury 

[156–158] 

PDGF (*) 

PI3K/AKT 
JAK/STATs 
Ras/MAPKs 

PLC-ϒ 

 Mitosis and chemotaxis of mesenchymal-
origin cells; 

 Activation of macrophages; 
 Angiogenesis and blood vessel repair. 

Reproductive medicine: IUA 
Other fields: Chronic diabetic 
wounds, acute kidney injury, 
liver fibrosis, lung diseases 

[159–163] 

TGFβ 

Canonical: 
SMAD 

Non-canonical: 
PI3K/AKT 

Ras/MAPKs 

 Collagen synthesis; 
 Angiogenesis; 
 Cell chemotaxis; 
 Cell growth; 
 Inhibition of osteoclast formation and bone 

resorption; 
 Promotion of wound healing; 
 Inhibition of apoptosis; 
 Remodeling of the ECM.  

Reproductive medicine: IUA, 
POI, breast cancer 
Other fields: Atopic dermatitis, 
liver fibrosis, renal fibrosis, lung 
injury, wounds 

[87,164–168] 

ILs  
PI3K/AKT 

Ras/MAPKs 
JAK/STATs 

 Chemotaxis; 
 Cell proliferation; 
 Angiogenesis; 
 Immune modulation. 

Reproductive medicine: IUA, 
POI, ovarian carcinoma 
Other fields: Autoimmune 
encephalitis, neuropathic pain, 

[139,144,169–173] 

3 Mitosis and chemotaxis of
mesenchymal-origin cells;

3 Activation of
macrophages;

3 Angiogenesis and blood
vessel repair.

Reproductive medicine: IUA
Other fields: Chronic
diabetic wounds, acute
kidney injury, liver fibrosis,
lung diseases

[159–163]

TGFβ

Canonical: SMAD
Non-canonical:

PI3K/AKT
Ras/MAPKs

3 Collagen synthesis;
3 Angiogenesis;
3 Cell chemotaxis;
3 Cell growth;
3 Inhibition of osteoclast

formation and bone
resorption;

3 Promotion of wound
healing;

3 Inhibition of apoptosis;
3 Remodeling of the ECM.

Reproductive medicine: IUA,
POI, breast cancer
Other fields: Atopic
dermatitis, liver fibrosis,
renal fibrosis, lung injury,
wounds

[87,164–168]

ILs
PI3K/AKT

Ras/MAPKs
JAK/STATs

3 Chemotaxis;
3 Cell proliferation;
3 Angiogenesis;
3 Immune modulation.

Reproductive medicine: IUA,
POI, ovarian carcinoma
Other fields: Autoimmune
encephalitis, neuropathic
pain, spondyloarthritis, brain
injury, dermatitis

[139,144,169–173]

CKs

PI3K/AKT
Ras/MAPKs
JAK/STATs

PLC-
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Reproductive medicine: EA, IUA, 
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Reproductive medicine: POI 
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G-CSF 
PI3K/AKT 

Ras/MAPKs 
JAK/STATs 

 Cell survival and proliferation; 
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Reproductive medicine: POI, 
recurrent implantation failure 
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GM-CSF 
PI3K/AKT 

Ras/MAPKs 
JAK/STATs 

 Activation of macrophages;  
 Differentiation of immune cells;  
 Cell survival and proliferation. 

Reproductive medicine: POI 
Other fields: Lung injury 

[156–158] 

PDGF (*) 

PI3K/AKT 
JAK/STATs 
Ras/MAPKs 

PLC-ϒ 

 Mitosis and chemotaxis of mesenchymal-
origin cells; 

 Activation of macrophages; 
 Angiogenesis and blood vessel repair. 

Reproductive medicine: IUA 
Other fields: Chronic diabetic 
wounds, acute kidney injury, 
liver fibrosis, lung diseases 

[159–163] 

TGFβ 

Canonical: 
SMAD 

Non-canonical: 
PI3K/AKT 

Ras/MAPKs 

 Collagen synthesis; 
 Angiogenesis; 
 Cell chemotaxis; 
 Cell growth; 
 Inhibition of osteoclast formation and bone 

resorption; 
 Promotion of wound healing; 
 Inhibition of apoptosis; 
 Remodeling of the ECM.  

Reproductive medicine: IUA, 
POI, breast cancer 
Other fields: Atopic dermatitis, 
liver fibrosis, renal fibrosis, lung 
injury, wounds 

[87,164–168] 

ILs  
PI3K/AKT 

Ras/MAPKs 
JAK/STATs 

 Chemotaxis; 
 Cell proliferation; 
 Angiogenesis; 
 Immune modulation. 

Reproductive medicine: IUA, 
POI, ovarian carcinoma 
Other fields: Autoimmune 
encephalitis, neuropathic pain, 

[139,144,169–173] 

3 Chemotaxis and cell
adhesion;

3 Cell growth;
3 Cell proliferation;
3 Release of granules and

oxidants.

Reproductive medicine: IUA,
POI
Other fields: Liver failure,
lung injury, brain injury

[94,174–178]

(*) PDGF is secreted by platelets, but it was included in the table because of its key role in acellular therapies.
VEGF, vascular endothelial growth factor; NGF, nerve growth factor; EGF, endothelial growth factor; FGF,
fibroblast growth factor; HGF, hepatocyte growth factor; G-CSF, granulocyte colony-stimulating factor; GM-CSF,
granulocyte–macrophage colony-stimulating factor; PDGF, platelet-derived growth factor; TGFβ, transforming
growth factor beta; ILs, interleukins; CKs, chemokines; PI3K, phosphoinositide 3-kinase; MAPKs, mitogen-

activated protein kinases; PLC-
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TGFβ 

Canonical: 
SMAD 

Non-canonical: 
PI3K/AKT 

Ras/MAPKs 

 Collagen synthesis; 
 Angiogenesis; 
 Cell chemotaxis; 
 Cell growth; 
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POI, breast cancer 
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ILs  
PI3K/AKT 

Ras/MAPKs 
JAK/STATs 

 Chemotaxis; 
 Cell proliferation; 
 Angiogenesis; 
 Immune modulation. 

Reproductive medicine: IUA, 
POI, ovarian carcinoma 
Other fields: Autoimmune 
encephalitis, neuropathic pain, 

[139,144,169–173] 

, phospholipase C-gamma; JNK, c-Jun N-terminal kinase; ECM, extracellular
matrix; IUA, intrauterine adhesions; POI, premature ovarian insufficiency.

3. Application of Umbilical Cord Stem Cells and Their Derivatives in the Ovary
3.1. Cellular Therapies Based on hUC-MSCs: Current Applications, Administration, and Fertility
Restoration

Within the female reproductive tract, the ovary is the organ most commonly treated
with hUC cells, especially MSCs. The main reports of the use of hUC-MSCs and UC blood
derivatives were included in Table 2. In 2013, Wang et al. [35] pioneered the use of hUC-
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MSCs to treat POI in mice, restoring ovarian function, serum estrogen levels, adequate
follicle development, and notably reducing cell apoptosis.

Similar to how other cell therapies have been infused in rodents [179], hUC-MSCs
have been administered via tail vein injection, to foster their natural migration towards
the injured site [84,180–187]. This strategy not only improved ovarian morphology, pri-
mordial follicle development, and hormone production, but also restored estrous cyclic-
ity [84,181,183,186], implying ovarian performance was recovered. More importantly,
systemic treatment with hUC-MSCs restored fertility in all cases [181,185,187]. Further-
more, hUC-MSC therapy provoked ovarian secretion of cytokines such as HGF, VEGF, and
insulin growth factor 1 (IGF1), suggesting ovarian regeneration was mediated by paracrine
mechanisms, and these factors could improve the ovarian function and delay ovarian
senescence [180]. Using metabolomics, Zhao et al. [181] showed that hUC-MSCs activated
the phosphoinositide 3-kinase (PI3K) pathway by stimulating synthesis of free amino
acids, improved lipid metabolism, and decreased concentration of monosaccharides [181].
Meanwhile, Lu’s group [182] also focused on the protective effect of the hUC-MSCs on the
theca-interstitial cells. In vitro, they observed an interesting reduction in autophagy levels
in the theca-interstitial cells, induced by the decrease in oxidative stress and regulation
of the AMP-activated protein kinase (AMPK)/Mammalian target of rapamycin (mTOR)
signaling pathway. Augmented TrkA and NGF following hUC-MSC treatment was also
reported by Zheng et al. [84], corroborating the involvement of the NGF/TrkA signaling
pathway in ovarian regeneration. Moreover, the efficacy of multiple intravenous injections
in a chemotherapy-induced POI mouse model was analyzed by Lv et al. [187]. After intro-
ducing cells, the ovarian morphology, follicle count, and fertility improved, regardless of
whether mice received a single or triple administration. However, higher levels of serum
anti-Müllerian hormone (AMH) and local Ki67 expression suggested that multiple doses of
hUC-MSCs have a superior therapeutic effect than a single hUC-MSC bolus.

Alternatively, local intraovarian injections were also reported [37,188,189], and were ca-
pable of restoring follicle development and fertility in rodents. Interestingly, Shi et al. [188]
analyzed the toxicity associated with injecting increasing doses of hUC-MSCs. The maxi-
mum tolerated dose was 106 cells/ovary, with severe toxicity and lethality observed after
exceeding this limit. Meanwhile, Pan et al. [189] found that hUC-MSC and amniotic MSC
treatment, comparably restored damaged ovarian morphology, functionality, elasticity, and
toughness. Finally, intraperitoneal treatment with hUC-MSCs showed similar results in
terms of follicle populations, hormone regulation, and fertility restoration [190].

Despite these promising findings, administration routes for hUC-MSCs remain contro-
versial. Three independent groups compared the efficacy of intravenous or local admin-
istration for POI models [31,36,191]. In these studies, both routes reduced cell apoptosis,
augmented the proportion of growing follicles, and restored the ovarian function (as de-
termined by regulated hormonal levels and recuperated estrous cyclicity). On the other
hand, Song’s group [36] did not find any differences, Zhang et al. [191] reasoned there was
a better restoration of the ovarian function after intravenous treatment, and Zhu et al. [31]
found that local injection was more efficient. In terms of ovarian aging models, Zhang
et al. [192] observed the positive effects of hUC-MSCs regardless of the injection route
(intravenous or intraovarian), with increased follicle development, restored fertility, and
reduced apoptosis of granulosa cells and reactive oxygen species (ROS) production. Finally,
in humans, ovarian injection of hUC-MSCs rescued ovarian function, increased follicle
development, and ultimately, led to live births [193].

Recently, Lu et al. [194] elegantly studied the impact of hUC-MSCs throughout the
ovary and the endometrium. The SCs were introduced via tail injection, two weeks after
inducing a POI condition. They reported improved ovarian morphology and folliculogene-
sis, as well as restored serum hormone levels. Regarding the endometrium, an increased
number of glands and enhanced neoangiogenesis were observed, in addition to a noticeable
overexpression of Homeobox A10 (HOXA10, an essential regulator of endometrial decidu-
alization [195]), altogether revealing improved morphology and functionality. Furthermore,
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the type 1/2 T helper (Th1/Th2) cell ratio, and expression of NK cells, significantly de-
creased in the endometrium, suggesting treatment significantly regulated the ovarian
function and endometrial receptivity. Likewise, Aygün et al. [196] loaded hUC-MSCs in
hyaluronic acid scaffolds, and transplanted intraperitoneally in an abdominal adhesion rat
model, and demonstrated the synergistic effect of the SCs on restoring hormone levels, im-
proving follicle development and endometrial angiogenesis (after reducing the adhesions
macroscopically).

While hyaluronic acid is the most popular scaffold used to develop alternative treat-
ments in murine models of ovarian pathologies [197,198], other synthetic scaffolds have
been mixed with biological products to enhance their pharmacodynamics [199]. Notably,
only Sun’s group [200] has translated the use of collagen scaffolds from mice [201] to
humans. Nevertheless, in mice, both hyaluronic acid and collagen scaffolds sustained
the effects of the hUC-MSCs, improving ovarian morphology, cell proliferation, angiogen-
esis, and ultimately, restoring fertility [197,198,201]. Likewise, women treated with the
hUC-MSC-collagen complex achieved a complete restoration of fertility, with primordial
follicle activation (determined by the expression of phosphorylation of Forkhead box O3a
(FOXO3a) and Forkhead box O1 (FOXO 1)), increased proportion of growing follicles, and
consequent high serum estradiol concentration [200].

3.2. Emerging Alternatives: Acellular Therapies
3.2.1. Extracellular Vesicles

When hUC-MSCs are isolated and applied for regenerative treatments, the bioactive
executors of hUC-MSCs effects (including EVs) remain present in the cell secretome [202].
Based on this premise, independent groups have employed the medium collected from
hUC-MSC culture as a reparative treatment for POI models [82,197], and found it increased
AMH levels and folliculogenesis.

Specifically, several studies have described that hUC-MSCs secrete EVs, such as
exosomes and microvesicles, to deliver biomolecules (i.e., lipids, carbohydrates, nucleic
acids, and proteins) that facilitate cellular and host cell reprogramming [62,203]. Consistent
with the findings of two other independent groups [49,107], Liu et al. [204] reported that
administering EVs, derived from the hUC, through the tail vein efficiently improved fertility
of mice with POI, by improving ovarian and follicle morphology, balancing hormone levels,
returning estrous cyclicity, and reducing apoptosis.

The intraperitoneal transplantation of exosomes also proved beneficial in mice, by
returning folliculogenesis and hormones to nearly normal levels [205]. This improvement
in reproductive outcomes was associated with the regulation of the Hippo pathway, which
is critical for regulating follicle activation and survival, and thus, ovarian function [206].
Furthermore, Ding et al. [48] demonstrated, in a murine model, that exosomal miRNA-17-
5p was strongly associated with improvements in ovarian function. Indeed, the inhibition
of this miRNA via a knockdown approach in hUC-MSCs diminished the regenerative
effects of the exosomes.

3.2.2. Growth Factors

The hUC, and its cells, actively secrete GFs that can potentially be used for regenerative
applications, since they stimulate cell proliferation and differentiation [207]. Specifically,
the hUC-MSCs are reservoirs that, in response to specific regenerative signals in their
microenvironment, release molecules to promote tissue repair. In fact, Wang et al. [208]
reported that intraperitoneal treatment with GM-CSFs (which are present in the hUC-MSC
secretome and immunomodulate hematopoietic cells [208]) promoted follicle development
(as validated through the expression of folliculogenesis-related biomarkers) [158]. Similarly,
other GFs, such as HGF (enriched in the hUC-MSC secretome) [198], or EGF (loaded into
collagen-based scaffolds as Matrigel®) [209] have also been associated with positive fertility
outcomes.
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3.2.3. Plasma and Platelet-Rich Plasma

In terms of ovarian regeneration, Buigues et al. [61] compared the effect of hUC plasma
(rich in many GFs) to that of mobilizing G-CSF treatment and demonstrated that both
therapies increased the populations of growing follicles, proliferation, and angiogenesis,
in addition to restoring fertility of mice with gonadotoxic damage. Furthermore, Wang
et al. [210] observed the ample benefits of hUC-PRP treatment in a murine model of POI,
including preserved ovarian morphology, regulated hormonal levels and estrous cyclicity,
increased angiogenesis, and reduced apoptosis, with respect to the untreated groups.

Table 2. Outcomes of studies applying hUC-MSCs or their derivatives (with or without bioengineered
scaffolds) to treat ovarian pathologies.

Treatment Model Condition Administration Results Reference

Ovarian
Morphology

Developing
Follicles

Serum
Hormone

Levels
Estrous

Cyclicity
Markers of

Regeneration
and Function

Fertility
Outcomes

hUC-MSC Rat POI TV Improved Improved ↑ E2, AMH
↓ FSH NR ↑ HGF, VEGF,

IGF1 NR [180]

hUC-MSC Rat POI TV Improved Improved ↑ E2, P4, AMH Restored

↑ Cell
proliferation
↓ Apoptosis
↑ AMH, Bcl-2,

FSHR
↓ Caspase-3

NR [186]

hUC-MSC Rat POI TV Improved Improved
↑ E2, AMH,

GnRH
↓ FSH

Restored

↑ Cell
proliferation
↓ Apoptosis
↑ NGF, TrkA
↓ FSHR,

Caspase-3

NR [84]

hUC-MSC Rat POI TV Improved Improved ↑ E2, LH
↓ FSH NR ↓ Apoptosis NR [182]

hUC-MSC Mouse POI TV Improved Improved ↑ E2
↓ FSH Restored NR Restored [181]

hUC-MSC Mouse POI TV Improved Improved ↑ E2, AMH
↓ FSH NR

↑ Cell
proliferation
↑ FSHR, Inhibin

α/β

Restored [187]

hUC-MSC
(CD146+/−) Mouse POI TV Improved Improved ↑ E2, LH

↓ FSH NR
↑ Cell

proliferation
↑ IL-2, TNFα

Restored [185]

hUC-MSC Mouse POI TV Improved Improved ↑ E2, P4
↓ FSH NR ↑ IL-4

↓ IFNγ, NK NR [194]

hUC-MSC Mouse POI TV Improved Improved ↑ E2
↓ FSH Restored NR NR [183]

hUC-MSC Mouse POI TV NR NR NR NR NR NR [184]

hUC-MSC Rat POI Local ↑ NR NR NR NR NR [188]

hUC-MSC Mouse POI Local Improved Improved ↑ E2, AMH
↓ FSH NR NR Restored [37]

hUC-MSC Mouse POI Local Improved NR ↑ E2, LH
↓ FSH NR ↑ VEGF Restored [189]

hUC-MSC Human POI Local Improved Improved NR NR NR Restored [193]

hUC-MSC Rat POI IP NR Improved ↑ E2, LH
↓ FSH NR ↓ Fibrosis Restored [190]

hUC-MSC Rat POI TV vs. local Improved Improved ↑ E2, AMH, LH
↓ FSH Restored ↓ Apoptosis Restored [191]
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Table 2. Cont.

Treatment Model Condition Administration Results Reference

Ovarian
Morphology

Developing
Follicles

Serum
Hormone

Levels
Estrous

Cyclicity
Markers of

Regeneration
and Function

Fertility
Outcomes

hUC-MSC Rat POI TV vs. local NR Improved NR NR ↓ Apoptosis NR [36]

hUC-MSC Rat POI TV vs. local Improved Improved ↑ E2
↓ FSH Restored NR Restored [31]

hUC-MSC Mouse POI NR NR Improved ↑ E2 NR ↓ Apoptosis NR [35]

hUC-MSC Mouse Aging TV vs. local Improved Improved ↑ E2, P4 Restored
↓ Apoptosis
↓ ROS

production
Restored [192]

hUC-MSC
+ collagen Mouse POI Local Improved Improved ↑ AMH, LH

↓ FSH Restored
↑ Cell

proliferation
↑ Angiogenesis

NR [201]

hUC-MSC
+ collagen Human POI Local Improved Improved ↑ E2

↓ FSH NR NR Restored [200]

hUC-MSC
+ HA Mouse POI Local Improved Improved NR NR ↓ Apoptosis Restored [197]

hUC-MSC
vs. HGF Mouse POI Local NR Improved NR NR NR NR [198]

hUC-MSC
+ AF Rat Abdominal

adhesions IP Improved Improved NR NR NR NR [196]

hUC-MSC
EV Mouse POI TV Improved Improved ↑ E2

↓ FSH Restored ↓ Apoptosis Restored [204]

hUC-MSC
exosomes Mouse POI IP NR Improved ↑ E2, AMH

↓ FSH Restored ↑ Cell
proliferation Restored [205]

hUC-MSC
exosomes Mouse POI Local Improved Improved ↑ E2, AMH

↓ FSH NR

↑ Cell
proliferation
↓ Apoptosis
↓ ROS

production

Restored [48]

hUC-MSC
vesicles Mouse Aging Local NR Improved ↑ E2

↓ FSH Restored ↑ Oocyte
quality Restored [49]

hUC-MSC
microvesi-

cles
Mouse POI

Vena
caudalis
injection

Improved Improved ↑ E2
↓ FSH Restored

↑ Angiogenesis
↑ VEGF, IGF1,

Ang, AKT,
p-AKT

NR [107]

hUC-MSC
culture
medium

Mouse POI IP Improved Improved ↑ AMH NR NR NR [82]

hUC-MSC
+

hUC-PRP
Rat POI Local Improved NR ↑ E2, AMH

↓ FSH Restored ↑ Angiogenesis
↓ Apoptosis NR [210]

G-CSF vs.
UC plasma Mouse POI TV Improved Improved NR NR

↑ Cell
proliferation
↑ Angiogenesis

Restored [61]

GM-CSF Rat POI IP NR Improved NR NR ↑ CYP17, CD45 NR [158]

EGF +
Matrigel Mouse POI Local NR Improved NR NR NR Restored [209]

The up and down arrows, respectively, indicate an increase and decrease. hUC-MSC, human umbilical cord
mesenchymal stem cells; POI, premature ovarian insufficiency; E2, estrogen; AMH, anti-Müllerian hormone; FSH,
follicle-stimulating hormone; NR, Non-reported; HGF, hepatocyte growth factor; VEGF, vascular endothelial
growth factor; IGF1, insulin growth factor 1; P4, progesterone; Bcl-2, B-cell lymphoma 2; FSHR, follicle-stimulating
hormone receptor; GnRH, gonadotropin-releasing hormone; NGF, nerve growth factor; TrkA, tropomyosin
receptor kinase A; LH, luteinizing hormone; hUC-PRP, human umbilical cord platelet-rich plasma; CD146, cluster
of differentiation 146; IL-2, interleukin 2; TNFα, tumor necrosis factor alpha; IL-4, interleukin 4; IFNγ, interferon
gamma; NK, natural killer cells; ROS, reactive oxygen species; HA, hyaluronic acid; HGF, hepatocyte growth factor;
AF, amniotic fluid; EVs, extracellular vesicles; AKT, protein kinase B; p-AKT, phosphorylated-protein kinase B;
Ang, angiogenin; G-CSF, granulocyte colony-stimulating factor; CYP17, cytochrome P450 17α-hydroxylase/17,20-
lyase; CD45, cluster of differentiation 45; GM-CSF, granulocyte–macrophage colony-stimulating factor; EGF,
endothelial growth factor; TV, tail vein injection; IP, intraperitoneal injection.
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4. Application of Umbilical Cord Stem Cells and Their Derivatives in the
Endometrium
4.1. Cellular Therapies Based on hUC-MSCs: Current Applications, Administration, and Fertility
Restoration

There is currently a great discord apropos the gold-standard treatment for endometrial
pathologies [211]. Stem cell therapies based on bone marrow-derived MSCs [212] or
menstrual blood-derived MSCs [213] have been proposed. However, the beneficial effect
of SCs derived from the UC on the endometrium was only reported in rats as of 2017 [39].
Table 3 summarizes the main findings of studies evaluating the potential management of
endometrial pathologies by hUC-MSCs and/or hUC blood derivatives.

After endometrial scar formation, Xu et al. [39] found that hUC-MSCs recovered
endometrial morphology and restored fertility in a rat model. As previously described, the
SCs can be administered locally within the uterine horns, or systemically (in which case they
would need to migrate from the injection site), i.e., intraperitoneally [214] or intravenous (to
favor cells reaching the endometrium) [40,215]. Zhuang et al. [216] compared the efficacy
of a single intravenous hUC-MSC injection with an intravenous injection combined with
a local transplant. They found that treatment with hUC-MSCs promoted tissue repair
(via overexpression of FGF, VEGF, HGF, and IGF1), and reduced the inflammation (by
downregulating TNFα) which was more marked after combined treatment.

A promising hUC-MSC-based therapeutic strategy was evaluated in a recent clinical
trial [68]. Patients with difficulty healing after uterine surgery were treated twice, with
local injections of hUC-MSCs, via an 18F Foley catheter that was removed 24h later. The
participants, who were followed for three and six months after treatment, reported slight
improvements in menstrual blood flow, and presented reduced scarring, increased uterine
volume and endometrial thickness. Notably, no adverse events were reported.

Bioengineering strategies set the foundation on which to create new biomaterials that
facilitate cell adhesion into wounded areas. In this regard, several bioengineering strategies
for endometrial therapies, based on hUC-MSCs, have been reported, principally using
collagen scaffolds [38,39]. For example, Xin et al. [38] demonstrated that transplanting
hUC-MSCs loaded in collagen scaffolds ameliorated uterine morphology, and increased
cell proliferation at different time points, via the paracrine mechanisms exerted by VEGFA,
TGFβ, and PDGF-BB produced by the cells. Infusions of hUC-MSCs with collagen were
also reported to treat AS (characterized by the presence of intrauterine adhesions and
fibrosis) and EA (characterized by suboptimal endometrial thickness that hinders embryo
implantation) [67,217]. Cao et al. [217] spread the hUC-MSC-collagen complex on the
patients’ uterine walls, and found the treatment restored blood flow and produced a
functional endometrial within three months. Of note, almost 40% of the patients they
treated achieved pregnancy by the end of a 30-month follow-up period, resulting in a total
of eight healthy babies. Similarly, Zhang et al. [67] placed the collagen-driven hUC-MSCs in
the uterine wall, and the procedure was performed twice. Histological analyses of biopsies
confirmed collagen degradation, and hormonal replacement therapy was used to prepare
for embryo transfer. Thicker endometria were observed, and ultimately, three patients
achieved pregnancy following embryo transfer, and another woman got pregnant naturally.

Other scaffolds were tested in animal models to demonstrate the enhanced capacity
of SC repair. Wang et al. [218] acquired human placentas, decellularized amniotic mem-
branes, seeded them with hUC-MSCs, and used them to treat damaged rat uteri. Three
estrous cycles later, the endometria had recovered normal thickness and number of glands,
overexpressed metalloproteases (i.e., MMP9) and ILs (i.e., IL-4 and IL-10) related to regen-
eration and had lower expression of pro-inflammatory cytokines (i.e., IL-2, TNFα, and
interferon gamma (IFNγ)). However, this treatment was unable to restore fertility. On the
other hand, Zhou et al. [219] encapsulated the hUC-MSCs in a synthetic thermosensible
hydrogel (Pluronic F-127), which was injected into rats in the right side of uterine horns
nine days after they modeled a thin endometrium. This bioengineering strategy enlarged
the endometrium and restored its cell proliferation and angiogenesis. Similarly, Wang
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et al. [220] demonstrated that treatment with hyaluronic acid loaded with hUC-MSCs suc-
cessfully thickened the endometrium, increasing the number of glands and expression of
pro-regenerative factors (i.e., IL-4, IGF1, and EGF), while reducing fibrosis and expression
of pro-inflammatory cytokines (i.e., IFNγ), in primates with intrauterine adhesions.

Since micro-RNAs influence processes associated with tissue damage, repair, and re-
generation, they may consequently be used to study endometrial regenerative activity [221].
Indeed, Sun et al. [90] found that hUC-MSCs overexpressing miR-455-5p augmented
endometrial gland number and reduced fibrosis in a murine model with intrauterine
adhesions. The authors argued that these regenerative processes were mediated by the
activation of the JAK/STAT3 signaling pathway, which had previously been associated
with cardiac subepithelial and hepatic fibrosis [222–224]. Alternatively, Zheng et al. [93]
transfected hUC-MSCs with miR-330-5p, combined the cells with a fibroin small-intestinal
submucosa scaffold, and injected them into the damaged endometrial surface. In this
case, superior gland concentration was found to be mediated by the activation of the
circPTP4A2-miR-330-5k-PDK2 pathway.

4.2. Emerging Alternatives: Acellular Therapies
4.2.1. Extracellular Vesicles

Although EVs are one of the most broadly exploited bioactive agents from the hUC-
MSC secretome [225], only one group has employed them for endometrial conditions [226].
Ebrahim et al. [226] assessed the therapeutic efficacy of the EVs secreted by hUC-MSCs, in a
rat model of intrauterine adhesions. Endometrial function was considered to be recovered
after eight weeks, with the superior number of glands, reduced fibrosis, overexpression
of VEGF, and downregulation of inflammatory markers (i.e., TGFβ, TNFα, IL-1, IL-6, and
RUNX Family Transcription Factor 2 (RUNX2)). Notably, this regenerative effect was
amplified when the treatment was combined with estrogen.

4.2.2. Growth Factors

Thus far, GF reported from hUC secretome therapy has only been tested in combina-
tion with bioengineered scaffolds in the reproductive field. Cai’s group [227] combined
synthetic gelatin methacrylate (GelMA) with sodium-alginate (a natural polysaccharide)
and FGF in microfluidic droplets and applied them in rats, repairing the endometrium.
Interestingly, treatment using FGF combined with collagen-binding domains increased
angiogenesis and endometrial thickness in rats [228], and restored menstrual blood volume,
endometrial thickness, and ability to achieve pregnancy, in addition to reducing scarring,
in humans [229]. Similarly, López-Martínez et al. [230] recently assessed the efficacy of a
decellularized endometrial extracellular matrix hydrogel (EndoECM) loaded with a cocktail
of basic FGF, IGF1, and PDGF, in a murine model of AS/EA [230]. Both groups observed
an improvement in endometrial thickness and number of glands, and enhanced neoan-
giogenesis; however, López-Martínez et al. additionally demonstrated that the EndoECM
amplified the effects of the GFs, in terms of cell proliferation and restored fertility.

4.2.3. Plasma and Platelet-Rich Plasma

Plasma contains platelets which are rich in GFs that, when concentrated, can amplify
their therapeutic potential in terms of tissue regeneration. Last year, De Miguel-Gómez
et al. [127] reported that damaged murine uterine horns treated with UC plasma exhibited
higher cell proliferation than those treated with peripheral blood plasma. Their proteomic
analyses revealed overexpression of HOXA10, related to endometrial functionality, and
proteins involved in angiogenesis, mitotic cell cycle, PI3K/AKT and JAK/STAT signaling
pathways. Rodríguez-Eguren et al. [231] characterized thoroughly the composition of
hUC-PRP processed after manual and commercial strategies. Then, its regenerative effect
alone or driven by the aforementioned EndoECM was evaluated in a mouse model of
AS/EA. They demonstrated the combined treatment could promote endometrial thickness,
cell proliferation, angiogenesis, and restored endometrial cell function, by overexpression
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of AKT1, VEGF, and angiogenin. However, fertility restoration was only achieved when
hUC-PRP was administered alone.

Table 3. Outcomes of studies applying hUC-MSCs or their derivatives (with or without bioengineered
scaffolds) to treat endometrial pathologies.

Treatment Model Condition Administration Results Reference

Thickness Gland
Number Fibrosis Regeneration and

Functionality Markers
Fertility

Outcomes

hUC-MSC Rat IUA TV Improved Improved Reduced

↑ Cell proliferation
↑ Angiogenesis

↑ Itga1, Thbs, Laminin, collagen
↓ VWF

Restored [215]

hUC-MSC Rat IUA TV Improved Improved Reduced

↑ Cell proliferation
↑ Angiogenesis

↑ VEGFA, MMP9, CD31
↓TNFα, IFNγ, IL-2, IL-4, IL-10

Restored [40]

hUC-MSC Rat IUA Local Improved Improved NR NR Restored [232]

hUC-MSC Rat Thin en-
dometrium TV + Local NR NR NR ↑ FGF

↓ TNFα NR [216]

hUC-MSC Rat IUA IP Improved Improved Reduced ↑ Angiogenesis
↓ TGFβ and Smad3 Restored [214]

hUC-MSC Human IUA Local Improved NR Reduced Restored menstrual cycle NR [68]

hUC-MSC +
collagen Rat IUA Local Improved Improved Reduced ↑ Angiogenesis

↑MMP9 Restored [39]

hUC-MSC +
collagen Human IUA Local Improved NR Reduced

↑ Cell proliferation
↑ PanCK, ERα, PR

↑ VEGFA, TGFβ, PDGF
Restored [38]

hUC-MSC +
collagen Human Asherman

syndrome Local Improved NR Reduced
↑ Cell proliferation
↑ Angiogenesis
↑ ERα, PR

Restored [67]

hUC-MSC +
collagen Human IUA Local Improved NR Reduced

↑ Cell proliferation
↑ Angiogenesis
↑ ERα, PR

Restored [217]

hUC-MSC +
AMM Rat IUA Local Improved Improved NR

↑ Keratin, Vimentin,
Integrinβ3, IL-4, IL-10, MMP9,

KI67
↓TNFα, IFNγ, IL-2, VEGF

Non
Restored [218]

hUC-MSC +
PF-127 Rat Thin en-

dometrium Local Improved Improved NR
↑ Cell proliferation
↑ Angiogenesis
↑ VEGFA, Nos3

NR [219]

hUC-MSC +
SF-SIS Mouse IUA Local Improved Improved Reduced NR NR [93]

hUC-MSC +
HA Monkey IUA Local Improved Improved Reduced ↑ IL-4, IGF1, EGF

↓ IFNγ
NR [220]

hUC-
MSCmiR−455−5p Mouse IUA NR NR Improved Reduced ↑ JAK2, STAT3

↓ SOCS3 NR [90]

hUC-MSC EVs Rat IUA IP NR Improved Reduced
↑ VEGF

↓ TGFβ, TNFα, IL-1, IL-6,
RUNX2, COL1A1

NR [226]

UC plasma Mouse IUA Local NR NR NR
↑ Cell proliferation

↑ HOXA10, P85, 2aaa, Stat5A,
Rhoa

NR [127]

hUC-PRP +
EndoECM Mouse IUA Local Improved Improved Reduced

↑ Cell proliferation
↑ Angiogenesis

↑ AKT1, VEGF, angiogenin
Restored [231]
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Table 3. Cont.

Treatment Model Condition Administration Results Reference

Thickness Gland
Number Fibrosis Regeneration and

Functionality Markers
Fertility

Outcomes

PDGF-BB +
FGF + IGF1 +

EndoECM
Mouse IUA Local Improved Improved Reduced

↑ Cell proliferation
↑ Angiogenesis
↓ Col1A1

Restored [230]

FGF + CBD Rat IUA Local Improved NR Reduced ↑ Angiogenesis Restored [228]

FGF + CBD Human IUA Local Improved NR Reduced ↑ Cell proliferation
↑ Angiogenesis Restored [229]

FGF + GelMA +
Na-alginate

scaffold
Rat IUA Local Improved Improved Reduced ↑ Angiogenesis NR [227]

The up and down arrows, respectively, indicate an increase and decrease. hUC-MSC, human umbilical cord
mesenchymal stem cells; IUA, intrauterine adhesions; Itga1, integrin subunit alpha 1; Thbs, thrombospondin; VWF,
Von Willebrand factor; VEGF, vascular endothelial growth factor, VEGFA, vascular endothelial growth factor A;
MMP9, metalloprotease 9; CD31, Cluster of differentiation 31; TNFα, tumor necrosis factor alpha; IFNγ, interferon
gamma; IL-2, interleukin 2; IL-4, interleukin 4; IL-10, interleukin 10; NR, non-reported; FGF, fibroblast growth
factor; TGFβ, transforming growth factor beta; Smad3, SMAD family member 3; PanCK, pan-cytokeratin; ERα,
estrogen receptor alpha; PR, progesterone receptor; PDGF, platelet-derived growth factor; AMM, acellular amniotic
matrix; PF-127, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) 127; Nos3, nitric oxide synthase
3; SF-SIS, silk fibroin small-intestinal submucosa; HA, hyaluronic acid; IGF1, insulin-like growth factor 1; EGF,
epidermal growth factor; JAK2, Janus kinase 2; STAT3, signal transducer and activator of transcription 3; SOCS3,
suppressor of cytokine signaling 3; miR-455-5p: microRNA 455-5p; EVs: extracellular vesicles; IL-1, interleukin
1; IL-6, interleukin 6; RUNX2, runt-related transcription factor 2; COL1, collagen type 1; HOXA10, homeobox
A10; 2aaa, serine/threonine-protein phosphatase 2A; Stat5A, signal transducer and activator of transcription 5A;
Rhoa, Ras homolog family member A; CBD, collagen-binding domain; GelMA, gelatin methacrylate; TV, tail vein
injection; IP, intraperitoneal injection; EndoECM, decellularized endometrial extracellular matrix hydrogel; UC,
umbilical cord; hUC-PRP, human umbilical cord platelet-rich plasma; Na-alginate, sodium alginate.

5. Applications of Umbilical Cord Stem Cells and Their Derivatives in Other Female
Reproductive Organs
5.1. Vagina

Vaginal pelvic organ prolapse is a condition in which one or more organs in the
pelvis slip down from their original position and protrude into the vagina [233]. Diverse
SC therapies have achieved promising results in preclinical studies, conferring tissue
elasticity, muscle regeneration, and reduced inflammatory reactions [234]. Specifically, a
rhesus macaque model of pelvic organ prolapse treated with hUC-MSCs showed increased
muscular thickness, higher elasticity of the vaginal wall, upregulation of muscular (i.e.,
COL1A1 and FBN5) and neovascular markers (e.g., VEGF), and downregulation of matrix
metalloproteinases (i.e., MMP2/9/13). The innovative strategy of loading hUC-MSCs
into synthetic scaffolds was also reported using the same primate model. A scaffold
derived from the small intestine submucosa was employed to deliver the hUC-MSCs,
which improved angiogenesis, muscular thickness, collagen content, and vaginal wall
elasticity, in addition to upregulating muscular markers (i.e., COLI, ACTA, and ELN) and
metalloproteases (i.e., MMP1/2), and reorganized the extracellular matrix [235]. Moreover,
the use of a collagen I scaffold in a rat model improved the collagen content in the vaginal
wall and vaginal elasticity, in addition to upregulating ACTA2, Elastin, FGF, vimentin,
COL3A1, TIMP metallopeptidase inhibitor 1 (TIMP1), VEGFA, and TGFβ [236]. Similarly,
the use of a synthetic polypropylene scaffold to deliver the hUC-MSCs decreased the
inflammatory response, upregulated IL-1, -4, and -10, and downregulated MMP1/9 [237].

We highlight that, so far, only one group has applied hUC-MSCs in humans for
vaginal diseases. This particular study was related to stress urinary incontinence (where
the urine leaks without bladder contraction), which affects 10–40% of women [238,239]. The
hUC-MSCs were injected into the submucosal area of the proximal-urethra, in a two-step
procedure, and no adverse events were reported. After measuring urodynamic markers,
Lee et al. [240] demonstrated the deficient intrinsic sphincter and mixed stress incontinency
were improved by this treatment.
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5.2. Oviducts

The only application of hUC-MSC within the oviducts was reported in 2019, for
chronic salpingitis caused by Chlamydia trachomatis [241]. Chronic salpingitis compromises
the oviductal structure, leading to distal tube obstruction and hydrosalpinx, which are
well-known causes of infertility [242]. Liao et al. [241] pioneered this work by isolating
MSCs from UC donors, labelling, and transplanting them into chlamydial-infected mice.
Within four weeks, the SC therapy had improved fallopian tube morphology, increased the
proliferation index, and reduced apoptosis and inflammation, compared to the non-treated
group. Individuals treated with the hUC-MSCs were also capable of achieving pregnancy
and live births.

5.3. Placenta

Spontaneous abortion is defined as the loss of a pregnancy, without outside inter-
vention, during the first 20 weeks of gestation [242]. The consecutive loss of three or
more pregnancies is diagnosed as recurrent pregnancy loss, and may be caused by uterine
anatomical defects, chromosomal aberration, or immunological abnormalities [243]. The
therapeutic potential of hUC-MSCs in abortion was studied using a rat model generated by
Chen et al. [244]. This group induced abortion with bromocriptine, between gestational
days 6–8, and transplanted the hUC-MSCs on day 9. This treatment prevented necrosis of
the placental decidual cells (usually provoked by abortion), and restored levels of IL-10, -17,
and IFNγ to normal, in addition to reducing early pregnancy loss after mating. However,
the long-term safety and effectiveness of this treatment merits further investigation.

6. Pros and Cons of Using Human Umbilical Cord Stem Cells and Their Derivatives

Despite the application of hUC-MSCs proving to have therapeutic benefits for repro-
ductive diseases in preclinical models, further studies are required to assess their efficacy
in the clinical setting and long-term safety (Figure 2). Once they reach their target tissue,
the hUC-MSCs can differentiate into resident cells (depending on the signals they receive
from the tissue-specific ECM), and thus potentially provide a lifetime supply of cells for
the patient, with only a single dose. However, SC therapy has some limitations, including
the need to establish a bank of hUC-MSCs, and their tumorigenic potential, which makes
clinical translation challenging [245].

Acellular therapies based on the hUC-MSC secretome, or specific hUC blood deriva-
tives, are emerging as promising alternatives in reproductive medicine. Specifically, EVs
and hUC-MSCs are postulated to have similar biological effects, but EVs are more ad-
vantageous in terms of greater stability, easier storage, diminishing the risk of ectopic
tissue formation, possible immune rejection, and tumorigenicity, when compared to cell
transplantation (Figure 2) [110]. Similarly, the acellular components of hUC blood, such
as hUC plasma, hUC-PRP, and GFs, exhibited lower immunogenicity and tumorigenicity,
compared to cell transplantation. Apart from being more economical in the long-term [245],
these components are microbiologically safe, and avoid the extra burdens associated with
autologous treatments [137]. Furthermore, soluble GFs in the hUCS and hUCP remain sta-
ble after extended periods of cryopreservation, facilitating their management [246]. Given
these reasons, we expect that the acellular components of human UC blood—particularly
PRP—will be key players in the future of regenerative medicine. However, future studies
should be conducted to develop strategies that mitigate potential problems with their
targeting or retention [225].
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Advances in bioengineering offer new methodologies to sustain delivery of cells and
paracrine factors, boosting efficiency and maintaining long-term efficacy [199]. Thus far,
only collagen-derived scaffolds have been applied in clinical trials, for patients affected
by POI [200] and AS [67,217]. However, tissue-specific hydrogel scaffolds that mimic the
target microenvironment are quickly emerging as alternatives, since they potentiate the
restorative effects [247], as has been demonstrated with murine models of AS [230].

Remarkably, the US Food and Drug Administration (FDA) states the products used in
regenerative medicine must be regulated prior to their implementation in the industry and
into patients. Specifically, the safety, purity, potency, and identity of the hUC blood or their
derivatives, as well as their testing in clinical trials, are mandatory [248].

Due to the lack of studies comparing cellular and acellular therapies, it is difficult to
evaluate which of the therapies described herein is superior. Nevertheless, the ongoing clin-
ical trials assessing the application of hUC-PRP in the endometrium [138], and hUC-MSCs
in the endometrium [249,250] and ovaries [251–253], bring these products one step closer
to clinical translation and, ultimately, helping to treat infertility-related conditions. Further
information about these ongoing clinical trials is provided in Supplementary Table S1.

Notably, treatments based on hUC blood components are also emerging as alternatives
to treat male infertility. Preclinical models have already been used to demonstrate the
ability of hUC-MSCs to differentiate into germ cells, in the lumen of the seminiferous
tubules [254,255], and their therapeutic effect against the gonadotoxicities of lead [256].
However, research in this field remains experimental, as there have not been any reports of
clinical trials evaluating their use to treat male infertility-related conditions [257].
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7. Conclusions

In conclusion, regenerative medicine targeting female reproduction has generated
promising outcomes through the use of hUC-MSCs and blood derivatives, such as hUC-
MSCs, hUC-PRP, and EVs, in the treatment of multiple gynecological disorders (i.e., POI,
AS, EA, pelvic organ prolapse, or abortions). These treatments enhanced tissue regeneration
by upregulating the secretion of GFs and cytokines and through their immunomodulatory
actions. Further studies are required to establish a clinical benefit, and to determine whether
cellular or acellular therapy is superior.
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